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Preface

Advances in sensors, information technology, and high-performance computing have
resulted in massive data sets becoming available in many scientific disciplines. These data
sets are not only very large, being measured in terabytes and petabytes, but are also quite
complex. This complexity arises as the data are collected by different sensors, at different
times, at different frequencies, and at different resolutions. Further, the data are usually in
the form of images or meshes, and often have both a spatial and a temporal component.
These data sets arise in diverse fields such as astronomy, medical imaging, remote sensing,
nondestructive testing, physics, materials science, and bioinformatics. They can be obtained
from simulations, experiments, or observations.

This increasing size and complexity of data in scientific disciplines has resulted in a
challenging problem. Many of the traditional techniques from visualization and statistics
that were used for the analysis of these data are no longer suitable. Visualization techniques,
even for moderate-sized data, are impractical due to their subjective nature and human
limitations in absorbing detail, while statistical techniques do not scale up to massive data
sets. As a result, much of the data collected are never even looked at, and the full potential
of our advanced data collecting capabilities is only partially realized, if at all.

Data mining is the process concerned with uncovering patterns, associations, anoma-
lies, and statistically significant structures in data. It is an iterative and interactive pro-
cess involving data preprocessing, search for patterns, and visualization and validation of
the results. It is a multidisciplinary field, borrowing and enhancing ideas from domains
including image understanding, statistics, machine learning, mathematical optimization,
high-performance computing, information retrieval, and computer vision. Data mining
techniques hold the promise of assisting scientists and engineers in the analysis of massive,
complex data sets, enabling them to make scientific discoveries, gain fundamental insights
into the physical processes being studied, and advance their understanding of the world
around us.

Why focus on scientific data?
There are several books available on data mining. Many focus on the specific task of
finding patterns in the data through techniques such as decision trees or neural networks,
while others focus on commercial data and are targeted at the business communities. Pattern
recognition techniques are necessary in the mining of scientific data; however, they form
only a part of the entire data mining process. Texts focusing on pattern recognition do not
discuss how to convert raw scientific data in the form of images or meshes into a form that

xiii



xiv Preface

can be used as input to a pattern recognition algorithm. On the other hand, texts on mining
business applications focus on data that have been cleaned and are in a database, a situation
that is rarely true for scientific data. Further, the assumptions made for business data may
not hold for scientific data. For example, in a targeted marketing application, it is possible
to use historical data to generate a large training set, with equal number of positive and
negative examples. In contrast, training sets in scientific data tend to be quite small as they
are generated manually. They are also frequently unbalanced, with far more examples of
one type than another.

The data mining problems encountered in science and engineering applications may
seem very different at first glance. However, there are several common threads among
them. This book focuses on the identification of these common problems and their potential
solutions. It considers the end-to-end process of data mining, starting with the raw data in
the form of images or meshes, preprocessing the data, and finding useful information in the
data that are then shown to the scientist for validation. There is greater focus on the pre-
and postprocessing steps as these are often the more critical and time-consuming parts of
mining scientific data. In the process, this book brings together topics that are often spread
out among books focusing on image processing, information retrieval, or mathematical
optimization. This book has also been written with an emphasis on the practical aspects
of mining scientific data and introduces the reader to topics not often covered in academic
texts such as data mining systems.

Any book must be limited in scope if it has any hope of seeing the light of day (or the
printer’s ink); therefore, several topics are beyond the scope of this book. These include:

• Database technology: In many scientific disciplines, metadata representing aspects
of the data, such as the time it was collected and the circumstances under which it
was collected, may be stored in a database. However, the data itself is usually stored
in flat files, with perhaps a pointer from the associated metadata in the database. As a
result, database technology is often not very relevant to scientific data. In fact, when
many scientists use the term “database,” they are referring to their data as a whole;
these data may be in flat files if they are online or they may just be a collection of
tapes in a file cabinet.

• Online Analytical Processing (OLAP): This includes tasks such as querying the
database and extracting slices or cubes from the data that satisfy certain constraints.
Such techniques are used in some scientific applications for tasks such as exploratory
data analysis and subsetting the data for further analysis. Tools to support this are
provided either through visualization software or by domain- or problem-specific
software.

• Parallel implementations: While these are often necessary to make the problem of
mining massive data sets tractable, the subject is broad enough that several books can
be devoted to it.

• Collection of the data: The process used for collection of the data, whether from
experiments, observations, or simulations, is often an important aspect of data mining.
In particular, it can dictate the choice of algorithms to use as well as the confidence
in the conclusions being drawn from the data. However, it is also a topic that is very
dependent on both the problem and the application domain, and is therefore beyond
the scope of this book.
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• Storage and access of the data: While these are topics germane to mining scientific
data, they are more appropriate for a text on data management.

In addition, since there are several excellent texts on pattern recognition algorithms,
I will discuss this topic only briefly in Chapter 11, focusing on issues more relevant to
practical applications and providing pointers as appropriate.

What is in this book?
This book is focused on the practical aspects of scientific data mining. Over the last ten
years, as I analyzed data from various scientific domains, I encountered a diversity of
problems. Often, the solutions were not found in standard texts on data mining, but in texts
on different domains, or on techniques developed in the context of a different problem in a
different application area. In many cases, I had to modify existing techniques or innovate
and come up with new approaches which exploited domain-specific information. In the
process, I realized that there are many pitfalls in mining scientific data, and one must apply
techniques with care, while being aware of the characteristics of the data and the assumptions
of the different algorithms. The end goal of finding scientifically meaningful information
in the data cannot be achieved by simply applying techniques blindly to the data.

This book tries to bring together, in a coherent whole, the different techniques which
can be used in solving a variety of problems in the analysis of data from various scientific
domains. Not all the techniques are useful in all problems and some techniques developed
in the context of one application domain may find use in an entirely different application
domain.

The chapters in the book are divided into five broad areas.

• Data mining in scientific applications: The first two chapters focus on an intro-
duction to data mining (Chapter 1) and the role it plays in science and engineering
applications (Chapter 2).

• The data mining process: Chapter 3 identifies the common themes in the applications
discussed in Chapter 2. It also describes the data types used in scientific applications—
these are used to motivate the data mining process described in Chapter 4. This chapter
discusses how we start from the raw data in the form of images or meshes and the
steps we take to extract useful information from them.

• The tasks in the data mining process: Chapters 5 through 12 are devoted to dis-
cussing the specific tasks in the data mining process. Chapter 5 discusses various
ways of reducing the size of the data through techniques such as sampling and mul-
tiresolution. Chapter 6 discusses data fusion, or how we can combine complementary
data from different sources. Chapter 7 describes how to remove noise from data, fol-
lowed by algorithms for identifying objects in the data in Chapter 8. Once the objects
have been identified, there are various representative features that can be extracted
from the objects. These are discussed in Chapter 9. At the end of this extraction
step, we have a list of objects that have been identified in the data, with each object
described by a number of features. Often, these features number in the tens or hun-
dreds. Ways of reducing this number are discussed in Chapter 10. The original raw
data have now been reduced to a form that can be input to various pattern recognition
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algorithms, as described in Chapter 11. Finally, the patterns identified in the data are
visualized for validation by the domain scientist, as discussed in Chapter 12. These
same visualization techniques can also be used in validating the results from any task
in the data mining process, as well as in the initial exploratory analysis of the data
which is done to determine either the next task or an appropriate algorithm for a task.

In each of these chapters, the intent is to introduce the reader to some commonly used
techniques for a particular task, as well as some of the more advanced techniques that
have been proposed recently. While the pros and cons of the traditional approaches are
well known, the recent techniques are still topics of active research. As appropriate,
suggestions for further reading are recommended in each chapter.

The techniques which are listed for the different tasks are by no means exhaustive.
These are just the techniques I have found useful based on my experiences thus far.
The omission of a particular solution approach is indicative either of my ignorance,
or the space and time limitations which accompany the writing of any book.

• Data mining systems: Chapter 13 describes several data mining systems that have
been developed for science and engineering data. These illustrate the challenges faced
in building an end-to-end system and the various approaches taken to address these
challenges.

• Lessons learned, challenges, and opportunities: Chapter 14 summarizes, both from
my personal perspective as well as those of other data miners, the lessons learned in
mining scientific data. It also describes the challenges and opportunities that await a
data miner who takes on the task of analyzing scientific data.

The chapters in this book have been written to be as self contained as possible, so
that a reader can focus on a topic of interest without having to read the entire book from the
beginning. However, it is my hope that the reader who perseveres through the entire book
will come away with an appreciation of the technical challenges in scientific data mining,
the opportunities to borrow ideas from other fields, and the potential for making exciting
scientific discoveries.

In this book, I have included the URLs for any information available on the Web.
While I realize that some of these links may be short-lived, I find it helpful to include the
information, as a Web search can provide the new location if a link has changed. I did not
want to take the alternative of excluding the links, as it meant that I could not refer to the
wealth of information easily accessible to all via the Web.

Several of the diagrams appearing in this book have been inspired by similar diagrams
appearing elsewhere, as follows:

• Figure 5.1 is derived from the article by Witkin [629].

• Figure 5.2 is derived from Figure 2.2 in the text by Lindeberg [382].

• Figure 5.3 is derived from Figure 2.1 in the text by Stollnitz, DeRose, and Salesin [568].

• Figure 7.2 is derived from the article by Smith and Brady [553].

• Figure 11.2 is derived from Figure 4.2 in the book by Mitchell [430].
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Finally, despite my best efforts, I am sure there are some unintentional errors in the
book, either typographical errors, ambiguous statements, or incorrect statements reflecting
my less-than-thorough understanding of a topic. In the absence of a coauthor to whom I
could attribute these errors, I assume full responsibility for them. The opinions presented
in the book represent my experiences with scientific data mining thus far; these opinions
may not necessarily reflect the views of my colleagues, funding sources, employers, or the
domain scientists I have worked with over the years. As I continue my education in the
many fields that comprise this exciting subject, it is very likely that my thoughts will evolve
as well. I also acknowledge that the book is biased toward techniques and topics I have
considered in addressing the problems I have worked on in the last decade. I am sure there
are others I have overlooked in my ignorance. I will gratefully receive all errata as well as
suggestions for improvement.
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Chapter 1

Introduction

The purpose of computing is insight, not numbers.

—Richard Hamming [247, p. v]

Advances in sensor technology have enabled us to collect large amounts of data in
fields such as remote sensing, astronomy, medical imaging, and high-energy physics. Com-
plementing these data sets from experiments and observations are data sets from numerical
simulations of complex physical phenomena such as the flow around an airplane, global
climate modeling, and evolution of galaxies in astrophysics. With computers having faster
processing units, more memory, and many thousands of processors, it is now possible to
simulate phenomena of a size and a complexity which were unthinkable a decade or two
ago. The data generated by these simulations are very large, being measured in terabytes,
and are also very complex, often with time-varying structures at different scales.

Complementing these advances in sensor technology and high-performance comput-
ing are advances in storage technology which have allowed more information to be stored
on disks as well as in file systems which allow rapid access to the data. To realize the full
potential of these advanced data collection and storage technologies, we need fast and ac-
curate data analysis techniques to find the useful information that had originally motivated
the collection of the data.

1.1 Defining “data mining”
The term “data mining” has had a varied history [186, 555]. As with many emerging
fields that evolve over time, borrowing and enhancing ideas from other fields, data mining
too has had its share of terminology confusion. Part of the confusion arises from the
multidisciplinary nature of data mining. Many who work in areas that comprise data mining,
such as machine learning, exploratory data analysis, or pattern recognition, view data mining
as an extension of what they have been doing for many years in their chosen field. In some
disciplines such as statistics, the terms “data mining” and “data dredging” have a negative
connotation. This dates back to the time when these terms were used to describe extensive
searches through data, where if you searched long and hard enough, you could find patterns

1
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where none existed (see [252, Section 1.7]). Such negative connotations have had the
unfortunate consequence that statisticians have tended to ignore the developments in data
mining, to the detriment of both communities.

Data miners too have contributed to the confusion surrounding the term “data mining.”
The term originally referred to a single step in the multistep process of Knowledge Discovery
in Databases (KDD) [185] . KDD is defined as the “nontrivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data.” In this viewpoint,
the data mining component of KDD is the means by which patterns are extracted and
enumerated from the data. The other steps in KDD include data preparation, data selection,
and interpretation of the results. As the acronym KDD suggests, this viewpoint assumes
that the data reside in a database, which is rarely true for scientific data sets.

Other authors [548] refer to data mining as the “process of extracting valid, previously
unknown, comprehensible and actionable information from large databases and using it to
make crucial business decisions.” The data mining process is applied to a data warehouse
and is composed of the four basic steps of “data selection, data transformation, data mining,
and result interpretation.” This somewhat circular definition of the term “data mining”
considers the data mining process, not KDD, to be the overall process of extracting useful
information from data. Further, by focusing on data warehouses, it restricts data mining to
commercial and business applications, which typically use databases and data warehouses.

In what may be a wise choice, some data miners have distanced themselves from the
terminology debate, choosing instead to focus on how the ideas from different fields can
be combined and enhanced to solve the problems of interest in data analysis. For example,
the authors of a 1999 report of a NASA Workshop on Issues in the Application of Data
Mining to Scientific Data [30] observed that “it was difficult to arrive at a consensus for the
definition of data mining, apart from the clear importance of scalability as an underlying
theme.” They, like many other practitioners and proponents of data mining, agreed that data
mining is a multidisciplinary field, borrowing ideas from diverse technologies including
machine learning, statistics, visualization, image processing, high-performance computing,
databases, and so on. It is difficult to clearly distinguish data mining from any single
component discipline. What is new is the confluence of the mature offshoots of these
technologies at a time when we can exploit them for the analysis of massive complex data
sets. In addition, as data mining techniques are applied to new forms of data, such as text
and electronic commerce, newer disciplines such as natural language processing and issues
such as handling of privacy are added to the fields that comprise data mining.

In this book, I consider data mining to be the process concerned with uncovering
patterns, associations, anomalies, and statistically significant structures in data. I do not
differentiate among terms such as “knowledge discovery,” “KDD,” and “data mining,” nor
do I attempt to address the subtle differences between data mining and any of its component
disciplines. Instead, I focus on how these disciplines can contribute toward finding useful
information in data. As the data analysis problems in science and engineering are often
rather difficult, we need to borrow and build upon ideas from several different disciplines
to address these challenging problems.

1.2 Mining science and engineering data
The mining of data from science and engineering applications is driven by the end goals
of the scientists, in particular their reasons for analyzing the data. Often, the scientists and



1.3. Summary 3

engineers who collect or generate the data start the process with the goal of addressing a
particular question or a set of questions. Sometimes, the question is well formulated, with
a clearly identified solution approach. In other cases, the question may be well formulated,
but it may not be clear at all how one would proceed to answer the question. Usually, the
process of answering one question gives rise to others, and the data may often be analyzed
to answer questions completely unrelated to the one which motivated the collection of the
data in the first place. In other situations, the scientists may not have a specific question, but
may be interested in knowing what is in the data. This is often the case when the science of
what is being observed or simulated is not completely understood.

A poorly formulated question or data, which may not be the most appropriate for
answering the question at hand, are not the only challenges in mining science and engineering
data sets. The characteristics of the data themselves can be a major impediment, whether
they are data from experiments, simulations, or observations. A key issue is that the data are
usually available in the “raw” form. This can be as images, or mesh data from simulations,
where several variables are associated with each point in a computational grid. There is often
both a spatial and a temporal component to the data. Sometimes, data collected from more
than one sensor may need to be mined together to exploit the complementary information
obtained by the sensors. As a result, a substantial amount of preprocessing is required to
identify the objects in the data, and find appropriate representations for them, before we can
identify patterns in the data.

Another characteristic of the data is that they may be very large in size, being measured
in terabytes or petabytes. Such data are usually stored on tapes, possibly as part of a
high-performance storage system, making access to them nontrivial. The data may also
be distributed, either in separate files or even in different geographic locations. Mining
these data accurately and efficiently may need the development of new algorithms or the
implementation of parallel or distributed versions of existing algorithms.

As a result of their size and complexity, much of the data from science and engineering
applications are never analyzed, or even looked at, once they have been collected. This is,
of course, disconcerting to scientists who wonder about the science still left undiscovered in
the data. More often than not, scientists are very interested in the analysis of their data and
realize that the current techniques being used are inadequate for the information they want
to extract from the data. But, they may not know what expertise is necessary to accomplish
this analysis, or where they can find this expertise.

This provides a unique opportunity for data miners (and I use the term in a very
generic sense) to collaborate with scientists and engineers not only to address their analysis
problems and aid in scientific discovery but also, in the process, to identify challenging
problems whose solution will advance the state of the art in analysis techniques.

1.3 Summary
Advances in sensor technology, high-performance computing, and high-density storage
have all resulted in massive complex data sets in various domains in science and engineer-
ing. The multidisciplinary field of data mining holds the promise of allowing scientists
and engineers to analyze these complex data sets and to find useful information in them.
Scientific data mining borrows ideas from a multitude of disciplines including image and
video processing, machine learning, pattern recognition, information retrieval, and statis-
tics. By combining techniques from these diverse disciplines, our goal is to help scientists
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and engineers fully exploit the benefits of the increased computational and data gathering
capabilities now available.

In the next chapter, I describe the many ways in which data mining techniques are
being used in various science and engineering applications. I then use these examples to
motivate the end-to-end process of scientific data mining.

Regarding terminology, for ease of description I use the term “scientific data” to mean
data from both science and engineering applications.



Chapter 2

Data Mining in Science and
Engineering

Science was originally empirical, like Leonardo making wonderful draw-
ings of nature. Next came the theorists who tried to write down the
equations that explained the observed behaviors, like Kepler or Einstein.
Then, when we got to complex enough systems like the clustering of a
million galaxies, there came the computer simulations, the computational
branch of science. Now we are getting into the data exploration part of
science, which is kind of a little bit of them all.

—Alex Szalay [573]

The analysis of data has formed a cornerstone of scientific discovery in many domains.
While these domains, and the problems of analysis therein, may appear very different at
first glance, there are several common themes among them. This chapter is an overview of
the many ways in which data mining techniques are being used in science and engineering
applications. The intent of this survey is severalfold. First, it illustrates the diversity of
problems and the richness of the challenges encountered in scientific data mining. Second, it
highlights the characteristics of the data in various scientific domains, characteristics which
are discussed further in Chapter 3. Third, it serves as a prelude to identifying the common
themes and similarities in scientific data analysis, and thus motivates the tasks described in
the data mining process in Chapter 4. Finally, by describing how scientists use data analysis
techniques in several very different domains, this survey shows that techniques developed
in the context of one domain can be applied or extended to other domains easily. I discuss
these techniques further in later chapters, with the goal of enabling crosscutting exchange
of ideas across several disciplines.

The survey in this chapter is by no means an exhaustive one. It is not intended to cover
all possible applications of data mining in scientific domains or all scientific domains with
large, complex data sets. It is, however, intended to show how the more recent data mining
techniques complement existing techniques from statistics, exploratory data analysis, and
domain-specific approaches to find useful information in data.

The sections in this chapter are organized as follows. Sections 2.1 through 2.7 use
illustrative examples to describe the various ways in which data mining techniques are
being used in applications ranging from astronomy to remote sensing, biology, and physics.

5
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These examples use techniques which are described later in the book. For those unfamiliar
with these techniques, it may be helpful to read this chapter again to better understand the
application of the solution approaches. Each section also contains a subsection summarizing
the characteristics of the data in that application domain. Section 2.8 briefly mentions some
of the newer application areas where data mining techniques are beginning to make inroads.
Finally, Section 2.10 includes several pointers for additional information.

2.1 Astronomy and astrophysics
Ever since humans first looked at the skies and observed obvious patterns such as the waxing
and waning of the moon and the equinoxes, there has been an interest in understanding the
universe through observations. The tools used for these observations have ranged from
the simple, but surprisingly accurate, instruments of the ancient cultures to sophisticated
telescopes, both earth-based, such as the Very Large Array (VLA) [606], and space-based,
such as Hubble [281] and Chandra [96], to name a few. As the tools for collecting the data
have become more complex, so have the techniques for analyzing the data.

Astronomers have been using techniques from the component disciplines of data
mining long before the term itself became popular. In the 1970s, they realized that computers
could be used for the automated construction of catalogs, which are systematic collections
of astronomical object descriptions satisfying specified selection criteria. The benefits of
automated catalog construction are many, including the ability to process large numbers of
objects, the consistent application of selection criteria, and the ability to make exhaustive
searches for all objects satisfying these selection criteria. In particular, the completeness
of such catalogs formed an important factor in the analysis of the data using statistical
techniques.

In addition to catalog generation, astronomers also realized that automated techniques
could be used for the detection and analysis of objects in images on astronomical plates. As
Jarvis and Tyson observed in their seminal paper [304], the use of an automated detection and
classification system can avoid many potentially devastating and subtle systematic errors
that occur in statistical astronomical studies which investigate properties of images over
many magnitudes. These errors arise from the effects of different sample selections as well
as variations in reduction and analysis techniques. It is interesting to note that in the 1970s
and early 1980s, even though the raw data was in hardcopy in the form of astronomical
image plates, the use of automated techniques for catalog construction and image analysis
was gaining acceptance in the astronomy community.

The paper by Jarvis and Tyson [304] on the Faint Object Classification and Analysis
System (FOCAS), though written in 1981, provides an interesting insight into the early
beginnings of data mining in astronomy. The goals of FOCAS were many, including reliable
classification of all objects as stars, galaxies, or noise; an accurate position for each object;
and a characterization of object shape.

First, the raw data in the form of image plates were digitized into 6000×6000 pixel
images which were then processed for object detection, classification, and catalog manipu-
lation. The detection of objects was done using image segmentation. A low-pass filter (see
Section 7.2.1) was first applied to the image. Then, any pixel whose value exceeded the
local sky density value at that pixel by a specified threshold, was kept as an object pixel.
The size of the low-pass filter was chosen to meet the constraints on computational time and
memory requirements of the systems being used (initially a Digital Equipment Corporation
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PDP 11/45, followed by a VAX 11/780). Once a pixel was identified as belonging to an
object, groups of neighboring pixels were combined to form an object whose description
was passed to an object evaluation module.

This module extracted various parameters or features that characterized each of the
objects. The average sky density at the object location was first calculated using domain-
specific techniques and converted into an image intensity value. The densities of the object
pixels were also converted into intensities which were then used in the calculation of the
features. The main features used for each object were the Hu moments [279], which are
discussed in more detail in Section 9.2. FOCAS used only three of the seven Hu moments as
they were scale-, rotation-, and translation-invariant. Additional features included the peak
intensity of the object which was defined as the intensity difference between the local sky
intensity and the average intensity in a 3×3 pixel window centered on the object centroid;
an effective radius of the object; a measure of how closely the object matched an ideal star
image; and the object magnitude.

During the evaluation of these shape features, several consistency checks were made
to ensure that an object was a valid image of a star or galaxy. While these checks did not
remove all noise effects, they did reduce the size of the data that were sent to the classifier.
Additional checks were also made to separate closely spaced objects that might have been
treated as a single object in the object detection phase. It is interesting to note that FOCAS
maintained separate files to store the output of the image segmentation step. It was a
computationally expensive step and the astronomers did not want to repeat it if any changes
were required in subsequent steps of the analysis. Also, in addition to the shape features,
each object in the object list contained information on its position in the image plate, area
in pixels, magnitude, and flags indicating exceptional conditions such as multiple objects
in an area. These data formed the basic catalog generated from the image data.

Once the object list was generated for each object on an image plate, it was input to
a nonparametric statistical classifier [25]. A two-stage classification was used. The noise
objects were first identified using a single feature—the effective radius for bright objects
and the peak intensity for dim objects. However, as this set of decision surfaces could
not adequately separate the stars and galaxies, a second level of classification was used
that empirically combined classification and clustering techniques (see Chapter 11). First,
a training set of approximately 800 stars and galaxies was created. The features for the
objects in this set were scaled and normalized to reduce the variation in the features. A
clustering algorithm, in this case, the ISODATA algorithm [17, 18], was repeatedly applied
until uniformly homogeneous clusters (to within a threshold) were obtained. Next, decision
surfaces in the form of hyperellipsoids were generated to separate the star regions from the
galaxy regions in the seven-dimensional feature space. The parameters of the hyperellip-
soids were obtained using an iterative method based on minimizing the misclassification
on the training set. Once the hyperellipsoids were generated, they were used to classify all
the objects. Hyperellipsoids were chosen, as they performed better than simpler surfaces
using the metric that the relative proportion of the two classes did not change significantly
if another iteration of the classifier was made.

The approach used by the astronomers in FOCAS illustrates several key ideas and
issues in scientific data mining. First, there is the focus on converting the low-level image
data to higher-level information in the form of features through the process of segmenting
the images to identify the objects, followed by the extraction of features which are scale-,
rotation-, and translation-invariant. Second, the astronomers took care to ensure that the



8 Chapter 2. Data Mining in Science and Engineering

input to the classification algorithm was of high quality by scaling and normalizing the
features prior to classification, separating closely spaced objects, using flags to indicate
exceptional conditions in the catalog, incorporating consistency checks to reduce the data
input to the classifier, and carefully choosing the examples in the training set. Third, they paid
attention to the results from the classifier and selected their options to obtain scientifically
meaningful results. As we shall see in later chapters, these issues play an important role in
the practical implementation of scientific data mining techniques.

Following the early work of Jarvis and Tyson on FOCAS, several astronomers used
data mining techniques for the analysis of their data. For example, Odewahn et al. [456, 455]
used neural networks (see Section 11.2.4) to discriminate between stars and galaxies in the
Palomar Sky Survey. They observed that the most time-consuming part of constructing
a neural network classifier was the manual classification of the training set; this should
be as free of misclassifications as possible and span the full range of possibilities. Other
potential factors that were identified as contributing to lower accuracies of classification
were inadequate image parameters and problems in neural network construction. Either the
image parameters used in classification did not represent enough pertinent image features
or the original image did not contain enough information to make an accurate classification.
Further, the neural network may have had too few or too many nodes and may have been
under- or overtrained. In addition, the astronomers observed that neural networks did not
provide direct information on why an object was assigned a particular classification. This
indicates another characteristic of scientific data mining, namely, the need of the scientist
to understand how a decision was made. This is referred to as the interpretability of the
models built by the classifier.

Other examples on the use of neural nets in classification problems in astronomy
include the morphological classification of galaxies [571, 2, 444], as well as spectral clas-
sification [570, 556], where principal components analysis is used to reduce the number of
features used as input to the neural networks.

More recently, data miners have found astronomy to be a rich source of analysis
problems. The Sky Imaging Cataloging and Analysis Tool (SKICAT) used classification
techniques, specifically decision trees, to automate the reduction and analysis of the Digital
Palomar Observatory Sky Survey (DPOSS-II) data. Using a modified version of the FOCAS,
they identified objects in the images using image segmentation techniques followed by the
extraction of 40 base-level attributes or features representing each object. However, these
base-level features by themselves did not exhibit the required variance between different
regions of an image plate or across image plates. As Fayyad, Djorgovski, and Weir [184]
observed, in classification learning, the choice of attributes used to characterize the objects
was by far the single most determining factor of the success or failure of the learning
algorithm. So, in addition, they used four new normalized attributes that were derived from
the base-level attributes and possessed the necessary invariance between and across image
plates. They also calculated two additional attributes representing a point-spread-function
(PSF) template. This allowed the astronomers to compensate for the blurred appearance
of point sources (stars) due to the turbulence of the earth’s atmosphere. These derived
attributes, along with the base-level attributes, were used in classification. The training
set was generated manually, using higher-resolution images from a separate telescope with
a higher signal-to-noise ratio for the fainter objects. A decision tree classifier, trained on
this higher-resolution data, was able to correctly classify objects obtained from the lower-
resolution DPOSS-II images.
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Figure 2.1. Subset from img3 from the “Volcanoes on Venus" data set in the UCI
KDD archive [272]. The data set is the one used in the JARtool project [71] which developed
an automatic system for cataloging small volcanoes in the large set of images of the surface
of Venus returned by the Magellan spacecraft.

Several important conclusions can be drawn from the experiences of the SKICAT
scientists. First, it was possible to create an automated approach that was accurate enough
for use by the astronomers. Second, through the use of robust features and a training set from
higher-resolution imagery, it was possible to obtain classifiers whose accuracy exceeded that
of humans for faint objects. Third, the conversion of the data from high-dimensional pixel
space of images to the lower-dimensional feature space transformed the problem into one
solvable by learning algorithms. The use of derived features in addition to the base-level
features resulted in high accuracy within and across plates. Finally, SKICAT showed the
potential of data mining techniques in the semiautomated analysis of very large data sets
containing millions of objects.

Other recent efforts in mining astronomy data include the JPL Adaptive Recognition
Tool (JARTool) [71] for cataloging volcanoes on Venus (see Figure 2.1) and its follow-on,
the second generation tool Diamond Eye [73], which provided an application independent
infrastructure for mining image collections. A similar application-independent approach
was also used in the more recent Sapphire project which built a set of tools for various
tasks in scientific data mining. These tools were then used in different applications, such as
finding bent-double galaxies in astronomical surveys [315]. The system architectures for
some of these efforts are discussed in further detail in Chapter 13.

Much of the focus in astronomy is on observation data from surveys, though it is also
possible to mine data from simulations of astrophysical phenomena such as the evolution
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of a star [579]. This topic will be covered in Section 2.5 which discusses the analysis of
data from computer simulations.

2.1.1 Characteristics of astronomy data

There are several characteristics which are common across data sets from observational
astronomy, and the analyses conducted on these data sets, regardless of the instruments used
to collect the data or the frequency at which the sky is being observed. These characteristics
include:

• Massive size of the data: Astronomical surveys, whether conducted through ground-
based telescopes such as the VLA [606], or space-based telescopes such as the Hubble
Space Telescope (HST) [281], all result in very large amounts of data. For example,
the Massive Compact Halo Objects (MACHO) survey [405], which concluded in
2000, resulted in 8 terabytes of data, and the Sloan Digital Sky Survey (SDSS) [528]
will have nearly 15 terabytes of data when complete. Telescopes currently being
planned, such as the Large Synoptic Survey Telescope (LSST) [396], are expected
to collect more than 8 terabytes of data per night, producing several petabytes (a
petabyte is 1015 bytes) of data per year, once it is operational around 2010.

• Data collected at different frequencies: Astronomers survey the sky at different
wavelengths including optical, infrared, X-ray, and radio frequencies. Since celes-
tial objects radiate energy over an extremely wide range of wavelengths, important
information about the nature of the objects and the physical processes inside them
can be obtained by combining observations at several different wavelengths. For
example, the Faint Images of the Radio Sky at Twenty centimeters (FIRST) [174]
surveyed the sky at radio frequency, while LSST is an optical telescope, and the
Chandra telescope [96] surveys the sky at X-ray frequency.

• Real-time analysis: While much of the astronomical data are collected once and an-
alyzed many times, usually off-line, there is an increasing need for real-time analysis
in telescopes under development. For example, it is the goal of the LSST to make
quality assurance data available to the telescope control system in real time to ensure
correct operation of the telescope. In addition, as the image data are collected, they
will be moved through data analysis pipelines that will compare the new image with
previous images of the same region, generate prioritized lists of transient phenom-
ena, and make the information available to the public in near real time for further
observation.

• Noisy data: Astronomical images are often noisy due to factors such as noise from the
sensors and distortions due to atmospheric turbulence. For example, Figure 2.2 shows
the “noise” patterns in the FIRST data that arise due to the Y-shaped arrangement of
the telescopes in the VLA [606]. In addition, astronomical images may have missing
data due to a sensor malfunction or invalid pixel values caused when an extremely
bright object makes the pixels around it artificially bright.

• Lack of ground truth: In astronomy, a key challenge to validating the results of
analysis can be the lack of ground truth. In other words, how do we verify that a
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Figure 2.2. Image from the FIRST Survey [174], extracted from the FIRST cutout
server (sundog.stsci.edu) at RA = 00 56 2.084 and DEC = −01 20 47.41, using an image
size of 10 arc minutes and maximum intensity of scaling of 10 mJy. Image is displayed using
a log scale for clarity. Note the “Y” pattern of the noise in the image. The brighter wavy
object in the center is a bent-double galaxy.

region in an image of the surface of Venus is really a volcano, or that a galaxy is really
a bent-double galaxy? This issue can be even more challenging for the negative
examples; for example, is a galaxy non-bent-double because it is truly one, or is it
just labeled as one because in the image, which is a two-dimensional projection of
the three-dimensional universe, it appears to be one?

• Temporal data analysis: In many astronomical surveys, the goal is to study tran-
sient phenomena. For example, the goal of the MACHO survey [405] was to detect
microlensing, which was indicated by changes in the intensity of an object over time.
The LSST survey, on the other hand, is interested in detecting near-earth objects that
move fast and must be detected in multiple exposures. Such temporal analyses re-
quire that images of a region taken at different times must first be aligned before any
comparison with previous images can be made.
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Several other characteristics of astronomy data are also worth mentioning. These data
are often available publicly, usually as soon as the initial processing of the raw data from the
telescopes is completed. Often, data once collected are analyzed many times, sometimes for
reasons other than the one that motivated the initial collection of the data. Careful attention
is paid to metadata, which is information describing the data. Items such as the time when
the data were collected, the telescope settings, and the techniques used to process the data,
are meticulously described and associated with any derived data products. Further, as more
advanced algorithms for processing the data become available, the data are reanalyzed and
new versions of derived data products created.

Since many astronomical surveys cover the same region of the sky using different
instruments and wavelengths, the astronomical community is developing “Virtual Obser-
vatories” [173, 597]. The goal of these virtual observatories is to enable astronomers to
mine data which are distributed across different surveys, where the data are stored in geo-
graphically distributed locations. Both the European and the American efforts are currently
addressing the major challenge of having the data in all these different archives correspond
to the same format. Of greater interest will be the mining of the data across surveys,
which would include statistical analyses such as correlations across data taken at different
resolutions, different wavelengths, and different noise characteristics.

2.2 Remote sensing
In contrast to astronomy, where the data are “look-up” data, remote sensing data can be
considered as “look-down” data. Some of the earliest images of the earth were taken by
cameras strapped on pigeons. More sophisticated images taken from balloons and aircraft
soon followed, and current technology now provides us access to high-resolution satellite
imagery, taken in several spectral bands, at several resolutions [527, 381].

Remote sensing systems are invaluable in monitoring the earth. Their uses include
global climate change detection through the identification of deforestation and global warm-
ing; yield prediction in agriculture; land use and mapping for urban growth; resource explo-
ration for minerals and natural gas; as well as military surveillance and reconnaissance for
the purpose of tactical assessment. The era of earth remote sensing began with the Landsat
multispectral scanning system in 1972 which provided the first consistent high-resolution
images of the earth. The data were collected in four spectral bands, at a spatial resolution of
80 meters, with coverage being repeated every 18 days. Systems deployed since then have
improved the coverage, both in terms of the number of spectral bands as well as the spatial
resolution. For example, data from the IKONOS satellite [212], which was launched in
September 1999, are available in the red, green, blue, and near-infrared bands at 4 meters
resolution and in grey-scale or panchromatic at 1 meter resolution. Data from the Quickbird
satellite [146] are available at an even higher resolution of 61 centimeters in panchromatic
and in 2.4 meters in four bands (red, green, blue, and near-infrared). Note that, at such
resolution, it is possible to clearly identify everyday objects such as cars, highways, roads,
and houses in the satellite imagery. This opens up potential new applications such as the de-
tection of human settlements. It also presents an important challenge in storing, managing,
retrieving, and analyzing these large data sets.

A key task in the mining of remote sensing imagery is the identification of man-made
structures such as buildings, roads, bridges, airports, etc. Some of the early work in this area
using aerial imagery focused on exploiting user-specified information about the properties



2.2. Remote sensing 13

of these structures and their relationships with other more easily extracted objects. For
example, in their 1982 paper [450], Nevatia and Price consider the task of finding airports
in an aerial image of the San Francisco Bay area in California. They exploit the knowledge
that some of the airports have runways near or projecting into the water. They first use a
combination of two simple image segmentation techniques (see Chapter 8)—a line detector
to find roads and a region segmentor to identify land-water boundaries. Each region or line
is considered as an identifiable object, and features, such as average color and intensity
values of a region, the height to width ratio of a region, and the location of the center, are
extracted. User-specified information in the form of a rough sketch of the region identifying
the major structures and their location relative to each other is used to map the regions in the
aerial imagery with the corresponding objects in the sketch. The sketch is represented as
a graph with the nodes identifying the objects (for example, San Francisco Bay North and
Angel Island) and the edges indicating the relationship between the objects (for example,
is-a-neighbor-of). The sketch is general and can be applied to any view of the area. Finally,
Nevatia and Price used graph-matching techniques to create an annotated aerial image of
the San Francisco Bay area.

With the availability of high-resolution satellite imagery from different sensors, the
analysis of such imagery for man-made structures has also become more sophisticated. For
example, Mandal, Murthy, and Pal [413] analyze data from the Indian Remote Sensing (IRS)
satellite, with a resolution of 36.25 meters. They focus on the green and infrared bands as
they are more sensitive in discriminating various land-cover types. First, they classify the
image pixels into 6 classes (such as concrete structures, open space, etc.), followed by further
processing using heuristics to identify man-made structures. For example, a heuristic may
be that an airport should have a runway, which is a discrete narrow linear concrete structure
region at least 30 pixels in length. In [270], Henderson and Xia provide a status report on the
use of Synthetic Aperture Radar (SAR) imagery in human settlement detection and land-use
applications. They observe that radar imaging can provide information which is comple-
mentary to the information provided by systems operating in the visible and near-infrared
regions. In Lee et al. [367], the authors consider the problem of extracting roads from the
1-meter IKONOS satellite imagery [212]. They first segment the imagery using a variant
of the watershed algorithm (see Section 8.2), identify road candidates using information
about the regions such as elongatedness, and then expand the list of identified candidates by
connecting close-by roads. IKONOS imagery has also been used in a multilevel process for
the identification of human settlements using decision trees and statistical techniques [323].

A recent work describing the practical issues in applying machine learning techniques
to remote sensing imagery focuses on the detection of rooftops in aerial imagery [412].
The authors discuss issues such as the importance of choosing features relevant to the task,
the problems with labeling the rooftop candidates including consistency in labeling and
disagreements among experts, and the effect of having a severely skewed training set with
many more negative examples than positive ones accompanied by a higher cost of errors
made in misclassifying the minority class.

In addition to land-use applications, remote sensing imagery has also been used for
meteorological data mining. For example, Kitamoto [342] describes the use of techniques
from the informatics communities, such as pattern recognition, computer vision, and in-
formation retrieval, to analyze and predict typhoons using satellite images that capture the
cloud patterns of the typhoon. In contrast to mathematical models used in numerical weather
prediction, where the model is deduced from partial differential equations describing the
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dynamics of fluids in the gravity field, Kitamoto considers pattern recognition and the past
experience of experts as an indispensable part of the approach. The data used are from the
Japanese GMS-5 geostationary satellite in one visible and three infrared bands, the latter
enabling observation of clouds even during night-time. Cloud patterns are identified by
dividing a 512 × 512 pixel image into 8 × 8 pixel blocks and assigning a “cloud amount”
value to the data in each block. This gives a 64 × 64 or 4096-dimensional cloud-amount
vector which is then used in subsequent analysis using techniques such as principal com-
ponent analysis, clustering with the k-means algorithm, and self-organizing maps. While
early results with the use of data mining techniques appear promising, Kitamoto cautions
that one must not forget the fundamental difficulty in predicting atmospheric events, namely
the chaotic nature of the atmosphere.

A task related to classifying and predicting typhoons is that of tracking them over
time. For example, Zhou et al. [648] use motion analysis to track hurricanes in multispectral
data from the Geostationary Operational Environmental Satellite (GOES). Since the data
are collected in a super-rapid scan sequence at 1 minute intervals, it is possible to observe
hurricane dynamics in the imagery. Using a nonrigid motion model and the Levenberg–
Marquardt nonlinear least-squares method, Zhou et al. fit the model to each small cloud
region in the image and then estimate the structure and motion correspondences between
the frames of the data.

Another related work using data from GOES is the detection of cumulus cloud fields by
Nair et al. [445], who compare the accuracy of two techniques. They found that a structural
thresholding method based on the morphology of cloud fields outperformed an approach
based on classification algorithms applied to edge and spectral features extracted from the
imagery. Classifiers such as neural networks have also been used in cloud classification
using texture features extracted from Landsat imagery [368].

Adifferent example of mining remote sensing data is the Quakefinder system described
by Stolorz and Dean [569]. This analyzed panchromatic data collected by the French SPOT
satellite at 10 meter resolution to detect and measure tectonic activity in the earth’s crust.
Using the 1992 Landers earthquake in Southern California, Stolorz and Dean found that
the ground displacements varied in magnitude up to 7 meters, which was smaller than
the pixel resolution, making naïve pixel-to-pixel change detection methods inapplicable.
They had to use sophisticated methods to infer the motion of a single pixel, a process that
had to be repeated for each pixel in the image. As even a modest-sized image contained
2050×2050 pixels, this required the use of a massively parallel processor. In addition, the
authors found that they had to incorporate corrections for slight differences in spacecraft
trajectories caused by differences in height above the target region as well as the yaw,
pitch, and roll of the spacecraft. Spurious differences between scenes due to differences
in the sun angle and the view angle were found to be negligible as the satellite was in a
sun-synchronous orbit.

Other interesting applications of mining remote sensing imagery include the detection
of fire smoke using neural networks [380], the automatic detection of rice fields [589], and
the monitoring of rice crop growth [355]. Kubat, Holte, and Matwin [352] illustrate several
aspects of practical data mining in their work on the detection of oil spills. In particular,
they discuss issues related to the scarcity of the data, as only a few images contained oil
spills, which in turn, resulted in an unbalanced training set. They also observed that their
examples showed a natural grouping in batches, where the examples in a batch were from
a single image, leading to greater similarity among them. In addition, they found that they
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had to carefully consider which images to present to the human who can control the trade-off
between false alarms and missed positives.

2.2.1 Characteristics of remote sensing data

Remotely sensed images, whether obtained from satellites or aerial photography, are a very
rich source of data for analysis. The characteristics of these data include:

• Massive size: The increasing sophistication of remotely sensed systems has resulted
in an explosive growth in the amount of data being collected. NASA’s Earth Observing
System (EOS) Project [171] represents an extreme of this trend. Starting in 1997,
several satellites have been documenting the earth’s processes and global change,
acquiring 1.6 terabytes of images and other data per day. This will result in over
11,000 terabytes of data over the 15-year lifetime of the project.

• Multiresolution data: Over the years, as the earth has been observed by various
systems ranging from Landsat to IKONOS and Quickbird, we have acquired imagery
at resolutions ranging from a few hundred meters to under a meter. As a result, we
have several images of an area taken over time at different resolutions. When such
data, collected over time, must be analyzed to understand changes that have occurred
over long periods, we will need to use analysis techniques which can exploit the
different resolutions of the data.

• Multispectral data: While some of the very early remotely sensed data were col-
lected in only one band (i.e., panchromatic), data collected more recently are often in
several spectral bands. These range from the 4-band multispectral data from IKONOS
and Quickbird to the 224-band hyperspectral data from the Advanced Visible/Infrared
Imaging Spectrometer (AVIRIS) [11]. This acquisition of imagery at various spectral
bands simultaneously provides multiple “snapshots” of spectral properties which can
contain far more information than a single band alone. This allows a scientist to as-
sign a spectral signature to an object when the resolution is too low for identification
using shape or spatial detail. Note that the increase in the number of spectral bands
also increases the size of the data collected.

• Multisensor data: In addition to the resolution or the number of spectral bands,
remote sensing systems are also characterized by the sensors used, which in turn in-
fluences the way in which the data are processed. Several factors must be considered,
including the orbit of the platform which affects the angle at which the image is taken
and the number of days between imaging of nearby swathes; the platform attitude,
that is, the roll, pitch, and yaw of the platform which may distort the image; the scan
geometry which determines the order in which the scene is scanned and the number
of detector elements used in scanning; topographic distortions; and so on [527].

• Spatiotemporal data: Since remote sensing platforms, especially satellites, cover
the same region of the earth several times, there is an implicit temporal aspect to the
data collected. As a result, change detection is an important application in remote
sensing, not just using data collected over time by a single sensor, but also data
collected by different sensors. Thus image registration, that is, aligning the satellite
images, becomes an important task in mining remotely sensed data.
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Figure 2.3. An image from the Landsat Gallery illustrating how missing data due
to sensor malfunction may be handled in remote sensing imagery. The left image is path
39 row 37, acquired over Salton Sea in southern California on 9/17/2003, and it shows the
scan gaps caused by the failed Scan Line Corrector. The right image is the same data, but
with the gaps filled by using data acquired on 9/14/2002. Image: Grey-scale version of
Landsat_Gallery_394_1_450.jpg from http://landsat.usgs.gov/gallery/main/2/.

• Missing data: As with any other observational science, remote sensing data can
suffer from missing data problems due to sensor malfunction (see Figure 2.3). Filling
in these gaps must be done with care not only to avoid the introduction of artifacts,
but also to ensure the integrity of the image.

• Noisy data: Data in remotely sensed imagery can be noisy due to sensor noise or
extraneous objects such as clouds in optical imagery that may obscure the scene on
the earth (see Figure 2.4). However, what is considered as noise may depend on
the problem being solved; clouds in a scene could be considered as the signal in an
application involving the classification of clouds.

Several other characteristics of remotely sensed data are worth mentioning. Since
the raw data sets are very large, they may be available after various levels of processing.
For example, EOS data products are available at levels ranging from Level 0 to Level 4
[167]. Level 0 data products are raw EOS instrument data at full instrument resolution. At
higher levels, the raw instrument data are converted into more usable parameters and formats
of interest to the scientific community. For example, Level 3 data products are variables
mapped on uniform space-time grids, usually with some completeness and consistency. At
Level 4, the parameters are further refined through the use of models. Many of the data
sets from remote sensing are publicly available. Some, such as the data from EOS, are free,
while others are available for a fee.
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Figure 2.4. Atmospheric vortices over Guadalupe Island showing the cloud cover
obscuring the land mass underneath. If the task is to obtain more information about the land
mass, then this image would be inappropriate. If, however, the task is to identify the type
of clouds, this image would be an ideal one. Image courtesy of NASA’s Earth Observatory,
http://earthobservatory.nasa.gov/Newsroom/NewImages/Images/.

In many remote sensing applications, ground truth can be difficult or expensive to
obtain. For example, soil samples may need to be collected to evaluate analysis techniques
that determine mineral content from remotely sensed imagery. The areas with these samples
may be inaccessible, or there may be too many of them widely distributed geographically
to make the collection of samples feasible.

While much of the discussion in this section has focused on remote sensing of the
earth, it is worth mentioning that the same techniques can be applied to remotely sensed
data from other planets such as Mars, where such analysis can be an invaluable precursor
in planning for “in situ,” that is, in-place sensors.

Remote sensing systems are also a key part of surveillance and reconnaissance [365],
where the purpose is to acquire military, economic, and political intelligence information.
Reconnaissance refers to preliminary inspection, while surveillance maintains close ob-
servation of a group or location. The latter involves frequent or continuous coverage and
involves the collection of video data, further aggravating the challenges of handling and
analyzing massive data sets. This topic is further discussed in Section 2.4.

No discussion of remote sensing would be complete without a mention of Geographic
Information System (GIS) [350]. In addition to being a cartographic tool to produce maps,
a GIS stores geographic data, retrieves and combines this data to create new representations
of geographic space, and provides tools for spatial analysis. Examples of data in a GIS
include information on streets, rivers, countries, states, power lines, school districts, office
buildings, and factories. The results from the analysis of remotely sensed imagery, when
used together with the complementary information in a GIS, can form an invaluable tool.

2.3 Biological sciences
A very rich source of challenging data mining problems are the fields of biological sciences,
including medical image analysis, clinical trials, and bioinformatics. While it is possible to
treat each topic as a separate section (and each is broad enough to cover several books!),
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I have chosen to include them in one section, as the lines between them are beginning to
blur—advances in genomics and proteomics are leading to an improved understanding of
systems-level cellular behavior with potential benefits to clinical research.

2.3.1 Bioinformatics

Bioinformatics is the science of managing, mining, and interpreting information from bi-
ological sequences and structures. It came into prominence through the Human Genome
Project [603, 358]. Fueled by advances in DNA sequencing and genome mapping tech-
niques, the Human Genome Project resulted in large databases of genetic sequences, pro-
viding a rich source of challenges for data miners. More recently, the field of proteomics
promises an even more radical transformation of biological and medical research. The pro-
teome defines the entire protein complement in a given cell, tissue, or organism. In a broad
sense, proteomics can be considered to be everything “postgenomic” and includes protein
activities, the interactions between proteins, and the structural description of proteins and
their higher-order complexes. By studying global patterns of protein content and activity, we
can identify how proteins change during development or in response to a disease. This not
only can boost our understanding of systems-level cellular behavior, but also benefit clinical
research through the identification of new drug targets and the development of new diagnos-
tic markers. An excellent introduction to various aspects of this emerging field of proteomics
is given in a series of articles in the special issue of Nature [448], as well as in the more
recent survey of the computational techniques used in protein structure prediction [468].

Data mining techniques have found an important role in genomics where they are ex-
tensively used in the analysis of data in the genetic sequence and protein structure databases
[609]. For example, the text by Stekel [566] is a good introduction to microarray bioin-
formatics, providing an overview of microarray technology; the use of image processing
techniques to extract features from microarrays; the role of exploratory data analysis tech-
niques in cleaning the data; and the use of statistics and machine learning techniques, such
as principal component analysis, clustering, and classification, to study the relationship be-
tween genes or to identify genes or samples that behave in a similar or coordinated manner.
Baldi and Brunak [16] provide a more machine learning focus to bioinformatics and discuss
how techniques such as neural networks, hidden Markov models, and stochastic grammars
can be used in the analysis of DNA and protein sequence data. Their text also includes a
chapter on Internet resources and public databases. Other introductory texts in this area
include the ones by Baxevanis and Ouellette [27] and Lesk [371].

The challenges in proteomics far surpass those in genomics and offer many opportu-
nities for the use of data mining techniques. For example, Zaki [643] discusses how data
mining techniques, such as association rules and hidden Markov models, can be used in pro-
tein structure prediction. Using a database of protein sequences and their three-dimensional
structure in the form of contact maps, he shows how one can build a model to predict whether
parts of amino acids are likely to be in contact and to discover common nonlocal contact
patterns.

Proteomics is also having an effect on drug discovery—as most drug targets are
proteins, it is inevitable that proteomics will enable drug discovery [251]. For example,
Deshpande, Kuramochi, and Karypis [138] use the discovery of frequent subgraphs to
classify chemical compound data sets. They observe that graph-based mining is more
suitable for handling the relational nature of chemical structures. By combining methods
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for finding frequent subgraphs in chemical compounds with traditional machine learning
techniques, such as rules and support vector machines, they found that they could improve
the classification accuracy on problems such as the discovery of carcinogenic compounds
and compounds that inhibit the HIV virus.

The area of computational biology is using computational systems to simulate complex
structures and processes inherent in living systems. Instead of focusing on just one level, say
genomics or proteomics, there is an increasing interest in mining data across different levels,
ranging from various genome projects, proteomics, and protein structure determination to
digitized versions of patient medical records. Just as in physics, computers are now being
used to simulate biological processes from the atomic and molecular level to cells and
parts of organs. For example, the Blue Brain project [420, 46] is using massively parallel
computers to create a biologically accurate functional model of the brain. The goal is to
increase our understanding of brain function and dysfunction and help explore solutions to
various neurological diseases. The use of computer simulations in understanding biological
phenomena comes with all the issues associated with the use of simulations in any science,
namely, the analysis of massive amounts of complex data, the understanding of the sensitivity
of the results to various input parameters, the verification of the computer models, and the
validation of the simulations by comparisons with experiments or observations.

Another interesting application of data mining in bioinformatics is in automating the
collection, organization, summarization, and analysis of data present in the literature [351].
This requires the use of text mining and optical character recognition to understand the text
in documents, image mining to extract information from images and plots in documents,
and the use of machine learning and statistical techniques to find the connections between
various documents.

2.3.2 Medicine

Statistical techniques have had a long history in the field of clinical trials where they were
used for drawing conclusions about the efficacy of a drug used in the treatment of a disease
or for finding patterns in the occurrences of diseases [232]. With the availability of other
forms of data, such as images from X-rays and magnetic resonance imaging (MRI), the
field of medical imaging is also providing data that can be used in the diagnosis of diseases
[558, 37, 20].

There are several examples where data mining techniques are being used in medical
imagery. A compelling example is the use of neural network technology in the detection of
breast cancer in mammograms [219]. Breast cancer is a serious problem with early detection
having a dramatic effect on raising the survival rate. While mass radiological screening is the
only reliable means of early detection, the examination of the mammograms is very tedious
and inefficient. When a single radiologist has to examine a large volume of mammograms in
a short time, it can lead to missed cancers. A computer-assisted approach can be invaluable
in such circumstances, leading not only to reduced radiologist time per mammogram, but
also to improved early detection as the computer system could draw attention to lesions that
have been overlooked in the mammogram. A practical implementation of such technology
is the ImageChecker [288] which uses neural networks to provide a potential improvement
of over 20% detection of breast cancer.

A more detailed look at the issues encountered in computer-aided mammographic
screening is provided by Kegelmeyer et al. [333]. This work built upon earlier work in the
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detection of spiculated lesions in mammograms [334] which showed that by the application
of appropriate image processing techniques to the mammograms, it was possible to extract
features (that is, measurements from the images) which, when input to a binary decision
tree, improved the probability of detection of the lesions by almost 10%. This work was
then extended to the detection of two other important cancer signs: microcalcifications and
circumscribed masses.

In contrast to the more traditional approaches in mammography, where regions of
interest are first identified in the image before measurements are made on these regions,
Kegelmeyer et al. processed the entire image for the extraction of features. While this was
more time consuming, it addressed the problem of a missed detection due to a lesion not
being included in a region of interest. Further, they adopted a methodology of iterative
refinement, wherein they would start with a variety of features, use the decision tree to
identify the most promising ones, refine them further or extract new features, and keep
iterating until an effective subset of features was found.

For the microcalcification detection, Kegelmeyer et al. first segmented the mammo-
grams using a variety of image segmentation algorithms (see Chapter 8), such as adaptive
thresholding and edge detection, and then extracted features, such as the number of pixels in
the object, the shape of the object which provided a measure of how close the object was to a
circle, the standard deviation of the pixel intensities within the object, the standard deviation
of the pixel intensities of the background around the object, and the texture of the object.
They found that the best results were obtained when a mix of segmentation algorithms
and features extracted from the segmented images were used, as different segmentation
algorithms resulted in different objects, thus affecting the features.

For the mass detection problem, Kegelmeyer and his coauthors focused extensively on
the feature extraction part using techniques such as flattening the breast-boundary brightness
gradient to make the images more uniform, reducing the contrast variation across the image,
edge detection, and the circular Hough transform to detect circumscribed masses which can
be approximated to first order by circles. This resulted in a feature image indicating the
relative likelihood of a circumscribed mass at each pixel in the image.

While mammogram interpretation, and the semiautomatic detection of cancers, can
be challenging, these images are relatively easy, as there are no other tissues such as bones
or other irrelevant structures to complicate the task. In other problems, for example, the
detection and progression of diseases of the respiratory systems [507], the images can in-
clude different types of tissues such as lungs, bones, heart, and so on. Tissues not of
interest in the analysis may be considered as noise and must be removed. Further, several
imaging modalities are available, including X-ray computed tomography, positron emission
computed tomography (PET), single photon emission computed tomography (SPECT), and
MRI. Since each modality gives a different insight into the anatomy of the patient, it is
important that the complementary information available be exploited whenever possible by
means of data fusion. In addition, whenever there is a need to follow events dynamically,
for example, the collapse of airways as a patient breathes out, or tracking the growth of a
tumor over longer time intervals such as months or years, there is a need to register or align
images taken at different times. This need for registration algorithms is fundamental in brain
image analysis, where brain atlases are used to study how the brain varies across age, gen-
der, disease, imaging modalities, and over populations [582]. Sophisticated mathematical
algorithms from computer vision, pattern recognition, visualization, and statistics are be-
ing used to shed light on the complex structural and functional organization of the human
brain.
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This proliferation of data modalities and the resulting challenges in analysis have not
gone unnoticed by data miners. For example, machine learning is being used in the analysis
of functional MRI data [122, 645], PET scans [237], and SPECT images [519, 567]. As the
challenges in mining each type of data are better understood and addressed, there will be a
need to mine across the different modalities to improve and validate the analysis results.

2.3.3 Characteristics of biological data

Biological data share many characteristics common to other large scientific data sets, such as
massive size, multimodal data, and spatiotemporal data. Though such data are very diverse,
ranging from medical images to protein structures, there are some unique characteristics
common to many biological data sets:

• Unstructured data in heterogeneous databases: Some bioinformatics data, unlike
most other scientific data, are stored in databases. Many of these are publicly avail-
able and encode different views of the biological domain using different data formats,
different database management systems, and different data manipulation languages.
As these databases are constantly evolving and being enhanced, mining across them
can be challenging. Another example of unstructured heterogeneous data is the litera-
ture in bioinformatics which includes unstructured text images, plots, images, tables,
as well as links to other documents. Identifying connections among different exper-
iments conducted on the same or different data sets by connecting the dots in the
scientific literature is still an open problem.

• Information in the form of images: While the field of medical image analysis by
its very nature has to deal with all the issues associated with the extraction of useful
information from images, the field of bioinformatics is also beginning to work with
image data. For example, Leherte et al. [369] discuss the use of image processing
and computer vision techniques in protein structure determination by formulating it
as a problem in scene analysis.

• Poor quality of data: Data in medical image analysis is often of poor quality due
to sensor noise, presence of various types of tissues that respond differently to sen-
sors, and occlusions by tissues. In clinical trials, data can often be missing or input
incorrectly. Also, in bioinformatics, the quality of data from various sources can vary
in accuracy. All these factors, along with the fact that biologists have incomplete
knowledge of many aspects of the field, imply that one must be careful in drawing
conclusions based on the results of data analysis. This is especially true in medical
data analysis, where a conclusion could be a matter of life or death.

• Privacy protection: Medical data, unlike data from most other scientific applica-
tions, come with the constraint of privacy. Though a detailed discussion of privacy
preserving data mining is beyond the scope of this book, I have mentioned it here as
it can have implications on how the data are analyzed.

2.4 Security and surveillance
Another broad area where data mining techniques are being used and gaining acceptance is
security and surveillance. This includes topics as diverse as biometrics with fingerprint, iris,
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face, signature, and voice recognition; automated target recognition in aerial and satellite
imagery; video surveillance; and network intrusion detection. Though security applications
may not strictly be considered as scientific, they have much in common with scientific
applications and are therefore included in the book. I next briefly discuss each of these topics.

2.4.1 Biometrics

Biometrics is the automated identification or verification of an individual by using certain
physiological or behavioral traits associated with the person [469]. One of the earliest
and best known biometrics technologies is fingerprint identification which has been used
in forensic applications for many decades. The large number of fingerprints in the FBI
database (200 million fingerprint cards at 10 megabytes each in 2002) has led to the use of
sophisticated techniques using wavelets (see Section 5.2) to compress and transmit these
images while preserving the key features necessary for identification [62].

More recently, fingerprint technology is being used in place of password-based
security, for example, for accessing computer systems [627, 147]. Many of these biometric
identification systems, whether based on fingerprints, iris, face, voice, gait, or signature,
have two phases. In the enrollment phase, the biometric characteristic of a person is scanned
to acquire a digital representation, which is then further processed by a feature extractor
to generate a more compact representation. In the recognition phase, the same character-
istic of the individual to be identified is acquired, processed by the feature extractor, and
compared with the feature on record. For example, in fingerprint recognition, the features
may be derived from the local orientations of ridges, with some postprocessing using the
Karhunen–Loeve transform (see Section 10.2.1) to keep only the key features [78]. Or, in
face recognition, each face is represented in terms of a basis, called eigenfaces, which is
obtained by performing principal component analysis (see Section 10.2.1) on a database
of face images and keeping only the eigenvectors corresponding to the largest 100 or so
eigenvalues [341, 595].

While biometric systems are being developed and deployed commercially, there are
still several issues regarding their use. A key issue is the negative perception associated
with the perceived violation of the privacy rights of an individual. On the technical front, a
concern with biometrics is the issue of accuracy—while a password-based system always
accepts a correctly entered password, a biometric system may not guarantee correct authen-
tication due to sensor noise, limitations of the processing methods, as well as variability in
the biometric characteristic and presentation. For example, face recognition methods tend
to perform poorly if the lighting is poor or the individual is wearing a disguise such as a hat
or glasses, or is not presenting a frontal view. One solution to this lies in combining multiple
biometric modalities [300]. In addition, it may be difficult to create a cost-effective biomet-
rics system that is easy to use, is not too intrusive, and takes a short time to learn and operate.

2.4.2 Surveillance

Surveillance is defined as maintaining close observation of a group or locations [365]. While
the classic application of surveillance is in a military setting, it is increasingly being used
in commercial applications such as monitoring activity near automated teller machines or
at traffic intersections, and for security in parking lots, stores, and around homes. Associ-
ated with surveillance is reconnaissance, or making a preliminary inspection. In a military
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application, this could include determining the lay of the land or the location of enemy
troops, while in a civilian setting, reconnoitering can be used in detection of regions with
oil or other minerals. The goal in both surveillance and reconnaissance is to image an area
or object on the ground and extract information from the image. The imaging can be done
either aerially through an unmanned aerial vehicle or via satellite, using radar, infrared, or
visible systems.

While there is much that is similar between analysis problems in remote sensing
(Section 2.2) and in surveillance and reconnaissance, there are some key differences. The
subject being observed in surveillance may go to great lengths to avoid being seen or
identified. Also, in many cases, surveillance is done in a persistent mode for long periods
of time, for example, a video camera in a store for security or at a traffic intersection to
identify vehicles that do not stop at a red light. The video acquired in these situations is
at a frame rate such that we can identify motion in the scene. This temporal aspect of the
imagery allows us to detect and track moving objects in a scene, which in turn enables us to
build a model of normal behavior in the scene and flag events that deviate from the normal.

Detection and tracking of moving objects is key to video mining. Typically the
detection is done by maintaining a “background” image of a scene and subtracting this
from each frame to identify objects that have moved [587, 565, 111, 112]. This background
image has to be constantly updated to account for changes in illumination, motion of the
camera, objects that were moving but have stopped for a while, objects that were stationary
but which have started moving, and so on. These background subtraction algorithms (see
Section 8.4.1) can use simple techniques, such as the difference of two frames or the moving
average of frames in a time window around the current frame, to more complex models using
the Kalman filter or mixtures of Gaussians, or a combination of simpler techniques.

Once the moving objects have been detected, it is possible to extract features such as
velocity, intensity of pixel values, and shape, and use them to track the objects from frame to
frame. This can be done using techniques such as the Kalman filter, motion correspondence,
or particle filters [501, 44, 6, 151]. Tracking can be difficult in the presence of occlusions, in
low contrast imagery, in poor lighting conditions such as fog or rain, or when the platform
from which the imagery is taken is moving. Once the tracks for an object have been obtained,
they can be used to build models of the scene, identify the activity [600, 401], and indicate
anomalous behavior.

2.4.3 Network intrusion detection

With the Internet becoming ubiquitous, the problem of protecting the computers on the
Internet from unauthorized use or malicious attacks has become increasingly important in
recent years. The networks which connect computers to each other, and to the Internet, are
constantly monitored to determine if they are working correctly or if they are under attack.
This monitoring of the traffic on the Internet produces vast quantities of streaming data
which must be analyzed in real time, so that a system under attack can be identified and the
problem can be addressed before it spreads to other computers.

There are several different approaches to detecting network intrusions. Certain types
of network attacks have a known signature which can be described by experts; such intru-
sions are relatively easy to detect. However, if a new type of attack is used to penetrate a
computer network, a system based only on signatures will not be able to detect the attack.
In such cases, solutions based on data mining techniques such as anomaly detection and
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misuse detection [172] or statistical approaches [419] can be quite useful. These approaches
either build models of normal and intrusive behavior using training data or build models
of normal behavior and identify any deviations from it as anomalies or potential intrusions.
The latter approach is more general as it does not depend on a training set containing ex-
amples of normal and intrusive behavior. This is especially important, as novel ways of
attacking computer networks are constantly being developed, and what is considered intru-
sive changes over time. This aspect makes network intrusion detection an active area of
data mining research.

2.4.4 Automated target recognition

Automated Target Recognition (ATR) is closely related to surveillance and remote sensing.
Given a remotely sensed image, the goal of ATR is to identify the objects of interest and
assign them to a class. This is a classic data analysis problem, where objects are first
identified in imagery through image processing techniques such as segmentation and edge
detection. Next, features, such as the size (height, width, area), shape (aspect ratio, Fourier
descriptors), and radar signatures are calculated for each object in the image and then used
in various statistical and machine learning–based classifiers to identify the object. Often
data from more than one sensor can be used to reduce the rate of false alarms.

2.4.5 Characteristics of security and surveillance data

The data that form part of many surveillance applications have characteristics that are
common in scientific applications. These characteristics include:

• Massive size: Surveillance data can often be very large, for example, the FBI fin-
gerprint collection is over 100 terabytes, and large field-of-view aerial imagery can
easily approach terabytes and beyond when the temporal aspect of the video is taken
into account. The data from computer networks can also be very large, given the
large number of computers connected to the Internet.

• Multiresolution, multisensor, multispectral data: In many ATR applications, more
than one sensor (for example, radar and visible) is often used to minimize false alarms
by exploiting the complementary information gathered by the sensors.

• Spatiotemporal data: The temporal aspect of data is key to several applications such
as video mining, where the temporal information in the video frames is exploited to
model the interactions among the objects in a scene and flag anomalous events.

• Noisy data: The data in security and surveillance applications are often noisy. This
can be the result of poor illumination in applications such as face recognition; changing
illumination in the tracking of moving objects at a traffic intersection; or problems in
the collection and distribution of data, such as poor fingerprint quality due to dirt on
a person’s finger or compression artifacts that arise when a fingerprint is compressed
for faster transmission.

• Real-time response: The very nature of security and surveillance applications re-
quires a real-time response, whether it is for the purpose of authentication in biometrics,
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preventing a robbery at a store in video surveillance, or stopping a computer network
attack from spreading to other computers.

• Privacy protection: The privacy of the people being observed is an important issue
and one which must be resolved for biometric and civilian surveillance systems to be
deployed successfully.

• Streaming data: Several of the applications in security and surveillance result in data
sets which are streaming in nature; that is, there is a constant stream of data being
received at the sensors. This is especially true in video surveillance and network
intrusion detection. Such data can place additional constraints on both the sensor,
which must be able to keep up with the flow of data, and the analysis techniques,
which must analyze the data as they arrive.

2.5 Computer simulations
Computer simulations are increasingly gaining acceptance as the third mode of science,
complementing theory and experiment. The idea behind such simulations is to understand
complex phenomena by analyzing mathematical models on high-performance computers.
This approach is often taken when the phenomena are too complex to be solved by analytical
methods or too expensive, impractical, or dangerous to be studied using experimental means.
For example, we may use computational fluid dynamics to study the flow around an airplane
or the turbulent mixing of two fluids; environmental simulations to understand the effect
of volcanic eruptions on global climate or to model the flow of pollutants underground in
an accidental discharge from a reservoir; and structural mechanics simulations to study the
effects of car crash tests or the bending of tall structures due to strong winds.

Computer simulations often generate large data sets whose sheer size and complexity
make them difficult to analyze. Analysis is usually done by visual inspection, which is
impractical when the output from simulations is measured in terabytes and petabytes. As
a result, much of these data are never really explored by scientists tasked with finding the
science in the data.

The visualization community has made great strides in addressing these concerns
through the use of advanced displays, such as power walls, for large volumes of data; novel
data representations that allow out-of-core progressive visualization of data; and high-
accuracy volume rendering frameworks. However, analyses done through these traditional
means have been mainly qualitative. Scientists are now interested in more quantitative
analyses, as well as ways in which they can directly focus on the areas of interest, instead
of first browsing through vast quantities of data.

There are many different ways in which data mining is playing a role in the analysis
of simulation data sets [314], as discussed next.

• Detection of coherent structures: There are several examples of the use of data
mining techniques to identify and track coherent structures. For instance, Ferre-Gine
et al. [188] analyze the data from a wind tunnel using a fuzzyARTMAPneural network
to identify eddy motions in a turbulent wake flow. They considered frames of 3× 3
adjacent velocity vectors and represented patterns by normalized velocity vectors.
From this data, they manually identified patterns which represented clockwise and
counterclockwise structures and used them as the training set for a neural network.
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Other applications involve the identification and tracking of coherent structures over
multiple time steps. Traditionally, tracking is done by a human or by computation-
ally expensive heuristics which track objects through all intermediate time steps.
Banerjee, Hirsch, and Ellman [19] proposed an alternative tracking method based
on machine learning techniques and described an application to track vortices which
change shape, split, merge, appear, and cease to exist unexpectedly. Their method
begins by constructing a training data set composed of vectors which describe related
and unrelated vortices after a time gap. The training set is used to create a decision
tree, which is then used to identify related vortices in different time steps. As ex-
pected, the accuracy degrades as the time gap increases. The decision tree performs
worse than the tracking approach for small time gaps, but over intermediate and long
time gaps, the decision tree performs better than a traditional tracking program.

Another technique that has been extensively used for the analysis of coherent struc-
tures is wavelets [181]. As wavelets operate on different scales, the information
they extract from the data are ideal for identifying structures at different scales in
problems such as turbulent flow. For example, Farge and Schneider [182] describe
a nonlinear procedure to filter wavelet coefficients to separate the coherent vortices
from the background flow. Their work shows that very few of the wavelet modes
contain most of the enstrophy (the variable of interest in this problem) and that se-
lecting the top modes (2 or 3%) is sufficient to select the coherent structures. In a
similar manner, Siegel and Weiss [547] use wavelet packet techniques, again in the
context of fluid flow, to separate signals into coherent and noncoherent parts. They
too observe that by keeping only a small subset of the wavelet coefficients they are
able to extract individual coherent structures in turbulent flow. A slightly different
approach is taken by Hangen et al. [253], who combine wavelets with the more tra-
ditional template-matching approach from pattern recognition to match patterns at
different scales.

• Dimension reduction: Principal ComponentAnalysis (PCA) is an important analysis
tool used in many fields. In simulation data, it can be used to analyze the spatial or
temporal variability of physical fields. The technique has been used extensively under
the name of Empirical Orthogonal Functions (EOFs) in atmospheric sciences [483]
and as Proper Orthogonal Decomposition (POD) in turbulence [399]. In particular, it
has been used to build low-dimensional models by Lumley and Blossey in [398], who
exploit the fact that in certain problems, some parts of the domain are dominated by
large-scale coherent structures. These can be resolved by a low-dimensional model
of the region, while parameterizing the smaller scale effects. This low-dimensional
model is generated by keeping a few eigenfunctions obtained from the POD.

Nonlinear extensions to PCA, based on autoassociative neural networks, have been
studied by Sengupta and Boyle [532]. They found that the nonlinear method effected
somewhat greater data reduction and that the leading nonlinear mode captured the
seasonal cycle of precipitation more clearly than the leading linear mode. They
concluded that nonlinear techniques should be considered especially when linear
PCA fails to uncover physically meaningful patterns in climatological data analysis.

A different application of dimension reduction techniques has been used in the Sap-
phire project to separate signals in climate data [199]. Depending on the simulation,
the data may contain the effects of many different sources, such as El Niño and volcano
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signals; these must be removed in order to make meaningful comparisons between
different climate models. This separation is made complicated by the fact that re-
cent volcano eruptions coincided with El Niño events. Our experiences showed that
by combining the traditional PCA with the newer Independent Component Analysis
[286], we obtained better separation than by just using PCA alone [199].

As we shall see later in this section, dimension reduction techniques are also useful
in building code surrogates, which are data-driven models used to predict the output
of a simulation based on the input parameters. Such code surrogates are built using a
training set of input and output parameter values. As the number of input parameters
is often large, a very large number of simulations would have to be run to span this
parameter space well. Dimension reduction techniques offer the promise of providing
insights into which of the input parameters are important and therefore should be used
in building the code surrogate.

• Information retrieval in simulation data: Finding objects of interest in simulation
data is a task that is essential to analyzing the data. The traditional solution to this
problem has been the use of visualization techniques for “feature” extraction. In con-
trast to data mining, where the term “feature” is a descriptor of an object in the data,
the visualization community uses the term to refer to the object itself. For example,
Machiraju et al. [404] describe the detection of swirl, which is a scalar quantity used
to identify features such as vortices, which are characterized by swirling flow. The
swirl is a well-defined mathematical quantity derived from the velocity and veloc-
ity gradients at each grid point. The authors illustrate how these quantities can be
approximated directly from the compressed simulation output without first uncom-
pressing the data. They borrow ideas from multigrid algorithms and finite-difference
approximations to incorporate correction terms which account for the different spac-
ing between the grid points at different levels in the wavelet representation of the
compressed data.

A more recent development in the analysis of simulation data is the use of techniques
from the Content-Based Information Retrieval (CBIR) and related communities. In
CBIR, the task is to find images in a database that are similar to a query image (see
Section 2.7). Many of the current CBIR systems focus on photographic, remotely
sensed, medical, or geological images. However, simulation data are different from
such image data. First, unless the underlying grid is a simple Cartesian mesh, simu-
lation data are not available at regular points in a rectangular domain. So, many of
the image processing algorithms cannot be directly applied. Second, there are often
several physical quantities associated with each grid point, unlike an image, which
is just a single quantity. Third, the “objects” in a simulation rarely correspond to
physical objects such as a car or a person. In addition, the “objects” in an image often
change shape as the simulation evolves, and may even appear or disappear with time.
Finally, much of the CBIR work focuses on extracting features for, and retrieving, the
entire image, while in simulation data, we are interested in parts of an image. This
implies that the image must be segmented to identify these parts prior to the extraction
of features.

Despite these differences, a couple of efforts have used CBIR techniques in the con-
text of simulation data. The Feature Extraction and Evaluation for Massive ASCI
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Data Sets (FEEMADS) project [79] extracted features using the data from a hydro-
dynamics simulation. The grid used is from an adaptive mesh refinement scheme (see
Section 3.1). The authors consider two scenarios: one in which the adaptive mesh
data are resampled on a uniform grid so image processing techniques can be directly
applied, and another in which the data are directly obtained from the oct-tree data
structure used to store the unstructured mesh. In the latter scenario, the authors exploit
the fact that in the areas of interest, the mesh is refined, and the level of refinement
can be used to limit the search. An approach more closely resembling the traditional
CBIR systems is taken in the Sapphire project. This work is described in more detail
in Section 2.7.

• Code validation: Another area where data mining techniques are being applied in
simulation data is code verification and validation. Verification assesses the degree
to which a code correctly implements a chosen physical model, while validation is
the degree to which a code describes the real world. In other words, verification
addresses the question, “Have we built the code right?” while validation addresses
the question, “Have we built the right code?” Validation usually involves compar-
ing simulations to experiments often by extracting higher-level characteristics from
the data. If a scientist can identify which of two simulations (sometimes also called
numerical experiments) is closer to a real experiment using an appropriately defined
metric, he or she can use the information to improve the predictive capabilities of the
simulation codes. Then, when these codes are used to design an experiment, there is
greater confidence in the experiment behaving as expected.

Scientific data mining techniques have just started making inroads into this important
area of code verification and validation [510, 653, 192, 322, 321]. It is clear that with
high-quality experiments becoming available in many domains, such quantitative
comparisons will become more commonplace.

• Understanding simulations: Data mining methods can also be used to interpret
results from simulations. For example, Mladenić et al. [431] describe the use of re-
gression trees and a rule inducer to interpret results from discrete event simulations of
a supermarket. The simulator takes user-defined parameters, such as the number of
cashiers and arrival rates, as inputs and produces summary statistics, such as cashier
utilization and length of customer queues, as outputs. The goal is to examine which
input parameters affect the output of the simulators. The simulators are executed mul-
tiple times with different parameters and their outputs are recorded. Each execution
produces a training example that is used as input to the tree or rule inducers. Both
the regression tree algorithm and the rule inducer created accurate models that could
be interpreted by humans.

Mladenić et al. [432] have also applied decision trees to a simulation of a steel pro-
duction plant with the goal of identifying the reasons for excessive waste. Decision
trees have also been used to analyze the massive data sets from simulations in [53],
while image analysis techniques have been used in understanding the behavior of
coherent structures in Rayleigh–Taylor instability [318, 319]. This instability occurs
when an initially perturbed interface between a heavier fluid on top of a lighter fluid,
is allowed to grow under the influence of gravity. Fingers of the lighter fluid penetrate
the heavier fluid in what are known as bubbles, while spikes of heavier fluid enter
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the lighter fluid. Understanding both the static and the dynamic behavior of these
bubble and spike structures provides an insight into the mixing of the two fluids and
the process of turbulence [215].

• Code surrogates or building predictive models: An area which has been gaining
popularity in recent years is one of building code surrogates, also called code emu-
lators, surrogate models, or metamodels. These are essentially models which, given
the inputs to a code, predict the outputs of interest. While model-driven emulators
such as polynomial-based regression have long been used to derive a function relat-
ing an output to the set of inputs, data-driven models, such as regression trees (see
Section 11.3.2) or Gaussian processes [504], are also being used for prediction.

A good code surrogate can be invaluable in several respects. If the code takes a long
time to run, utilizing a large amount of computer resources, a code surrogate, being
much simpler, can give an approximation to the output in far less time, using far fewer
computer resources. It can also shed light on which input parameters are important or
if the input parameter space is such that in some parts of the space, parameters which
may have been relatively unimportant elsewhere suddenly become important. This
may indicate that we need to use multiple models to fit the response surface accurately.
The process of identifying the key input parameters, and building the predictive model,
can also provide scientists insights into the phenomena being modeled. In addition,
code surrogates can also be used in validation and sensitivity analysis [273, 588, 457].

The building of code surrogates is a relatively recent use of data mining in computer
simulations. Several challenges must be addressed to make these surrogates useful,
including feature selection to identify key input parameters; building models which
are accurate and interpretable; understanding ways of improving the data so that they
span the input parameter space better; and using techniques such as active learning
(see Section 11.2.7) to enhance the data in an intelligent way so that the information
gained by the addition of any new data points is maximized [74].

The subject of code surrogates is closely related to the field of design of experi-
ments [437]. However, instead of designing physical experiments, the goal is the
design and analysis of computer experiments (DACE) [520, 344, 125, 522]. Many
of the methods proposed for building code surrogates tend to be statistical in nature,
though the problem can be solved using data mining techniques as well. Another
related area worthy of mention in this context is response surface modeling [443]
which is used for process and product optimization.

2.5.1 Characteristics of simulation data

The output from computer simulations has characteristics that are somewhat different from
the data we have encountered so far. These include:

• Spatial data at mesh points: The output from computer simulations is usually in
the form of floating-point values of variables at grid points or mesh points in two or
three spatial dimensions. Unlike image data, which can be considered as pixel values
at regularly spaced points in the x- and y-directions, the grid points in a simulation
can be irregularly spaced. Even if the points are regularly spaced in each dimension,
the spacing between points may not be the same for all dimensions. This spatial
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distribution of points, which is discussed in more detail in Section 3.1, can cause
problems in extracting objects of interest from the data.

• Multivariate data: The output of a simulation typically consists of several variables,
such as pressure, density, and velocities, at each mesh point. This diversity of data
can be exploited in the analysis; however care should be taken in the interpretation of
the results. Such multivariate data are different from the multispectral data in remote
sensing, where all variables can be interpreted as the response of the scene to different
frequencies.

• Distributed data: For large simulations which are run on parallel computers, the
output data are usually available in a distributed form. Each output file may have data
corresponding to a subset of the points in the whole domain. We may not always have
the computational resources to put these subsets back together as a single domain for
analysis. In such cases, a parallel implementation of the analysis algorithm may need
to be used on multiple processors. Alternatively, the analysis algorithm could be
applied to each subset independently, possibly using data from neighboring subsets,
and the results for each subset patched back together to generate the result for the
whole domain.

• Spatiotemporal data: Implicit in many computer simulations is the idea of a phe-
nomenon evolving over time. To understand the phenomenon, the values of the
variables at each mesh point in the domain are output at each time step. Temporal
analysis thus plays an important role in the understanding of simulation output.

• Massive size: As has been indicated earlier, the size of the output from a simulation
can be quite large, making it a challenge to output the data and read it back again
for analysis. In such cases, reducing the size of the data by preprocessing the output
before it is written out may be an option for reducing the data-access time. However,
care must be taken to preserve the key aspects of the data during their reduction. This
can be difficult in problems where the goal of the simulation is to understand a physical
phenomenon and the key aspects of the data are not known beforehand. We must
also ensure that the algorithms and the parameter settings used in the preprocessing
do not result in the loss of any important information in the reduced output.

• Simple, real-time analysis tools: Since large computer simulations often run for
weeks on a parallel machine, it is important that the results be checked periodically
to ensure that the simulation is running smoothly. If a check indicates that there is
something amiss with the simulation, it can be stopped without wasting additional
computational resources. Or, if something interesting is observed in the simulation,
additional data can be output for analysis later on. Therefore, there is the need for
simple analysis tools which can support real-time analysis of a simulation in progress.

2.6 Experimental physics
An area which generates a lot of data is the field of experimental physics, which includes
particle colliders and plasma physics experiments. For example, the Stanford Linear Ac-
celerator Center (SLAC) [561] has long focused in the area of high-energy physics and
particle astrophysics. Their BaBar detector, built to study B mesons, has resulted in one
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of the largest databases in the world, containing almost 900 terabytes at the end of 2004.
While this may seem massive, the Large Hadron Collider (LHC) at CERN [376], which is
an accelerator that brings protons and ions into head-on collisions at higher energies than
ever achieved before, will generate 10 petabytes of data per year. Managing and mining
such massive data sets can be a challenge, especially as high-energy physics experiments
are usually international collaborations with several thousands of scientists participating
from countries all around the world. These scientists often need to access various subsets
of the data for analysis. To support such access and analysis, experiments often have their
own specialized software, such as the ROOT system [515], which is a widely accepted,
interactive data analysis framework built using object-oriented techniques. It includes tools
for graphing and plotting of different types of data, creating histograms, finding peaks, as
well as relevant statistical functions for various distributions and techniques such as PCA.
It also supports track finding and fitting, which is one of the key tasks in many high-energy
physics experiments [40].

Another source of experimental physics data is the plasma physics devices such as
the DIII-D Tokamak [148], as well as several experiments at the Princeton Plasma Physics
Laboratory [485], such as the National Spherical Torus Experiment (NSTX) [447] which is
designed to test physics principles of spherically shaped plasmas, leading to the development
of smaller, more economical, fusion reactors.

The data analysis problems associated with these plasma physics devices can be
very varied, ranging from understanding the simulation and experimental data, to using
the experimental data to refine the theory and to validate the simulations. The goal of the
scientists is to keep the plasma confined at a high enough temperature, for a long enough
time, so that fusion can occur, resulting in the energy output from the process becoming
greater than the energy input to it. There are several challenges to reaching this goal and
many of the data analysis problems arise as a result of these challenges.

For example, physicists have observed fine-scale turbulence near the edge of the con-
fined plasma, leading to the leakage of plasma from the center of the device towards the edge.
This can result in significant heat loss from the plasma, loss of confinement of the particles,
as well as potential vaporization of the containment wall of the reactor. To understand the
process of turbulence at the edge of the plasma, and its role in the transport of heat and par-
ticles, scientists working with NSTX are using ultra-high-speed, high-resolution cameras
to image the plasma. They are interested in characterizing and tracking the blobs of plasma
over time in these experimental image sequences so that the results can be compared with
theory and the theory can be validated or refined. One approach to addressing this problem
is to use image analysis techniques to segment the images in a sequence, thus identifying
the blobs [392], which are then tracked over time. A key challenge is the variation across
the images in a sequence, making it difficult to select a segmentation algorithm, and a set
of associated parameters, which will work well for all the images in the sequence. Using
different algorithms or parameters in the analysis of the frames of a single sequence is not
an option as it would not be clear if the results reflect the data, or are an artifact of the chang-
ing algorithms or parameters. Another challenge is that the plasma physicists have a poor
empirical understanding of the blob structures, which are also not well understood theoreti-
cally. This makes the analysis more challenging as we cannot let our current understanding
of the theory influence the results as the goal of the analysis is to validate the theory.

Another problem in plasma physics with a very different flavor from the problems
usually encountered in scientific applications, is the analysis of Poincaré plots. A plot
(see Figure 2.5) is composed of a number of orbits, where each orbit is described by a
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Figure 2.5. (a) A Poincaré plot with four orbits produced using a Henon map [638].
(b) A quasi-periodic orbit with 1000 points; (c) the same orbit using only the first 100 points.
(d) A 1000-point island chain orbit with five islands. (e) A 1000-point separatrix orbit, with
five x-points or cross points between the lobes.
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sequence of points in two-dimensional space. These points represent the intersection of
a particle with a poloidal plane, which is a plane perpendicular to the magnetic axis of a
tokamak. As the particle goes around the tokamak, it intersects this plane at different points,
creating orbits with different shapes, which are given labels such as quasi-periodic, island
chain, and separatrix. For example, Figure 2.5(a) shows an example of a plot with four
orbits, while panels (b), (d), and (e) of the figure show examples of three different types of
orbits, each created using 1000 points.

The actual shape of a given class of orbits may vary widely, though all orbits of a par-
ticular class, say quasi-periodic, have characteristics which are unique to it and differentiate
it from the other classes. For example, in Figure 2.5(a), the innermost quasi-periodic orbit is
almost circular, while the outermost orbit, which is also quasi-periodic, has a wavy structure
due to the large-lobed island chain and separatrix which are right next to it. In the case of a
stellarator, where the cross section is not necessarily circular like a tokamak, all the orbits
could have a shape similar to the cross section, which is more triangular than circular or
oval. The island-chain orbits might have islands with a very narrow width, appearing more
like a crescent moon rather than the rather wide islands in Figure 2.5(d). This is true of the
separatrix orbit as well, where an orbit may have many cross points, closely spaced, with
the width of the orbit between cross points being very small. In such cases, a separatrix orbit
would closely resemble a quasi-periodic orbit. Further, when an orbit is described by very
few points, it may appear to mimic another orbit. For example, a quasi-periodic orbit, with
few points (see, for example, Figure 2.5(c), which is the same orbit as Figure 2.5(b), created
using 100, instead of 1000, points), may appear as a sequence of broken curves, each curve
is indistinguishable from an island with a very narrow width. The problem becomes even
more challenging when we consider stochastic versions of the three types of orbits, where
the location of the points appears to be perturbed by the addition of random noise. If the
noise level is relatively small, it is very difficult to differentiate between orbits of a given
class, one with stochasticity and one without.

There are several goals in the analysis of Poincaré plots. First, given an orbit, physi-
cists want to associate a label, such as quasi-periodic or island chain, to it. If the orbit is
an island chain, they want to identify the number of islands, and the width of each at its
widest point. In the case of a separatrix, they are interested in the number of cross points
and the width of the “lobes” of the separatrix (which is the part of the orbit between cross
points). A plot can then be characterized by the locations and attributes of the island-chain
and separatrix orbits. This enables us to create a database of plots and their characteristics
and associate each plot with the experimental setup used to create it. This can be done for
plots generated by both computer simulations and experiments. Such a database could then
be used in tasks such as the validation of the simulations and the design of the experiments.

Poincaré plots are related to dynamical systems, as discussed by Yip in [638]. He
proposes an approach to classifying the different types of orbits based on considering the
minimal spanning tree of the graph formed by the points, extracting certain characteristics
of the graph, and then using simple heuristics. An extension of this approach in the context
of data from simulations is given in [14]. A key challenge in the classification of the orbits
is the variation across the orbits of a single class, especially, when it is described using
few points, or there is noise in the data, or the orbit displays incipient stochasticity. This
problem is different from other problems in scientific data mining as the data are not in the
form of images, mesh data, or time series data from sensors, but as points in space which
form a pattern.
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The sensor data from the plasma physics devices can also be analyzed to shed in-
sight into the phenomena being observed. For example, the data from the sensors in the
D-III D tokamak were analyzed to identify the quantities which were relevant to the ob-
servation of a certain phenomenon, called edge-harmonic oscillations, in the plasma [83].
This phenomenon is observed whenever the plasma is in the quiescent H-mode, which is the
desired mode of plasma operation. By identifying the sensor measurements which are key
to the edge-harmonic oscillations, physicists hope to understand what leads to the quiescent
H-mode, so they can replicate the conditions.

2.6.1 Characteristics of experimental physics data

The data from experimental physics have characteristics which are very similar to the data
we have encountered so far in other scientific applications. These characteristics include:

• Large size: As mentioned earlier, experimental physics has resulted in some of the
largest data sets so far. In some extreme cases, the raw data is processed and only
the reduced version, which is much smaller, is stored. However, not all experimental
physics data are massive. Some, like the Poincaré plots, are relatively small as each
orbit consists of several thousand pairs of floating-point numbers. The image data
from NSTX are also moderate in size, consisting of 64 × 64 pixel images, with 300
images in the shorter sequences and 7000 in the longer ones.

• Spatiotemporal data: The data in experimental physics are usually the result of
observing a phenomenon over time and thus have an inherent spatiotemporal aspect
to them.

• Missing and noisy data: As the data are collected by sensors, similar to other ex-
perimental domains, it suffers from noise, randomly missing values, and possibly,
outliers. Such data quality issues may be the result of sensors which are not working
or are not working correctly.

• Need for remote access: Since most experiments are international collaborations,
there is often a need to provide remote access to the data. This can be particularly
challenging given the large size of the data.

It should be noted that the analysis of data in experimental physics is not just restricted
to the data obtained from the experimental setup, but also involves a comparison with
simulations, often resulting in a refinement of the simulations, as well as a change of the
experimental setup, if so indicated by the simulations. The simulations are used to guide
the experiments, which, in turn, are used to validate the simulations. Good quality code
surrogates, which are discussed in Section 2.5, as well as models of failure modes built from
simulation data, can be invaluable in quickly identifying a cause if an experiment fails to
perform as expected.

2.7 Information retrieval
Content-Based Information Retrieval (CBIR) is the task of finding images in a database
which are similar to a query image. While many of the early CBIR systems focused on
photographs, the techniques have also been applied to remotely sensed images, medical
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Figure 2.6. A schematic diagram of the SBOR system used for information retrieval
in the context of simulation data. Solid arrows indicate the flow of image data; hatched
arrows indicate the flow of feature vectors; and dotted lines indicate the flow of control by
the user.

images, simulation data sets, and geological images. Excellent reviews of different CBIR
systems can be found in [176, 477, 201, 475, 636, 92, 601, 150].

The idea behind a CBIR system is simple—given an image, or a region in an image, the
goal is to find other similar images or regions in a collection of images. The images or regions
are represented by higher-level features or descriptors and similarity is modeled through the
use of mathematical distance functions between the feature vectors for different images or
regions. Extensive research has been performed to derive compact, representative features
and distance functions to model visual cues such as color, texture, and shapes, especially in
the context of photographic images.

As an example of a CBIR system, I describe the Similarity-Based Object Retrieval
(SBOR) system, which was developed as part of the Sapphire data mining project [314].
While the main application of this system was the exploration of data from computer sim-
ulations, it borrowed several ideas from the traditional CBIR community which focuses
mainly on image data. The early work in SBOR considered simulation data from regular
Cartesian meshes, which are very similar to image data in structure. Multiple floating-point
values are available at each mesh point in the simulation domain, describing the various
variables used in the simulation.

The SBOR system operated as follows. A scientist would browse through results from
a two-dimensional simulation, find a region of interest, and highlight it by drawing a window
around the region, thus identifying the query region. Next, the scientist would select the
options to be used in the similarity search. When the results from the search were returned
and presented to the scientist, they could either refine the search by providing feedback on
the relevance of the results, or return to a previous step and select more appropriate options.
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The SBOR system (Figure 2.6) consisted of five major functional modules: object
identification, feature extraction, dimension reduction, similarity search, and relevance
feedback.

The object identification module essentially extracted objects from the images. We
supported two types of objects. In the simpler case, we considered the region of interest
highlighted by the scientist to be a rectangular tile object. Such tile objects are relatively
easy to extract from the images by simply overlaying an image with tiles of the same size
as the query tile. These tiles could be overlapping or nonoverlapping and could be either
rectangular or circular. In addition, we considered the more complex situation where the
scientist wanted the query to be the object in the region of interest, not the entire region
highlighted in the query window. In other words, the region of the query window outside
the object was not of interest. In this case, image segmentation techniques (see Chapter 8)
were first applied to isolate the object from the background.

Once the objects or tiles had been identified in the images, we extracted features
representative of the objects. These features could be as simple as statistical quantities such
as the mean, variance, and histogram, or more complex features such as texture features
based on Gabor or wavelet filters and shape features derived from the Angular Radial
Transform (see Chapter 9). After the feature extraction step, each object was represented
by a feature vector containing all the features requested by the scientist.

Often the number of features extracted was quite large, and not all features were
relevant in discriminating among the objects. A large number of features would cause
problems in retrieval due to the “curse of dimensionality” encountered in the similarity
search, where the number of features extracted was the dimension of the search space.
Dimension reduction techniques, such as principal component Analysis (PCA) or feature
selection techniques (see Chapter 10), were used to identify the key discriminating features
which were then used in the search.

The similarity search essentially found feature vectors which were close to the feature
vector representing the query. The idea was that if the features were selected carefully so
that they accurately represented the query object, other objects close to it in feature space
would be similar to the query object. Similarity was defined by considering a distance
metric, such as the Euclidean distance, between two feature vectors. The SBOR system
then returned the best matches, ordered by their distance from the query object.

Of course, given a single query object, it was unlikely that all the results returned
would be good matches. The results could then be refined by relevance feedback, where the
scientist assigned a score to each result returned indicating its relevance, that is, how well
it matched the query. The system then used these scores to perform another iteration of the
similarity search in the hope that the results returned were a better match to the query. The
second iteration could be done either by changing the weights on the features or by using
the scores from the user feedback to build a training set which was used to create a classifier
that could then be used to identify the good matches to the query. The idea behind relevance
feedback was to iteratively refine the results of the query based on input from the scientist.

The SBOR system included several options targeted toward characteristics of simu-
lation data, including support for querying on multiple variables so all the variables in the
simulation data could be used; the ability to extract tiles at different scales using multires-
olution analysis which enabled the retrieval of similar objects at different scales; and the
option of precomputing features using fixed-size tiles to allow searches through very large
data sets.
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2.7.1 Characteristics of retrieval problems

Information retrieval problems share several characteristics common to other applications.
These include large sizes of the data sets, high dimensionality of the feature vectors extracted
from the data, and the need to identify objects in an image. A characteristic perhaps unique
to information retrieval is that it is mainly an exploratory tool and is used by the scientist to
browse through the data. This makes the problem more interactive, requiring near real-time
performance.

2.8 Other applications
There are several other science and engineering application areas where data mining tech-
niques are gaining acceptance. A brief description of some of these newer application areas
follows.

2.8.1 Nondestructive testing

Nondestructive testing is used to study the inside of an object without taking it apart or
otherwise destroying it. Such techniques are extremely useful when the contents of an object
may be dangerous, for example, a storage container with potentially harmful chemicals; or
when it is more cost effective not to dismantle the object as in the periodic inspection of
bridges to estimate the effect of deterioration; or when it is infeasible to study the object by
any other means, for example, land mine detection or the characterization of the defects in
a block of concrete to determine if it meets safety standards.

Nondestructive testing and evaluation techniques can be applied at various stages
throughout the life cycle of an object. These techniques can be used at the beginning of
the manufacturing of a part to find flaws and fabrication defects, during the use of a part
to determine if it has deteriorated, and the end of the life of a part to determine if it can be
reused or not [372, 12, 108, 64].

Nondestructive testing usually involves studying an object using X-rays, ultrasound,
or optical sensors. The resulting signals are then analyzed using techniques from image and
signal processing to characterize the objects. In problems where there are several parts to be
examined, for example, in quality control during manufacturing, such automated techniques
can also be useful in reducing the turnaround time required for the detection of defects.
Further, they do not have any of the drawbacks of manual inspection such as subjectivity,
inaccuracies due to fatigue on the part of the human inspector, or inconsistencies due to
concept drift.

2.8.2 Earth, environmental, and atmospheric sciences

This is an area which has a strong overlap with two other application areas: remote sensing,
in the context of observational data, and computer simulations to understand, for example,
the spread of a pollutant in the atmosphere or in the ground [294, 291]. Akey characteristic of
such data is their temporal aspect; the problems of interest in earth and atmospheric sciences
typically involve how a pattern or phenomenon varies over time for example, weather
prediction, tracking of cyclones, and so on. In addition, the simulations may incorporate
observed data to improve their accuracy, in a process known as data assimilation [375].
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2.8.3 Chemistry and cheminformatics

An area where data mining techniques are increasingly playing an important role is com-
binatorial chemistry, which is a technology for generating molecules en masse and testing
them for desirable properties. Instead of working with one molecule at a time, combina-
torial chemistry provides a better way to discover new drugs and materials by essentially
parallelizing the process. Needless to say, this generates a large amount of data which could
benefit from data mining techniques [269, 139]. Data mining techniques are also being used
to identify quantitative structure activity relationships, where a suitable description of the
structure of a molecule is used to associate it with various properties [607]. This association
between the structure of a molecule and its biological activity has extensive applications
in the field of drug discovery and development. It is at the core of the new field called
cheminformatics, which includes the organization, storage, retrieval, mining, and analysis
of chemical information [364].

2.8.4 Materials science and materials informatics

Another application area which exploits the connection between the structure and properties
is materials science. Traditionally, prior knowledge was used to establish common structure-
property relationships across different classes of materials. However, in recent years, a more
data-driven approach based on data mining techniques is providing an alternative which
allows one to explore, with no prior assumptions, several different types of data to identify
what influences a given property of a material [498, 499].

2.8.5 Manufacturing

Manufacturing is another area where data mining techniques have been used extensively,
often to evaluate the quality of the products being manufactured [580]. For example, Good-
win et al. [228] describe the use of data mining techniques in semiconductor manufacturing
where the data sets are not only large and high dimensional with millions of observations
and tens of thousands of variables, but also complex with a mix of categorical and numeric
data, nonrandomly missing data, noise and outliers, as well as non-Gaussian and multimodal
relationships.

2.8.6 Scientific and information visualization

Finally, two areas which can benefit from data mining are scientific visualization, which
is used extensively in the context of simulation data, and the more recent information
visualization [598], which is used for viewing complicated data structures, such as graphs,
and the relationships among any substructures.

As simulation data reaches the petabyte regime, it is clear that there will be major
challenges in visualizing such a large amount of data. We will not only encounter limits to
the amount of data which can be displayed at any one time, we will also run into problems
just moving the data from disk to the display. Further, as scientific visualization is typically
an interactive process, changing the view of a massive data set in real time will become
rather difficult. In such instances, data mining techniques can be used to identify the more
interesting parts of a simulation so that only these parts, rather than the entire simulation,
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can be displayed. This will reduce the size of the data which must be displayed and provide
real-time response by focusing the visualization.

The area of information visualization [611, 107, 598] is closely tied to data mining
as the data being visualized often results from data mining. For example, information
visualization is being used to look at the results from clustering massive data sets and to
investigate the connections in data represented as graphs, such as the Internet, various social
networks, or the electric power grid.

2.9 Summary
In this chapter, I described problems in several different scientific domains which are being
solved using data mining techniques. These problems range in size from several kilobytes
to several terabytes. They arise from scientific simulations, observations, as well as ex-
periments. Many, if not all, are rather complex, making it a challenge to find techniques
which work well. In some problems, the domain scientists may not quite know what they
are looking for, while in others, it is a challenge to extract the information from the data in
a robust manner so that the results reflect the data and not the algorithms used to extract the
information. Even within an application domain, the type of problems may vary widely. At
the same time, there is a lot of similarity among problems in different domains.

The list of problems described in this chapter is by no means exhaustive. In fact, I
have barely begun to scratch the surface. The use of data mining is increasing in scientific
data analysis, and new problem domains, as well as new problems in existing domains,
are benefitting from data mining techniques. Through this diversity of problems, I hope
to identify some common themes in scientific data mining which I will use to outline the
scientific data mining process. These will form the basis of the next two chapters.

2.10 Suggestions for further reading
There are several journals and tutorials which focus on the application areas described in
this chapter. These include the IEEE Transactions on GeoScience and Remote Sensing,
the IEEE Transactions on Medical Imaging, Research in Nondestructive Evaluation, the
Astronomical Journal, Bioinformatics, Applied Bioinformatics, etc. Two excellent tutorials
in the area of remote sensing are available from the Canada Center for Remote Sensing and
NASA [77, 544].

Conferences are another source of information on how data mining techniques are
being used in application areas. For example, the Astronomical Data Analysis Software and
Systems (ADASS) conference focuses on the analysis of astronomy data while the SPIE
Medical Imaging conference focuses on all aspects of medical imaging from the instruments
to the analysis of the data. SPIE also organizes conference series in the areas of defense and
security, remote sensing, and astronomical telescopes. Several data mining conferences,
such as the ones organized annually by SIAM, ACM, and IEEE, often have workshops
and tutorials focusing on the mining techniques used in different application areas such as
bioinformatics or time series analysis.

Further, in domains where the data are collected by instruments (such as astronomy and
remote sensing), the Web pages describing the instruments are a rich source of information
on the instruments themselves, their characteristics, as well as the initial data processing
which is done before the raw data from the instruments is made available for analysis.





Chapter 3

Common Themes in Mining
Scientific Data

When a scientist doesn’t know the answer to a problem, he is ignorant.
When he has a hunch as to what the result is, he is uncertain. And when he
is pretty darn sure of what the result is going to be, he is in some doubt. We
have found it of paramount importance that in order to progress we must
recognize the ignorance and leave room for doubt. Scientific knowledge
is a body of statements of varying degrees of certainty—some most unsure,
some nearly unsure, none absolutely certain.

—Richard P. Feynmann [190, p. 146]

In the previous chapter, we considered several scientific domains where techniques
from data mining and statistical analysis are being applied to find useful information in data.
Even a cursory read through the chapter indicates that there are several themes that recur
in these application areas. In this chapter, I discuss these themes in more detail; I will use
them in Chapter 4 to define an end-to-end process of scientific data mining.

This chapter is organized as follows. First, in Section 3.1, I describe the various
types of data encountered in scientific applications. Next, in Section 3.2, I discuss the
characteristics of scientific data which are common across several different application
domains. It is these characteristics which motivate the tasks in the various steps of the
scientific data mining process, especially the processing done in the first few steps. There
are some common themes in the types of analyses done with scientific data as well; these
are discussed in Section 3.3. Finally, following a summary of the chapter in Section 3.4, I
provide suggestions for further reading in Section 3.5.

3.1 Types of scientific data
The tasks in scientific data mining are driven both by the type of data, as well as the problem
being solved. From the applications described in Chapter 2, it is clear that scientific data
come in many different flavors. These range from simple data in the form of tables or time
series to more complex data such as the data from an unstructured mesh in a computer
simulation.

41
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3.1.1 Table data

The simplest scientific data type is a collection of floating-point numbers which is obtained,
for example, by different sensors connected to an experiment or during the examination of
patients in a clinical trial. These variables may represent quantities such as the temperature
and pressure at some location in the experiment, or the blood sugar and weight of a patient.
If the quantities are measured over time, we can consider each quantity to be represented
by a time series. The quantities do not all have to be floating-point values; some can be
categorical, such as the gender of a patient, while others could be binary, for example, a
variable indicating if a certain option was used in the experiment or not.

These data can often be represented in the form of a table, where the rows correspond
to the objects or data items, such as a single run of a physics experiment or a patient in a
clinical trial, and the columns represent the variables collected for each object. In many
problems, the position of the rows and columns does not have any special significance and
they can be interchanged without changing the meaning of the data. However, in time series
data, the rows often represent increasing time and are therefore constrained to be in a certain
order. This is not the case with image data, which I describe next, where the data too can be
represented in the form of a table, but the rows and columns have to be in a certain order.

3.1.2 Image data

More complex data types occur when the data are in the form of images, for example, a
satellite image in remote sensing or an experimental image from a fluid-mix problem. An
image can be considered to be a two- or three-dimensional array of values defined at regular
intervals. These values can be integer or floating point. Further, the integer values are
usually nonnegative and represented using 8-bit, 11-bit, 12-bit, or 16-bit data. For example,
Figure 3.1, shows two images, one an 8-bit integer image and the other a floating-point
image, along with the pixel intensities corresponding to the upper right corner of the image.
The two images appear very similar, though their values are rather different. This is because
tools for displaying images first convert them into 8-bit values, which are usually scaled to
lie between 0 and 255. This can be very misleading if the image values are not originally in
the range [0,255]. As a result, tools which not only display images, but also allow a user to
look at the actual intensity values can be invaluable in the context of floating-point images
(see Section 12.2). In addition, we must take care to ensure that any processing, such as
cropping or subsetting of an image, which is performed directly on the displayed version,
retains the range of the original data.

Scientific images which have 16-bit integer or floating-point values allow a larger
range of pixel intensities. However, many of the typical image processing algorithms focus
on commercial quality images in 8-bit format, where the values range from 0 to 255. While
it is possible to rescale images with a larger range of values to the range [0,255] and apply the
traditional image processing software, a preferred option is to apply floating-point versions
of the image processing algorithms and convert the values to [0,255] only at the end, or if
necessary for display. This ensures that the larger range of values is fully exploited during
the analysis. It unfortunately also implies that much of the image processing software that
is available for 8-bit data cannot be applied to scientific images directly.

In many scientific domains with image data, in addition to the pixel values, additional
information is associated with each image, such as the time of day when the image was
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Figure 3.1. Sample images in (a) 8-bit integer format and (b) floating-point format.
(c) and (d) are the values of the pixels at the top right corners of the 8-bit integer and floating-
point images, respectively. Note that the images appear very similar as they are converted
to 8 bits, and scaled to a range from 0 to 255, for display. However, the floating-point image
has pixel values greater than 255.

obtained, the instrument used, the settings of the instrument, and so on. These metadata,
that is, data describing the data, are useful in interpreting the results obtained from the
analysis of the image.

Image data are often available as two-dimensional data. However, in some fields,
such as medical imaging, three-dimensional data are also becoming available, for example,
a computer-aided tomography (CAT) scan of the human brain composed of multiple slices,
where each slice is a two-dimensional image.

3.1.3 Mesh data

Data from computer simulations are more complex than image data. In computer simula-
tions, the domain of interest is overlaid with a grid (also called a mesh) and appropriate
partial differential equations solved at these discrete points on the grid. In the simplest case,
if the grid is a Cartesian mesh, it can be considered as an image, where the floating-point
values of the variables being output in the simulation are available at each grid point.

However, it is rarely the case that simulations are performed on rectangular domains
(in the case of two dimensions), with equally spaced grid points, with equal spacing in
the two dimensions. More frequently, the grid points are irregularly spaced, giving rise



44 Chapter 3. Common Themes in Mining Scientific Data

Figure 3.2. Example of a three-dimensional unstructured grid using tetrahe-
dral meshes around the upper surface of a wing. Image from [207]; also available at
http://tetruss.larc.nasa.gov/usm3d_v52/IMG/Wf2-4a/winggrid.gif.

to unstructured meshes. The elements used in such meshes can be homogeneous; for
example, all elements in the three-dimensional mesh shown in Figure 3.2 are tetrahedral;
or heterogeneous, where there is a mix of elements of different types, such as triangular
and quadrilateral elements in a two-dimensional mesh. And then, there is a hybrid mesh
structure, which is locally structured, but globally unstructured (see Figure 3.3). Such
meshes typically arise in adaptive mesh refinement schemes, where instead of running the
simulation on a mesh that has a uniformly fine resolution over the whole domain, it is run
on a mesh which has fine resolution only in the regions which require such resolution, and
a coarse resolution mesh elsewhere. In such adaptive techniques, if a region of the mesh
requires additional resolution, it is refined further, with the increased number of points
leading to more computation, but only in limited regions of the computational domain.
When this finer resolution is no longer needed, the mesh is coarsened. This approach
lowers the total computational costs of running the simulation compared to an approach
which uses a fine mesh throughout the computational domain. However, the code is now
more complex due to the refinement and the coarsening of the mesh.
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(a) (b)

(c) (d)

Figure 3.3. A grid illustrating the concept of adaptive mesh refinement. (a) The
composite grid which is globally unstructured, but locally structured. (b) through (d): the
individual grids which make up the composite, from the coarsest to the finest scale. These
are shown relative to the boundary of the domain.

Mesh data are available in both two and three dimensions. It has a time component
as the goal of the computer simulations is to study a phenomenon as it evolves over time.
At each time step in the simulation, several variables may be output. These are often the
variables of interest, such as pressure, density, the velocity components in the different
dimensions, and so on. But, additional information, in the form of checkpointing files, can
also be output at specific time steps in the simulation, enabling the simulation to be continued
from that time step onward. This checkpointing is very useful in long-running simulations
on parallel machines, where the machine may not be available to run the complete simulation
at one time.

Adetailed description of how complex scientific phenomena are simulated using com-
putational techniques is beyond the scope of this book. Readers interested in the general area
of computational science and scientific computing are referred to the texts by Heath [265],
Heinbockel [268], and A. B. Shiflet and G. W. Shiflet [542], while those interested in details
of techniques such as finite-difference and finite-element methods can find more informa-
tion in the texts by LeVeque [373] and Hughes [283], as well as specialized texts on the
subject. While many problems in the analysis of simulation data do not require an in-depth
understanding of how the data were generated, in some cases, for example, if we need to
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calculate the gradients of variables at grid points, we may need to use the same computa-
tional scheme as was used in the simulation code to ensure that the analysis is done to the
same accuracy as the simulation.

3.2 Characteristics of scientific data
I next describe various characteristics of scientific data and discuss how they influence the
analysis process. These are the common themes we have seen in many of the applications
discussed in Chapter 2 when we focus on the data being analyzed rather than the analysis
task. The issues raised in this section often determine the tasks which should be included in
the analysis, the choice of algorithms for a task, and any considerations which may influence
the interpretation of the results of the analysis.

3.2.1 Multispectral, multisensor, multimodal data

In some domains, such as remote sensing, a sensor can observe a scene using different
frequencies. Thus, instead of a single image, a multispectral image is obtained. This consists
of a separate image for each of the different frequencies, for example, one image for near-
infrared, and one each for red, green, and blue in the visible spectrum. In hyperspectral
imagery, the number of bands can be in the hundreds.

There are several formats in which such multiband or hyperspectral images are stored.
The three common ones are band interleaved by pixel (BIP), band interleaved by line (BIL),
and band sequential (BSQ) [527]. In both the BIL and BIP formats, the data are stored one
line at a time. BIP stores all the bands for the first pixel in a line, followed by all the bands
for the second pixel in a line, and so on. BIL stores band 1 for the first pixel, followed by
band 1 for the second pixel, and so on. In BSQ, each band is stored separately; within a
band, the pixels of the first line are stored in order, followed by the pixels of the second
line, and so on. The different storage formats can result in computational inefficiencies if
an algorithm requires access to data values which are not stored contiguously in memory.
Further, in remotely sensed imagery, when there are more than three bands, we need to
select a subset of three to map to the R, G, B colors in the display. The image may appear
different based on which of the three bands are chosen for display.

In multispectral imagery, all the spectral bands are usually at the same resolution.
However, sometimes, the images can be at different resolutions. Further, in some applica-
tions, such as medical imaging or astronomy, the different sensors used in imaging can focus
on different organs or different characteristics of the scene, with the resulting images ap-
pearing very different. Often, a scientist may want to combine or fuse the information from
different images of the same scene, to exploit the complementary information in the images.

Asimilar problem occurs when data in the form of text, images, plots, and tables have to
be mined together, as in the case of mining biological literature [351]. The problem becomes
more complex if we also consider the data in documents pointed to by the current document.

3.2.2 Spatiotemporal data

In many scientific domains, the data have both a spatial and a temporal nature. Mesh
data from simulations, by their very nature, have a temporal component as the goal of the
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simulation is to understand a phenomenon as it evolves over time. In other application areas,
such as medical imaging and remote sensing, there is a need to detect changes over time, for
example, analyzing images of the brain before and after treatment for a brain tumor. The
time intervals between the collection of data may be variable. Such problems require the
data to be registered; that is, there should be a mapping of the points from the data at one
time instant to the data at the next time instant. This allows us to incorporate changes in
the data due to factors such as changes in the position of a patient from one MRI scan to the
next, or changes in the viewing angle of a remotely sensed image. This collection of data
at different time instances can also introduce problems such as differences in the lengths of
shadows in remotely sensed images taken at different times of the day.

In other problems, spatiotemporal data may be in the form of time series data, where
the data are collected at regular time intervals. In such situations, the traditional ideas
developed in time series analysis can be applied [102, 472, 337].

3.2.3 Compressed data

In some domains, the data sizes are so large that they are stored in a compressed form. This
is often true of simulation data. In such cases, we can uncompress the data and then apply
the traditional analysis algorithms. However, one can also consider algorithms which can
be directly applied to compressed data, as discussed by Machiraju et al. [404].

3.2.4 Streaming data

Many scientific applications involve the ongoing collection of data. These include problems
in astronomy, experimental physics, and surveillance. Often, the data being collected must
be analyzed on the fly to identify either interesting events, which can then be studied further,
or untoward incidents (such as damage to an experimental setup), which must be prevented.
This requires the mining of data as they are being generated or collected. Given the real-time
requirements, often only simple analysis can be done. Such analyses must be amenable to
incremental algorithms, where models describing the data are built incrementally and refined
as additional data become available. In many applications, the real-time analysis is usually
combined with more detailed off-line analyses; such off-line analyses can also be used to
generate the models for real-time use.

3.2.5 Massive data

As we have observed, in many scientific applications, the data collected or generated can
be quite large, often being measured in terabytes or more. This characteristic is not unique
to science and engineering data sets, but is also true for data arising from commercial
applications. In scientific applications, the large size of the data could be due to either a
large number of small- to moderate-sized data, or a small number of very large data sets, or
a large number of very large data sets.

The large size of scientific data sets often implies that much of the data are never
looked at, much to the consternation of scientists who wonder about the science being left
unexplored in the data. Exploratory data analysis techniques are often needed to identify
regions of interest in data, thus reducing their size prior to detailed analysis. Sampling can
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also be used to process reduced amounts of data, at least in the initial iterations of analysis.
Alternatively, we can move some of the processing closer to the generation or collection
of the data, creating reduced representations of the full data set as it is being generated or
collected. In any approach to reducing the size of the data, we must be careful to recognize
that the data not being included could have a substantial effect on the results of the analysis,
especially when the data reduction techniques are motivated by what we expect to see in
the data. In addition, the reduced representations may be sensitive to the algorithms and
parameter settings used to create them, making it unclear if the reduced representations
accurately reflect the original data.

3.2.6 Distributed data

Data in scientific applications can be distributed either globally, as in data collected from
different telescopes, or locally, as in data generated by a computer simulation on a parallel
machine. Both situations can be challenging for data mining algorithms.

One approach to handling globally distributed data is to work with reduced data sets
from each source. For example, astronomers create catalogs for each astronomical survey
and mine the data across these catalogs. Efforts such as the National Virtual Observatory
[597, 173] provide the infrastructure for such analyses, as well as the ability to access the
original data as needed. A slightly different situation arises when the data are in one place
and many scientists want access to it. Again, one approach would be for each scientist to
work with a reduced summary version of the data. A different approach would be to move
the analysis software to the data, which is the approach taken at NASA’s Goddard Earth
Sciences Distributed Active Archive Center [402].

In computer simulations run on large parallel machines, the data are available in several
files, each containing a subset of results over part of the computational domain. Putting the
entire data set back together may not always be an option, especially if the computational
domain was very large, necessitating its decomposition in the first place. This can lead to
some interesting challenges. Parallel versions of many algorithms are needed, especially
for the initial prepreprocessing of the data. The identification of objects can be a problem
when the objects are split across one or more data files. This issue gets aggravated when the
problem is one of tracking objects, especially when the objects split and merge over time.

When the data from a computer simulation are analyzed as they are being generated,
we can use parallel implementations of various analysis algorithms. This, however, can lead
to load imbalance as the size of the data reduces over time, going from values at each mesh
point, to objects, to feature vectors. If the data are analyzed after they have been written to
files, we have the option of applying the analyses algorithms in parallel, processing a file at
a time, along with any data needed from neighboring files. In this case, additional logic will
be needed to handle objects split across files. However, it may preclude the use of certain
algorithms which require iterating through the data, unless the data are first read back into
a parallel machine.

3.2.7 Different data formats

In a single application domain, it is very rare for a single format to be used for storing
data available as, say, images. In fact, it almost appears that there are as many different
output formats as there are scientists! For example, in climate simulations, data can be
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output in network Common Data Format (netCDF) format [449], in GriB (Gridded Binary)
format [231], or in HDF format [263]. Similarly, in astronomy, there is the Flexible Image
Transport System (FITS) format [194], which can store floating-point image data, unlike
the more traditional image formats such as tif or pgm.

In several of the older image formats, there is typically a header associated with each
output file (or image) which describes the image. This can include information on how many
bits are used to represent the values in the image, if the values are scaled, the corresponding
scale factors, and so on. The header can also include information on the instrument used
to collect the image, the time the image was obtained, and the settings on the instrument.
Much of this metadata had to appear in a fixed order in the file; any enhancements to the
data formats to account for advances in computer science, such as newer languages and data
structures, had to ensure that changes made to the formats were backwards compatible. This
allowed data collected by an instrument over several years to be read by a single piece of
software. The newer data formats, however, tend to be “self-describing” and allow greater
flexibility in how variables are stored in a file.

The use of these different formats in a single application domain does have practical
implications for a data miner. Often, a nonnegligible percentage of time is spent in just
dealing with specifics of the data formats used in an analysis problem and in ensuring that
the data have been read correctly. If standard data formats are used, such as tif or pgm for
images, conversion tools, such as the “convert” command in ImageMagick software [289],
can be used to convert the data into a single format for analysis.

3.2.8 Different output schemes

Another time-consuming aspect of scientific data mining arises from the different ways in
which scientists, while using the same data formats, output the data. This problem occurs
more frequently in simulation data. For example, in climate simulations, one scientist may
output results for each month in a separate file, while another may output the results for an
entire year in a single file. If a data miner is trying to perform the same analysis on these
two different simulation outputs, they will need two different code segments just to read
in the data. Of course, this does not take into account a common problem in simulation
output, where all variables for a simulation are dumped out at each time step, while analysis
is often done using one, or a few, variable(s) at all time steps. If the data are stored on tape
in long-term storage, this implies that a lot of data may need to be accessed, though only
part of the data are actually useful in the analysis.

A similar problem occurs when all variables at one time step are output to a single file
or they are output to different files with either a single directory for all time steps or separate
directories for each time step. If the simulation is run for many time steps, it is possible to
run into the problem that common commands for listing the files in a directory no longer
work due to the large number of files in a directory.

As a result of all these issues, often a nontrivial amount of the time spent in the initial
exploratory analysis is in just reading in the data and bringing them to a consistent format.

3.2.9 Noisy, missing, and uncertain data

Scientific data, especially data resulting from observations and experiments, tend to be noisy.
The noise may be random or structured. For example, data from the FIRST astronomical
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survey have noise in the form of lines at 60 degrees corresponding to the placement of
the telescopes of the VLA [174] (see Figure 2.2), while data from Planar Laser-Induced
Fluorescence (PLIF) imagery [321] have noise in the form of vertical lines through the
image. Such noise in image data must be reduced prior to further processing. This must be
done carefully, without destroying the signal. The amount of noise in an image can also be
a strong indicator of how much a scientist can trust the analysis done on the image.

Missing data are another common occurrence in observations and experiments. This
is frequently due to sensor malfunction. In science data, missing values cannot simply be
interpolated from neighboring values, especially if large areas of an image are missing or
the neighbors are too far away for interpolation to make sense.

Another related issue is one of outliers. While they are often removed in the initial
data exploration step, they could also indicate previously unobserved phenomena, a bug in
the simulation code, or an incorrect experimental setup. Hence, outliers in scientific data
must be handled with care and addressed appropriately.

In some problems, especially when we measure or observe a quantity using two
different sensors, or measure what we expect to be the same quantity at two different times,
we may obtain two different values. This results in an uncertainty associated with the data,
where we might have a range of values for a variable, rather than a single value. Analyzing
data in the presence of uncertainty is very challenging and is increasingly becoming an
important topic in scientific data mining.

3.2.10 Low-level data, higher-level objects

A key characteristic of scientific data is that it is rarely in a form that can be directly input to
a pattern recognition algorithm. While it is possible to take image pixel values or variables
at a mesh point and input them to a classification algorithm [53], often, the pattern of interest
is not at the level of a pixel or grid point. For example, we may be interested in classifying
galaxies with a bent-double morphology in astronomical image data [315], or in identifying
“mushroom”-shaped “objects” in simulation data [314]. These galaxies or objects must first
be extracted from the pixels in an image, or grid points in a computational domain, before
they can be identified as bent-doubles or mushrooms. Or, we may be interested in comparing
a simulation to an experiment, where the two data sets are of different sizes and quality;
this would preclude a direct pixel-to-pixel comparison. In such cases, we need to identify
objects in the data and compare them based on their location and characteristics.

This extraction of higher-level information, in the form of objects, from lower-level
data, which is in the form of pixels or variables at grid points, is a critical step in scientific
data mining. It is also a challenging and time-consuming step for the reasons I outline next.

In problems where the data represent natural objects, such as galaxies or the coherent
structures observed in edge turbulence in plasma, there is a tremendous variety in terms
of the shape, the sizes, and the intensities of the objects. Thus, the techniques used to
extract the objects cannot depend on the specific characteristics of the objects to extract
them from the data. In contrast, for man-made objects such as semiconductor masks or
buildings, it is possible to use characteristics such as straight lines to extract the objects
from the images.

The objects in an image can often be difficult to extract due to the noise in the images.
This frequently occurs in data from experiments and observations. However, what is noise is
often dependent on the problem being solved. For example, if one is interested in identifying
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buildings in a remotely sensed image, the clouds in the image would be part of the noise.
However, if one were interested in classifying the types of clouds in an image, the clouds
would be the signal.

In many image data sets, the objects of interest could be partially occluded by other
objects as a result of the image being a two-dimensional projection of a three-dimensional
scene. For example, in a remotely sensed image, the side of a rectangular building may
be partially occluded by a tree growing close to the building, resulting in an image where
only three sides of the building can be easily extracted. Or, in medical imagery, a bone may
occlude the tissue of interest. A partial solution to such problems is to use three-dimensional
imagery or obtain images of the scene from different angles.

Objects of interest in scientific data can be at different scales. This could be due to
the inherent resolution at which the data are collected, for example, the same building may
appear at different scales in images at different resolutions. Or, it could be the result of the
variation in the scales of the objects; for example, a remote sensing image may have both
large and small buildings in the same image. The difference in scale may also be the result
of the way in which the image was obtained as some objects may appear much smaller
than others if they are further away from the camera. It is also possible for the structure of
objects to vary over time. For example, coherent structures, known as bubbles and spikes,
which form during Rayleigh–Taylor instability in the process of fluid mixing, are a few grid
points in size at the beginning of the mixing process, but grow to occupy several hundred
grid points as the simulation progresses [318]. This variation in scale may make it difficult
to use a single algorithm, with a fixed set of parameters, to extract the objects in the data.

In the case of spatiotemporal data, the objects of interest may not persist over the
entire time the data are being collected. Often, objects are born, exist for a while, split
or merge with other objects, and then die [318]. In this process, they may change shape
substantially, but still be recognizable as the objects of interest by scientists. Identifying
such objects can be a challenging problem.

3.2.11 Representation of objects in the data

Once the objects of interest have been extracted from the data, they must be represented by
features characterizing them. Again, we need to represent the objects by higher-level features
instead of actual pixel values or values at mesh points to account for the fact that the patterns
of interest are at a higher level. Further, by representing the objects using certain common
characteristics, we can focus on what makes the objects similar or dissimilar, instead of being
distracted by minor variations in the objects. These characteristics are usually determined
by the problem to be solved. For example, if we are interested in categorizing objects in a
data set by their shape, then shape descriptors are relevant. However, if in the same data set,
we are interested in clustering objects by their texture, then, texture descriptors, not shape
descriptors, would be more relevant.

The word “feature” is somewhat of an overused word and has come to mean different
things in different communities. In the context of this book, I consider a feature to be any
measurement which can be extracted for an object from the data; that is, one can write
a piece of software to extract the feature from the data. Such features could include the
mean value of the intensities, the Fourier descriptor for the shape of an object, the texture
values of the object, and so on. In some domains, the word “feature” can mean the higher-
level object itself, for example, in simulation data, a scientist may be interested in finding
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mushroom-shaped “features.” In the terminology used in this book, this would imply first
identifying all objects in the data, then extracting the low-level characteristics, such as the
shape and texture, and finally using these features to identify (using perhaps a classification
algorithm) which of the objects meet the requirements of being shaped like mushrooms.

The features extracted from the objects in scientific data must usually be invariant to
scale, rotation, and translation. After all, a bent-double galaxy remains a bent-double even
if it is shrunk or enlarged, rotated, or moved to another location in the image. Further, the
features must be robust to small changes in the data. This is to account for the fact that the
data may be noisy. If small changes in the data lead to large changes in the values of the
features, then such features are unlikely to be reliable.

For spatiotemporal data, we may also need to include a time component as one of the
features. While such data are usually collected at regular time intervals, this may not always
be the case. For example, in computer simulations, data may be output more frequently
when rapid changes are occurring in the data. Such differences in time intervals must be
handled appropriately.

3.2.12 High-dimensional data

Once the objects have been identified, and features representing them extracted from the
data, the original data have essentially been reduced to a matrix, where each row corresponds
to an object or data item and the columns represent the features for the object. Thus, each
object is represented by a feature vector.

Typically, many features are extracted for each object, such as statistical features
represented by the histogram of intensity values, shape features represented by Fourier
descriptors or coefficients of angular radial transform [418], or texture features represented
by summary statistics of the wavelet transform. Each of these features can have many
components; for example, a 16-bin histogram will have 16 components. Further, if the
data are multispectral or several variables are being considered, then each spectral band
or variable will contribute a 16-bin histogram to the feature vector. As a result, feature
vectors in scientific data can be rather long, with hundreds of features. This does not
include features which are extracted as metadata from the original data. Such features could
include the name of the image from which the object was extracted or the software directory
where the file containing the image is located. They are necessary to help trace back the
object to its original source and are useful in analyzing and interpreting the results of data
mining.

A key problem with having high-dimensional feature vectors, where the number of
features is the dimensionality of the problem, is the “curse of dimensionality.” This manifests
itself in different ways, ranging from poorly defined distance measures to the need for
many samples to effectively represent the distribution of the data in the high-dimensional
space [86]. This can affect any subsequent processing of the feature vectors to extract
patterns in the data. As a result, feature selection and dimension reduction techniques are
often used to reduce the number of features necessary for characterizing an object.

3.2.13 Size and quality of labeled data

In classification problems, there is a need for labeled data, or objects which have a label
associated with them. For example, given a training set of galaxies which have been
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identified as either bent-double or non-bent-double, we can build a classifier, which, given
an unlabeled galaxy, can associate a label with it. In scientific problems, such labeled training
sets are usually generated manually. This is in contrast to many commercial applications,
where training sets can be generated historically, for example, by keeping track of which
customers buy a certain product.

The manual generation of training sets can be tedious, subjective, and inconsistent.
If an object is difficult to label, it is very likely that when a scientist is shown the same
object at two different times, it will be assigned two different labels. This can be due to
an inherent difficulty in labeling the hard-to-label cases, but can also arise due to concept
drift in cases where the scientist is labeling many examples. The labeling approach can
sometimes be ad hoc, with each scientist using a different metric for assigning a label to
an object. In these cases, it is helpful to ask if the scientists would like an object to be
labeled as a positive example, instead of asking them if it is a positive example. The latter
option requires the scientist to be certain, while the former option leaves open room for
doubt and lets the scientist determine if further studies are necessary to correctly identify
the object.

Another issue with labeling data is that of ground truth. In commercial data, it is easy
to determine if a customer did or did not buy a product. In scientific data, it is much harder
to ascertain ground truth. In some cases, for example in labeling volcanoes on Venus [71],
it is nearly impossible to determine if an object in an image is indeed a volcano. In such
cases, expert labeling takes the place of ground truth. Such expert labeling may also be used
in cases where it is difficult, not just impossible, to collect ground truth. For example, in
remote sensing, an expert may label an area of an image as being an oil spill. Ground truth
labeling would require going to the area, collecting a sample of the material, and verifying
that it is indeed oil. Needless to say, when we use expert labeling, we need to remember
that experts do not always agree and may not always be right!

In some scientific domains, we also need to realize that the data we see may not
represent all aspects of an object. For example, in astronomy images, we are seeing a two-
dimensional projection of three-dimensional data. Thus, a real bent-double galaxy, when
viewed from the wrong angle, may appear to be non–bent-double. In such cases, there is
no way we can deduce from a visual analysis of a single image whether the galaxy is really
a bent-double galaxy. In other situations, such as video surveillance, it is possible to use
multiple cameras to resolve such issues.

Further, in scientific applications, as in some commercial applications, training sets
can be unbalanced, with a larger proportion of one type of objects than the other. Thus,
a training set may have a few positive examples which are very similar to each other,
and many negative examples, each of which is different from the positive examples in its
own way.

These issues with the quality and quantity of the training data can significantly influ-
ence the results of analysis in classification problems.

3.3 Characteristics of scientific data analysis
In addition to the common characteristics of the data, there are also common themes in the
types of analysis which are done using the data. These are determined more by what the
scientists want to do with the data, rather than the data themselves; they too determine the
tasks which should be included in the analysis process.
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In the simplest problems, the scientists may be interested in extracting statistics on
the data, such as the mean and standard deviation, to determine if the data are roughly what
they expect them to be. Such analysis is often done as a prelude to more complex analysis
to ensure that the data meet the basic requirements for their quality. It also allows obvious
problems, such as mislabeled variables, missing values, and variables with scientifically
meaningless values, to be addressed.

In some problems, the detection of outliers is done to check the data quality, while
in others, it is the main goal of the analysis. For example, scientists may be interested in
analyzing time series data from different sensors to identify anomalies. Depending on how
they interpret the anomaly, they can use the analysis results to prevent an untoward incident
or devote more resources to observe a rare event.

In other problems, the task may be to summarize the data. For example, we may want
to count the number of buildings in a satellite image, or the number of deformed cells in a
blood sample. This may be nontrivial as we first need to define what constitutes a building
or a deformed cell. We would also need to separate all cells from noncellular matter in
the blood sample. If the data have a time-varying component, we may need to generate
these summaries over time, observe how they change, and perhaps summarize the change.
The summaries may also involve the generation of distributions for various quantities of
interest, such as the sizes of buildings, or the heights and weights of children participating
in a health survey.

Sometimes, the scientists conduct an experimental or an observational study with the
intent of finding certain types of objects, such as bent-double galaxies, or certain behavior,
such as the presence of edge harmonic oscillations in tokamak plasma. In these problems,
we have examples of the objects or behavior of interest, and the task is to analyze all the
data to determine all occurrences of these objects or behavior. In other words, given a set
of objects of a certain type, we want to predict if a new object is of the same type as well.

A similar predictive task arises when a scientist wants to conduct an experiment, but
given the high cost of running the experiment, first performs many computer simulations
to understand what might happen in the experiment. This situation gives rise to many
analysis tasks. We may want to validate the simulations against the experiments, predict
what would be the outcome if the experiment was run under certain conditions, or based on
the experimental observations, refine the theory behind the simulations.

A more challenging problem arises when the analysis of a data set is done for reasons
other than its collection, or the scientist is just interested in finding what else is there in the
data without having a specific hypothesis in mind. So, they may want to know if there is a
natural grouping of the objects in the data, or if there are any outliers, which may indicate
something unusual.

One of the most difficult types of analysis involves understanding causality, where the
scientist is interested in determining if one fact, such as adding a particular element to steel,
results in another fact, such as improving the strength of the steel. The challenge arises as
many factors may contribute to the strength of steel, and careful analysis would be required
to ascertain that it is indeed the addition of a certain element at a certain stage of processing
that results in stronger steel.

There are two characteristics of analysis which are encountered more frequently in
the context of scientific data:

• Uncertainty quantification: In scientific problems, technical decisions are often
made based on the results of data mining. The consequences of an inaccurate decision
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can range from a loss of productivity to the life threatening. For example, an as-
tronomer may decide to allocate telescope time to studying a galaxy identified as
a possible bent-double galaxy. If the classification label is incorrect, it results in a
poor utilization of scarce telescope resources. On the other hand, if classification
determines a tumor to be benign when, in fact, it is not, the consequences can be far
more serious. Or, if a model built using streaming data from a physics instrument
determines that the incoming data are not predictive of an untoward incident, when
in fact, they are, then it may result in damage to the instrument.

Consequently, in many scientific domains, it is important to be able to evaluate how
much one can trust the results of data mining. This quantification of margins and
uncertainty can be rather difficult, especially as all steps in the processing of the data
must be taken into account. Though it is an important step, it is rarely done, even
in cases where the data quality is good. When the original data is of poor quality,
with associated uncertainties in the data themselves, the quantification of margins and
uncertainty becomes even more important and challenging.

• Ambiguity in problem definition: Problems in scientific data mining are not always
well defined. This is especially true when the goal of the analysis is scientific discov-
ery or when the phenomenon being analyzed is poorly understood. Sometimes, the
scientist may not know what will be found in the data. In other cases, the scientist may
have a theory or hypothesis but does not want it to influence what is found in the data.
This often leads to the analysis problems being poorly understood, and therefore,
poorly defined, with the scientist unable to provide answers with certainty when spe-
cific questions arise in the process of the analysis. This characteristic is not typically
observed in commercial data, where there is no ambiguity about whether a person is a
customer or not and no doubt about whether a customer bought a certain item or not.

This ambiguity in problem definition, and the lack of certainty in validating the results
of the application of an analysis algorithm can make scientific data mining very
challenging. It essentially implies that uncertainty and ambiguity are likely to be a key
component of the analysis process. Consequently, we must ensure that the analysis is
the result of a careful and considered application of various algorithms and choice of
parameters, and that the results not only are scientifically meaningful, but also reflect
the data, not the algorithm or the parameters. This often results in the analysis being
very iterative and interactive. Many different algorithms may need to be applied and
the results compared to each other to ensure consistency. Or, we may need to start
with an initial solution approach for a poorly defined problem, and refine it as required
during the analysis, perhaps even redefining one of the initial steps in the analysis.

3.4 Summary
In this chapter, I have described some of the common issues and themes which occur in
mining data from different scientific applications. Starting with a description of the data
types encountered in these applications, I have highlighted the common themes which
occur in scientific data analysis. I will use them to define the data mining process in the
next chapter, and the tasks which comprise this process will be discussed in further detail
in the rest of the book.
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3.5 Suggestions for further reading
An excellent source of additional information on the issues discussed in this chapter are the
domain scientists themselves. They frequently have the best understanding of the issues
which must be considered in analyzing their data. They, along with the information on the
Web pages which describe the instruments used, can be an invaluable resource in under-
standing the data and their characteristics. Further information on possible solutions to the
issues discussed are given in subsequent chapters of this book.



Chapter 4

The Scientific Data Mining
Process

“When I use a word,” Humpty Dumpty said, in rather a scornful tone,
“it means just what I choose it to mean—neither more nor less.”

—Lewis Carroll [87, p. 214]

In Chapter 2, I described various ways in which data mining was being applied to
science and engineering problems. Next, in Chapter 3, I identified common themes across
these diverse applications. In this chapter, I use these themes to describe an end-to-end
data mining process, including various tasks at each step of the process and the order in
which these tasks are usually performed to extract useful information from scientific data
sets. These tasks will be discussed in more detail in later chapters. I will also comment on
some overall characteristics of the data mining process and explain why I choose to define
the process in a manner which differs from the more commonly used definition of data
mining.

This chapter is organized as follows. Section 4.1 describes the end-to-end process of
scientific data mining, motivated by the applications in Chapter 2 and the common themes
identified in Chapter 3. Next, in Section 4.2, I make some general observations on the
process, followed in Section 4.3 by my rationale for defining the data mining process to be
broader than the common definition of the process. Section 4.4 concludes the chapter with
a brief summary.

4.1 The tasks in the scientific data mining process
The description of scientific data types in Section 3.1 and the observations about the low-
level nature of the raw scientific data discussed in Section 3.2.10 indicate that the raw data
cannot be input directly to pattern recognition algorithms. This suggests that the data must
first be preprocessed to bring it to a form suitable for pattern recognition. The common
themes discussed in Chapter 3 suggest the tasks that might comprise this preprocessing of
the data.

Figure 4.1 outlines one way in which these tasks might be incorporated into an end-
to-end data mining system for analyzing data from a science or engineering application.
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Figure 4.1. The end-to-end scientific data mining process.

Starting with the raw data in the form of images or meshes, we successively process these
data into more refined forms, enabling further processing of the data and the extraction of
relevant information. The terms, such as Raw data and Target data, used in Figure 4.1 are
somewhat generic and also used in the mining of commercial data, where they are used to
describe the process of Knowledge Discovery in Databases (KDD) [185]. In adapting this
process to scientific data sets, I have retained the basic framework, but changed the tasks
necessary to transform the data from one form to the next.

First, a few brief observations about the scientific data mining process; I will expand
on these observations later, but it is helpful to keep them in mind while reading this section.
The data mining process is essentially iterative and interactive—any one step can lead to the
refinement of previous steps and the domain scientists should be actively involved in each
step to validate the results. Not all of the tasks are needed in every problem and the order in
which the steps are performed may change from one problem to another. The tasks listed are
the ones I have found to be useful in many scientific applications; I am sure there are tasks
I have missed as they may be specific to a particular problem. Each task can be addressed
using several algorithms; these algorithms vary in their computational complexity, number
of input parameters, suitability to a problem, and robustness to input parameters.

I next describe each of the steps in the scientific data mining process in more detail,
followed by some general observations on the end-to-end process. I also discuss the ways
in which the approach outlined in this chapter differs from mining of commercial data sets
and the more traditional view of data mining as one step of the KDD process.

4.1.1 Transforming raw data into target data

The original or “raw” data which are provided for data mining often need extensive process-
ing before they can be input to a pattern recognition algorithm. These algorithms typically
require, as input, the objects (or data items) in the data set, with each object described by
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a set of features. Thus, we first need to identify the objects in the data and extract features
representing each object. In scientific data sets, the data may need to be processed before we
can even identify the objects in the data. These processing steps may include tasks such as:

• Data size reduction: One task that is very helpful in the initial processing is to reduce
the size of the data set. This is especially useful when the data set is very large and
we are trying to understand the problem, doing exploratory analysis, or trying out
different techniques for the various steps to determine a good solution approach. As
we have observed in Chapter 2, scientific applications can result in very large data
sets, and it is often helpful to first understand the data by working with a smaller
sample and doing some exploratory analysis.

One approach to reducing the size of the data is through sampling. During the initial
analysis, we can select a small sample randomly from the full data set. Later on, as
we begin formulating a solution approach, we need to increase the size of the data to
reflect the variability which may be present naturally in the data. This would enable
us to determine if the solution approach can handle this variability. Finally, most
scientific problems require that a full pass be made through the entire data set. If the
algorithms used in each task in the solution approach are robust enough, the final step
can be fully automated.

An alternative to sampling is to use multiresolution techniques, where we work with
coarse resolution data. This may often be desirable in problems where the data are
stored in a compressed form using an approach such as wavelets, which directly
gives us a lower-resolution version of the data. Thus, the initial processing during
the exploratory data analysis phase can be done on the lower-resolution data, with the
full-resolution data being used in later iterations of the analysis.

Of course, if the data set is massive, one can combine both the sampling and the
multiresolution approaches. These techniques for reducing the size of the data are
discussed further in Chapter 5.

• Data fusion: If the scientific data have been obtained from different sensors, they
must be fused before the complementary information in the different data can be
exploited. In the case of image data, the step of data fusion may include registration,
which is the process of aligning two images of a scene or object, taken at different
times or at different resolutions. For example, one frame of a video of a scene may
need to be registered with the frame taken the very next instant. This is because even
a stationary camera may move a little, resulting in successive frames of the video
being misaligned by a pixel or two. Or, satellite images, obtained to understand how
the vegetation in a region has changed over the years, must be registered so scientists
can map corresponding areas for change detection.

A different type of data fusion is required when the data are of different modalities,
for example, text and images, or video and audio. In this case, fusion may occur
at the feature level, where the different modalities of data each contribute features
describing an object. For example, a technical document may be represented by
text features representing the words in the document, image features representing the
images in the document, and other features representing the tables in the document.
We can also have fusion at the decision level, where each modality is processed
independently, and the final decision made by appropriately combining the decisions
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from the different modalities. In both these cases, the features or decision may be
appropriately weighted to account for the quality of data in each modality.

These issues of data fusion, including data registration, are discussed in more detail
in Chapter 6.

• Image enhancement: As we have observed, the presence of noise can make it
difficult to analyze the data. This is especially true in the case of images if the objects
of interest are occluded or not clearly separated from the background due to low
contrast; in such cases, it may be difficult to extract the objects from the image.

Though there are general techniques to reduce noise in images or improve their con-
trast, many of the techniques used are domain specific. This is because the noise
in the data may be due to domain effects, such as the sensor characteristics, or due
to external circumstances, such as atmospheric turbulence in astronomical data sets.
These noise characteristics may differ across images in a data set, making it difficult
to use fully automated techniques to remove the noise. Also, any processing to reduce
noise from an image can adversely affect the signal, and appropriate trade-offs may
be necessary to reduce the noise or improve the contrast, while minimizing the effect
on the signal.

Techniques for enhancing images are discussed further in Chapter 7.

4.1.2 Transforming target data into preprocessed data

Once the data have been reduced through sampling and/or multiresolution techniques,
complementary data sources have been fused, and the data enhanced to make it easier
to extract the objects of interest, potential next steps in the scientific data mining process
include:

• Object identification: Here, the objects of interest are identified in the data, for
example, by isolating the pixels which form a galaxy from the background. This step
is often time consuming for images and meshes as many different techniques may
need to be tried. In addition, depending on the quality of the data, the parameters used
in the algorithms may need to be changed, making completely automated analysis
difficult.

In some problems, the identification of objects may be relatively easy, for example, in
the case of a physics experiment where we are interested in classifying certain types
of events, an “object” may be the time window in which each event occurs. In other
problems, the objects may be poorly defined to the extent that defining the objects
of interest is one of the main goals of the data mining endeavor. For example, if the
physical phenomenon is poorly understood, the scientists may be unsure of what they
are looking for in the data. In other problems, the object of interest may evolve over
time, splitting and merging with other objects, making it difficult to have a single
definition of what constitutes an “object.” Or, the data structure used to store the data
may preclude easy identification of the object, for example, in an unstructured mesh.
In addition, if the data have been generated using a parallel computer, they may be
distributed over several files, making it difficult to identify an object split across many
files.
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Techniques for object identification, especially for images and meshes, are discussed
further in Chapter 8.

• Feature extraction: As observed earlier, the word “feature” is used to imply different
things in different domains. In this book, I use “feature” to mean any low-level
attribute or measurement which can be extracted from the data. Features are typically
used to represent the objects in the data and are extracted after the objects have been
identified. These features are then used in the pattern recognition step.

The features extracted for an object are usually scale-, rotation-, and translation-
invariant. This is because the patterns in the data usually remain unchanged when
they are scaled, rotated, or translated. For a feature to be useful, it must be robust,
that is, it must be insensitive to small changes in the data. Often, we may need to try
different ways of extracting the same feature as some techniques may yield features
which are more consistent across the objects of interest.

In addition to features representing the objects themselves, we frequently need to
include “housekeeping” features for each object. These represent the metadata and
include information such as the image in which the object was found, the location of
the object in the image, the resolution of the image, and so on.

The features which are extracted for an object are very dependent on the patterns
of interest. For example, if the pattern reflects the shape of an object, then various
shape-based features should be extracted. Often, it helps to extract features reflecting
different properties of an object such as shape, texture, and statistical distributions of
intensities, as it may not be obvious at first which type of feature is likely to be most
discriminating for the pattern recognition task at hand.

Different types of features are discussed further in Chapter 9.

• Normalization and cleanup of features: Once we have identified the objects in the
data, and extracted features representing the objects, as well as features representing
the metadata for the objects, then we have a data item (or object) by feature matrix
representing the data set. Each data item in this matrix is described by its feature
vector. It is often helpful to process these features to ensure they are consistent and
accurately represent the data. For example, the features may need to be normalized
as the units corresponding to some features may make them appear more important
than other features. This normalization may need to take into account the number of
features corresponding to each feature type, for example, the number of Gabor texture
features may be much larger than the number of features representing the histogram
of the intensity of the pixels in the object.

In addition to normalization, we should check that the features representing an object
are valid and complete. For example, features may be missing because a sensor
was inoperational. Or, feature values may be outliers and may not have a physical
meaning due to inaccuracies in the collection or the input of the data values. Such
features must be appropriately processed else they may adversely affect the step of
pattern recognition. Techniques for doing this are discussed further in Chapter 9.
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4.1.3 Converting preprocessed data into transformed data

Once the initial steps of preprocessing have been applied to the raw data, the objects in
the data identified, and features representing them extracted, we have a matrix where the
rows represent the data items or objects and the columns represent the features. We could
also have considered the rows to be the features and the columns to be the objects, but
in this book, we will focus on the data item by feature matrix. In the initial stages of the
analysis, we may not consider all the objects, but only those found in the subset of data being
analyzed. In addition, we may often extract far more features than necessary to represent
each object, as we may not know which features are the most discriminating. These features
may number in the tens or even the hundreds or thousands.

Reducing the number of features representing each object is an important step prior
to pattern recognition. There are several reasons why this can be helpful:

• Some of the pattern recognition tasks (such as finding nearest neighbors or classifica-
tion) can be considered to be a search through a high-dimensional space, where the
dimension is the number of features. For example, in classification, we need to find
the hyperplanes which separate, say the positive examples from the negative ones. If
each example, or data item, is represented by many features, trying to determine the
appropriate hyperplanes can be difficult. The curse of dimensionality, as observed by
Bellman [31], indicates that in the absence of simplifying assumptions, the sample
size needed to estimate a function of several variables to a given degree of accuracy
grows exponentially with the number of variables. In scientific data, where train-
ing sets are usually generated manually, large sample sizes may not be an option in
classification problems.

• Some of the features extracted to represent an object may be irrelevant (such as
the location in the file from which the object was extracted), while others may not be
discriminating enough (such as the color feature in a sample of all red objects). While
the former may be necessary for identifying where an object came from, we could
save on computational time by not extracting features unless they are discriminating
enough. However, this assumes that the initial sample of data is representative enough
so that a feature, once discarded, does not turn out to be discriminating when the entire
data set is considered.

• Reducing the number of features may improve the ability to visualize or interpret
the patterns in the data. If the number of features is reduced to a small number, say
3–10, it may be possible to use techniques such as three-dimensional visualization or
parallel plots (see Chapter 12) to understand how the data items are grouped together
based on the features.

• By reducing the number of features, we can reduce both the computational time and
the memory requirements of the pattern recognition algorithms which are applied
subsequent to the dimension reduction.

• In some scientific domains, the features extracted from the images or meshes may be
stored in databases. Efficient indexing schemes for retrieval of these data are feasible
when the number of dimensions is 8–12 (see [209, 177]). Dimension reduction would
therefore provide more efficient access to the feature data for analysis.
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There are several ways in which the number of features representing an object can be
reduced. These include both techniques which transform the data into a lower-dimensional
space as well as techniques which select a subset of the features. I will discuss these
techniques in more detail in Chapter 10.

4.1.4 Converting transformed data into patterns

Once the data items are represented by a possibly reduced set of features, we can use this
transformed data to identify patterns. Depending on the problem, this identification of
patterns can take several forms, including:

• Classification and regression: If we have a class label associated with each data
item, that is, we have a training set, we can use it to build a model of the data which
separates one class label from another. There are several classification algorithms,
each of which builds a different type of model, and each with its pros and cons. If the
label is continuous instead of discrete, the problem can be addressed using regression
techniques.

• Clustering: If there are no class labels associated with the objects, then we can use
clustering techniques to group the objects based on their similarity in feature space.
The objects in each cluster are then analyzed to determine what characteristics brought
them together.

• Information retrieval: A related task is to retrieve objects which are similar to a
query object. This can be done by identifying objects which are close to the query
in feature space. If the features are an accurate representation of the objects, then
objects which are close to the query in feature space are likely to be similar to it.

• Outlier or anomaly detection: In some problems, we may be interested in identifying
the data items which are anomalous; that is, they do not belong with the rest of the
items. Such problems typically arise in streaming data, where near-real-time analysis
is required.

• Association rules: These techniques are popular in commercial data in the context
of market basket analysis where they are used to determine the types of items which
are often bought together. Association rules are just making inroads into scientific
data mining in domains such as bioinformatics.

• Tracking: In spatiotemporal data, the features associated with an object, such as its
size and location, can be used to track the object from one time step to the next.

Scientific problems often have characteristics which can make the direct application
of various pattern recognition techniques a challenge. I will discuss these in more detail in
Chapter 11.

4.1.5 Converting patterns into knowledge

Once the patterns in the data have been identified, they must be visualized and presented to
the scientist for validation. This may result in the iterative refinement of one or more of the
steps in the data mining process.
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This visual display of the results has to be done with care to maintain any relationships
between the objects. This can be difficult when the objects are in a high-dimensional space
and they have to be projected into two or three dimensions for display. Another problem
arises when the size of the data set is so large that a typical display is insufficient.

This visual display of information is not restricted to just the final step in the data
mining process. In fact, it is often useful to apply the same techniques for information
visualization during the initial exploratory analysis of the data and in evaluating the results
from the intermediate steps. Such validation can often yield important insights into the
data and suggest appropriate solution approaches for the next steps. I will elaborate on the
visualization and validation of results in Chapter 12.

4.2 General observations about the scientific data mining
process

In Section 4.1, I briefly described the various tasks which comprise the overall process of
scientific data mining. Next, I make some general observations about the process of mining
science and engineering data.

• The data flow diagram presented in Figure 4.1 is one that I have found to cover the
needs of many of the scientific applications I have encountered. It is by no means
the only approach to the analysis of scientific data sets; variations and enhancements
may be necessary as required by an application. For example, the order in which the
tasks are done may change from one application to another. Depending on the quality
of the data, it may be necessary to enhance image data from different sensors before
fusing them as the enhancement may make the fusion algorithms less sensitive to the
setting of the parameters. Also, not all tasks may be necessary in all applications;
for example, denoising data is not a key part of the analysis of data from computer
simulations, but is often required for experimental data. Tasks in addition to the ones
described in Section 4.1 may be required as appropriate for specific problems, for
example, to incorporate domain-specific information.

• The data size shrinks as we move to the right from the raw data to the patterns
identified in the data. The raw data may be in the form of images, while the pattern
may be a simple model in the form of a decision tree, which can be used to label
the objects in the images. If the original data are being processed using a parallel
computer, then the shrinking of the data size would imply that it would be inefficient
to use the same number of processors throughout the implementation of the entire
process. In addition, there could also be issues of load balancing. For example, if
we are analyzing image data, each processor could work on a subset of images. The
denoising and enhancement of the images, as well as the identification of the objects in
the images, could be done in parallel. However, if some images had far more objects
than others, the processors working on those images would have more work to do in
the feature extraction step than the processors working on images with few objects.
Further, if more than one processor is processing a single image, some processors
may have no objects in their subimage, while other processors may have many. An
object could also be split between the subimages assigned to different processors,
requiring appropriate merging of the processed data.
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• The scientific data mining process is very interactive. The domain scientists are
involved in every step, starting with the initial, perhaps tentative, formulation of the
problem to providing information on the noise characteristics of the sensors for use
in enhancing the data, validating the objects identified in the data, identifying robust
ways of calculating the features for the objects, selecting features which may or may
not be relevant to the problem, and most importantly, validating the results obtained
at each step.

The scientific data mining process is also an iterative process. The results of any one
step may indicate that a previous step needs to be refined. For example, identification
of the objects in image data may indicate that the noise in the images has to be reduced
further in order to separate an object from the background. Or, the step of pattern
recognition may indicate that some features which are key to discrimination are not ro-
tation invariant and therefore objects which are rotated versions of objects in the train-
ing set are not being labeled correctly. Or, the error rate of the pattern recognition step
could be high, indicating that the features extracted are not representative enough of
the patterns being considered or that the quality of the training data could be improved.

If the data set is very large, a practical approach to analyzing it might require working
initially with a small subset of the data, processing these data using the initial steps of
Figure 4.1, and when a set of algorithms is found to work, processing additional data to
see if the quality of the results still hold and if it is possible to proceed further along the
analysis pipeline. If the initial sample is not representative enough, the new data added
may indicate a different choice of algorithms or parameter setting for the algorithms.

• The tasks in Figure 4.1 can be implemented using several algorithms. For example,
there are several ways of reducing noise in image data and several different classifi-
cation algorithms to create a model given the training data. These algorithms differ in
their suitability to a problem, the assumptions they make about the data, their compu-
tational complexity, the accuracy of the results, their robustness to input parameters,
and their interpretability. Often, several algorithms may need to be tried before one
suitable for the data and problem is found. In some cases, we may even need to design
algorithms which are tuned to the characteristics of the data or problem.

• Each task in the process described in Figure 4.1 generates some output which can be
directly input to the next step. However, it is often advantageous to save the results
which are output at each step. It allows us to experiment with different algorithms
for a step without having to repeat all the previous steps. Also, if new data become
available, they can easily be incorporated into the process by repeating only the steps
which are absolutely necessary, without processing all the data twice. Saving inter-
mediate data essentially makes it easier to handle the iterative nature of the scientific
data mining process.

4.3 Defining scientific data mining: The rationale
As I discussed in Chapter 1, there are several definitions of data mining, with some consid-
ering it to be one of the steps in the Knowledge Discovery in Databases (KDD) process in
which patterns are extracted from data, and others considering it to be the overall process of
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extracting useful information from data. When this data arises from science and engineer-
ing applications, it is clear that we cannot analyze the data by directly applying algorithms
which extract patterns from this data.

As we have seen in Chapter 2, the data in many scientific applications are in the form
of images or mesh data from simulations, where the values of the variables are available at
each pixel or mesh point. However, we are interested in patterns among the objects in the
data, objects which are at a higher level, for example a galaxy in an astronomical image,
where the galaxy is a collection of pixels. Going from the data at the level of pixels, or mesh
points, to data which are suitable for pattern recognition, is a very time-consuming process,
involving trial and error. As I have described in this chapter, there are several tasks which
must be performed before the data are ready for pattern recognition. In many problems,
these tasks typically take 80–90% of the total time spent in analyzing the data. Often, the
quality of the final results is very dependent on the quality of the initial preprocessing.
Further, these tasks provide the means of obtaining input from the domain experts, input
which is key not only to understanding the problem, but also solving it. For these reasons,
I consider data mining to be the overall process of extracting information from data, not
just one step in the KDD process. Of course, one might also say that for many scientific
applications, the data are not stored in databases, and the term KDD might not be applicable
in the strictest sense of the term.

4.4 Summary
In this chapter, I have described the tasks involved in a typical end-to-end process for the
analysis of scientific data sets, where one starts with the raw data in the form of images or
meshes and extracts useful information. The process may involve all or some of the follow-
ing tasks: sampling, multiresolution, data fusion, object identification, feature extraction,
dimension reduction, pattern recognition, visualization, and validation. I shall describe how
we can accomplish these tasks in the next several chapters. I start by describing ways in
which we can reduce the size of the data to make the initial exploratory analysis feasible
for massive data sets.



Chapter 5

Reducing the Size of the Data

I have no data yet. It is a capital mistake to theorise before one has data.
Insensibly one begins to twist facts to suit theories, instead of theories to
suit facts.

—Sherlock Holmes [160, p. 3]

In many of the early steps of the scientific data mining process, we may be faced with
the prospect of a very large data set, where it may not be possible to view the entire data set
all at once. This occurs frequently in the case of three-dimensional simulation data, where
many variables are output for each grid point, or in analysis of images, say from remote
sensing, where the high-resolution, hyperspectral data sets can be very large. This can be
overwhelming as it is difficult to decide how best to proceed with the analysis. One solution
to this challenge is to work with data that are a subset of the full data yet reflect almost
all of the characteristics of the full data. Such a subset can then be used to determine an
appropriate solution approach or to choose the parameters for an algorithm. Alternatively,
one can consider a “coarse” version of the data, where the fine-scale structure has been lost,
but the data size has been reduced to make it easier to manipulate. I next discuss both these
approaches to reducing the size of the data.

This chapter is organized as follows. First, in Section 5.1, I describe ways in which
we can sample a data set to identify a smaller subset. There are different ways in which
this can be done, depending on our goals. Next, in Section 5.2, I describe multiresolution
techniques which are rather effective in images for viewing the data at a coarser resolution.
Finally, Section 5.3 provides a summary of the chapter and Section 5.4 provides suggestions
for further reading.

5.1 Sampling
One approach to reducing the size of the data is to work with a smaller sample of them. How
one samples the data is often dependent on how the sample will be used. In the following,
we assume that the data have already been generated; the issue of sampling to generate the
data is beyond the scope of this book. However, at the end of this section, I briefly mention
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some techniques which are useful for increasing the coverage of the data generated and thus
can be used in analysis for increasing the size of the sample being analyzed.

There are several stages in the scientific data mining process where we may need to
sample the data. These include:

• Sampling for exploratory analysis: When we first encounter a data analysis prob-
lem, one of the initial tasks is to look at the data to try to understand both the data
and the problem which needs to be addressed. This exploratory analysis can be done
using the techniques for visualization described in Chapter 12. However, such ex-
ploratory analysis is not restricted to just the beginning of the scientific data mining
process. It can be used after any step in the process. Suppose we have completed the
step of image denoising; we then need to look at the output of this step to determine
which class of algorithms would be the most suitable for the next step of identifying
objects in the denoised images. Exploratory analysis could indicate if gradient-based
methods are appropriate or if region-growing techniques would be a better choice. It
could also help confirm that the results from the denoising step are what we expected.
At this stage, we are not quite ready to start applying various algorithms and selecting
parameters; rather, the intent is to become more familiar with the data and identify
possible solution approaches.

In problems where the data set is small, say a handful of moderate-sized images, or
the domain scientist has already isolated an initial representative subset, then there is
no need to do any sampling in support of the exploratory analysis. However, if the
data set is very large, then it makes sense to select a smaller sample for this analysis.

If nothing much is known about the data set, as may sometimes be the case, one
approach is to randomly select a smaller subset. For example, if the data set is a
large number of small- to moderate-sized images, we can start by first selecting some
images randomly and then gradually increasing the size of the sample until we have
some idea of what is in the data, and we can proceed to the next step of proposing a
solution approach. If, however, the data are a collection of rather large images, we
may start by selecting one at random, splitting it into smaller subimages which can
be viewed easily, then selecting another image at random, splitting it into subimages,
and so on.

If the data have both a spatial and a temporal component to them, then the sampling
should be done in both space and time. A straightforward approach would be to
use systematic sampling where we select samples which are equispaced in time.
However, in some domains, where scientists have some idea of the rate at which a
phenomenon evolves, we may use samples which are equispaced in log time or use
other alternatives suggested by the scientist.

• Sampling to identify a solution approach: Once we have had a chance to look at
a sample of the data, the next task is to select a sample to use in trying out different
solution approaches to the problem. Our goal is to identify algorithms and parameter
settings which will work well across the full data set. This means that our sample
must reflect the diversity of the data. For example, if some, but not all, of the images
in our data set have low contrast, then, ideally, such low-contrast images should be in
our sample so that we know that we need to include contrast enhancement as one of
the steps in the analysis. Or, if our task is to classify objects into one of five classes,
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then, we must have a few examples from each of the classes so that we can try to
identify features which can be used to discriminate among the classes.

If the sample of the data used earlier in the exploratory analysis phase is diverse
enough, it may be the starting point for the data subset used to test the solution
approaches. It is, of course, difficult to tell when our sample reflects the true diversity
of the data, especially, when we first start analyzing the data.

One approach is to keep increasing the size of the sample, and evaluating our algo-
rithms on the sample, until we have an indication that some of the items in the current
sample have characteristics which we had not accounted for earlier. For example,
suppose the first sample from a set of images is such that all have good contrast,
so we proceed to apply a gradient-based edge detector to identify the objects in the
images. However, when we increase the sample size, we find that the results of the
edge detector in some of the images is less than satisfactory. Upon investigation, we
find that these images have low contrast. To address this, we can include a contrast
enhancement step prior to the edge detection. If the results are still not satisfactory,
we may need to not only include a contrast enhancement step, but also select a dif-
ferent algorithm for identifying the objects as well. It is issues like this which make
the process of scientific data mining very iterative and interactive, with the steps in
the process being refined as ever larger subsets of the data are analyzed.

Iterative techniques for selecting a representative sample size can also be used in some
of the later steps. For example, Fayyad and Smyth [187] discuss how random sampling
to generate models in clustering can cause problems in the detection of new classes
which occur with low probability in the data. They suggest an iterative sampling
scheme which progressively refines the sample selected by considering the outliers.

Sampling to select a representative set is never trivial. However, in scientific data
mining, especially when the data are poorly understood, or the data were collected for
the purpose of scientific discovery, one must be exceptionally careful in using sam-
pling approaches, lest the item of interest be ignored altogether. Often, the outliers
contribute more to the analysis; they enable a better choice of algorithms and param-
eters and also enhance the scientific discovery process by indicating the presence of
something unusual in the data.

• Sampling in classification: Another area where sampling plays a role is in the cre-
ation of a training set for use in classification algorithms (see Section 11.2). If the
training set is generated manually, it is likely to be quite small. In such cases, the issue
of sampling may not arise, though the considerations used in sampling are helpful in
increasing the size of the training set.

Suppose we are fortunate to have a large set of labeled examples and, for the sake
of efficiency, we need to select a sample for use in classification. One approach is to
select the sample randomly. However, to ensure that we have enough examples from
each of the classes, especially the minority class, we may prefer stratified sampling.
Here, the items are divided into groups according to their class label and we select an
equal number of items randomly from each of the classes. This ensures that all the
classes are adequately represented. However, it may be the case that the full data set
does not have enough items of the minority class, or there is not enough variation in
these items to provide a good representation of the minority class in the training data.
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Such problems have to be addressed in other ways, for example, by working with the
domain scientists to identify additional examples of the minority class.

Another issue in creating the training set is the size of the sample. This can be a
difficult question to address as the answer is usually dependent on the data set, the
accuracy required from the classifier, how widely separated the items are from the
different classes, how many features are used to represent each item, and so on. A
rough rule of thumb is to have 5–10 times more items per class than features [613].
Since scientific data are often of a high dimension, and the training sets generated
manually, it may be difficult to meet this requirement.

The evaluation of classification algorithms is usually done by calculating the cross-
validation error using the training, evaluation, and test data sets. Section 11.2.7
describes the issues which must be considered when we sample the data set to form
the training set, the evaluation set, and the test set.

Sampling appears to be a relatively simple task, but if not done correctly, it can have a
profound effect on the results of subsequent processing. Hence, the results of analysis done
using a sample of the data must be interpreted with care; one must always be aware that the
results may reflect the sample or the sampling technique rather than the actual population
from which the sample was obtained.

Sampling techniques also play a role in the generation of the data themselves and
form an integral part of the field referred to as the design of experiments or experimental
design. These experiments can be either physical or computational [437, 180]. Though the
generation of data is outside the scope of this book, the approaches used to ensure a good
coverage of the data during its generation are also relevant in selecting a good representative
sample. For example, if we are collecting soil samples from a certain region, it does not
make sense to collect many samples from a small subregion, where the samples are likely
to be very similar and not necessarily representative of the whole region. Common sense
would dictate that we collect samples from several subregions; the more diverse, the better.
The process of deciding the next sample to be collected, based on the samples collected
thus far, is called adaptive sampling [584]. The idea is to use the characteristics of the
samples collected so far, and our knowledge of the population, to collect the next set of
samples so that the combined set of samples is more representative of the population as
a whole. As a side benefit, this may also give us a better idea of the variables in the
population other than the variable of interest. The idea of adaptive sampling is also related
to active learning in classification (see Section 11.2.7) and to adaptive mesh refinement in
computational science, where a mesh is refined more in regions where the function being
studied is changing rapidly. Both these techniques try to address the question of what is the
next point we should consider so that the addition of this point maximizes what we learn
about the function being modeled.

5.2 Multiresolution techniques
A different approach to reducing the size of the data is through multiresolution techniques.
The scale, or resolution, of an image is a concept which is exploited in several steps of
the scientific data mining process. It is easier to explain the concept in terms of an image,
though the idea also occurs in one-dimensional signals as well as two- and three-dimensional
simulation data. When we view a scene, we tend to perceive it in several different ways.
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(a)

(b)

(c)

(d)

Figure 5.1. Notion of scale in a one-dimensional signal: (a) Original signal with
fine-scale structure in two regions. (b) through (d) The original curve smoothed using
Gaussians of σ = 1.0, 2.0, and 3.0. The larger the value of σ , the larger is the structure
which is smoothed away.

First, we may see a forest, with several trees, and as we get closer, we may recognize
different types of trees, and finally, see the characteristic shapes of the leaves in each tree,
and maybe some insects on the leaves. If our task is to classify the trees in the forest based
on, say, the shape of the leaves and other characteristics, then a certain level of fine-scale
detail is necessary. The very fine details, such as the cellular structure of the leaves, are
irrelevant, and the insects on the leaves can be considered as noise. If, on the other hand, we
are interested in the approximate size of the forest, then the fine-scale details of the leaves,
or even the type of trees, are unimportant. This level of detail in the data is referred to as
the scale or the resolution of the data.

Consider the one-dimensional signal shown in Figure 5.1(a). It is a smooth curve,
with two regions where there is some fine-scale structure, with the region on the left having
a finer-scale structure than the region on the right. When this curve is smoothed with a
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Figure 5.2. A pyramid structure, with the finest scale image of size 8×8 shown at
the bottom. At each level, the image is reduced in size by a factor of 2 in each dimension,
with a 4×4 image at the second level, a 2×2 image at the third level, and a single pixel at
the top of the pyramid.

Gaussian (see Section 7.2.1) of σ = 1.0, it yields the curve (b); smoothing with Gaussians
of σ = 2.0 and σ = 3.0 yields the curves in panels (c) and (d), respectively. As the curve is
smoothed, the fine-scale structure is removed from it. The larger the σ , the larger the scale
of the structure which is smoothed away. Note that in the curve (d), the very–fine-scale
structure in the left region is smoothed away, while some remnants of the fine-scale structure
in the right region remain.

One of the key steps in exploiting the different scales present in an image is to first
decompose it into these scales. There are several different types of multiresolution decom-
positions. These essentially build a pyramid structure, which has the finest scale image at
the bottom and successively coarser images at the higher levels of the pyramid, as shown in
Figure 5.2. As subsampling is often used to represent the coarser levels, when the images
are stacked one on top of the other, they have a pyramid structure—hence the name. There
are three commonly used multiscale decompositions for one-, two-, and three-dimensional
images (or data with regular spacing), as discussed next.

• Gaussian pyramid: Here, each coarser resolution level is obtained by first convolv-
ing the image with a Gaussian (see Section 7.2.1) and then subsampling by a factor
of two in each dimension. The Gaussian smoothing essentially acts as a low-pass
filter, smoothing the fine-scale structure, that is, the high-frequency components, in
the image. The width of the Gaussian determines the scale of the structures which
are smoothed—the larger the width, the larger the size of the structures which are
smoothed away, as shown in Figure 5.1. By reducing the size of the image by two
in each dimension, and then applying the constant width Gaussian to the resulting
image, we are essentially smoothing away structures which were twice as large in the
previous level of the pyramid.
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The idea behind the Gaussian pyramid is useful in several tasks in the scientific data
mining process. For example, it is used in the Marr–Hildreth and the Canny edge
detection techniques (see Section 8.1) where the image is first smoothed using Gaus-
sians at several different widths. The intent is to smooth away the high-frequency
components in the image, which are typically the noise or the very–fine-scale struc-
ture. As a result, the edge image is not cluttered by the small edges corresponding
to these structures. This allows us to identify the “salient” edges, or the edges which
persist across several scales and are thus considered as the ones which are important
in the image. The Gaussian pyramid is also important in scale-space theory [382]
where it is used to focus on the salient parts of the image. The idea of using smoothing
by Gaussians of different widths is also part of the Retinex technique for removing
multiplicative noise from images (see Section 7.2.4).

• Laplacian pyramid: The Laplacian pyramid [76] is closely related to the Gaussian
pyramid. Instead of considering the Gaussian-smoothed and subsampled image at
each level, we consider the difference between the image from the previous level
and the Gaussian-smoothed version at the current level. Thus, if I0 is the original
image and I1 is the Gaussian-smoothed image, then the base of the pyramid is the
image (I0 −I1). This difference image is referred to as the detail image at level 0 as it
contains the high-frequency or detail components. Next, I1 is subsampled to create I ′

1,
which is the coarse image at level 1. The next level in the pyramid is then created by
obtaining the detail image at level 1, which is (I ′

1 −I ′
2), where I ′

2 is I ′
1 convolved with

the Gaussian. I ′
2 is then subsampled to yield the coarse image corresponding to level 2,

and so on. Note that given the coarse image at level 1 and the detail image at level 0,
we can reconstruct the original image using interpolation (upsampling followed by a
low-pass filter) on the coarse image and adding the result to the detail image. This
approach can be applied recursively to the coarse image at the top level of the pyramid
and the detail image at the next lower level to yield the coarse image at the lower
level, until we finally reconstruct the original image.

The Laplacian pyramid is a simple approach to compressing images without visible
distortion. It is also useful in progressive transmission of images, where an initial
coarse version of the image is transmitted first (using the coarsest level of the pyramid).
The image is successively refined by transmitting the information in the lower levels
of the pyramid, which is used to reconstruct an improved image by using interpolation.
The transmission can be stopped at any time if the user recognizes the image or realizes
that it is not of interest. This idea of progressive transmission is important in remote
viewing of large-size images as it allows a user to explore large data sets without
using expensive bandwidth transferring bits, which may not really be useful.

Further, since the coarse version retains all the significant characteristics of the original
image, we can use the Laplacian pyramid as a way of reducing the size of the data
during the process of visual exploration. The computations involved in generating the
pyramid are simple and fast, making the Laplacian pyramid well suited for browsing
through image data sets quickly by allowing views of the data at a coarse resolution.

The idea behind the Laplacian pyramid is also exploited in the creation of the Scale-
Invariant Feature Transform (SIFT) regions (see Section 8.3.3).

• Wavelets: Wavelets are more sophisticated decomposition schemes. Like the Lapla-
cian pyramid, the image is decomposed into a series of subimages at ever coarser
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resolution. However, unlike the Laplacian, which represents an image of size n×m

using ≈ 4/3 n × m pixels, the wavelet transform is not an overcomplete trans-
form [439].

The theory behind wavelets is rather mathematical. Several authors have provided
simple and intuitive approaches to understanding the core ideas behind wavelets, in-
cluding Hubbard [280]; Stollnitz, DeRose, and Salesin [568]; and Burrus, Gopinath,
and Guo [75]. A good reference for practical implementation issues is the text by
Wickerhauser [625]. Wavelets are also closely related to filter banks in signal pro-
cessing literature [599]. I next briefly describe the algorithm behind wavelets using
a one-dimensional signal.

There are two aspects to the implementation of wavelets—the decomposition of the
signal to give the coarse representation, also referred to as the analysis step, and
the reconstruction of the signal from the coarse representation, also referred to as
the synthesis step. In the analysis step, the signal is first decomposed into its high-
and low-frequency components using a high-pass and a low-pass filter, HH and HL,
respectively. Each of these components is then subsampled by a factor of two to
yield the next coarse level in the wavelet representation. The values in the high-
frequency component are referred to as the detail coefficients, while the values in the
low-frequency component are referred to as the smooth coefficients. The next level
of the wavelet transform is generated by applying the high- and low-pass filters to the
smooth coefficients from the previous level.

The synthesis step reverses the computations and allows us to reconstruct the signal
from its decomposition. First, the low- and high-frequency components at level i are
upsampled. Then, the corresponding low- and high-frequency synthesis filters are
applied to each and the resulting signals summed to get the component at the next
level of finer resolution, i −1.

There are several standard analysis and synthesis filters, ranging from the very
simple Haar wavelets to the more complex Daublets, symmlets, and Coiflets [67].
For example, the unnormalized low-pass and high-pass analysis filters for the Haar
wavelet are

HL = 1

2
[1 1] and HH = 1

2
[1 −1] . (5.1)

The corresponding low-pass and high-pass synthesis filters are

HL = [1 1] and HH = [1 −1] . (5.2)

The normalized filter coefficients for the analysis and synthesis filters are identical:

HL = 1√
2

[1 1] and HH = 1√
2

[1 −1] . (5.3)

Figure 5.3 shows a continuous dotted curve represented using 64 discrete intervals.
Coarser representations using 32, 16, and 8 intervals are shown on the left, while the
corresponding detail coefficients are shown in the right column. These were obtained
using the unnormalized Haar low-pass and high-pass analysis filters, respectively.
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Figure 5.3. Representing a curve using the unnormalized Haar wavelet. Top row:
the original curve (dashed line) and its discrete representation using 64 values. The left
column in rows two through four shows the smooth representation using 32, 16, and 8 values.
The right column shows the corresponding detail coefficients. All the smooth coefficients are
shown using the same scale, which is different from the scale used for showing all the detail
coefficients. Note that the detail coefficients are larger in value at the coarser resolutions
than at the finer resolutions.
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All the detail coefficients are shown using the same scale; this scale is different from
the single scale used for displaying the smooth coefficients. In areas of the curve
which are nearly flat, the detail coefficients are small, as would be expected based on
the high-pass filter. This would imply that if we drop the detail coefficients with small
values by setting them to zero, we can reconstruct an approximation to the original
curve with relatively little error.

When the wavelet analysis filters are applied to two- or three-dimensional images, the
computations are very similar. For a two-dimensional image, we apply the filters first
along the rows of the image, followed by subsampling of the rows, and then along
the columns, followed by subsampling of the columns. With the low- and high-pass
filters, this gives rise to four subimages, corresponding to filtering by HLL, HHH ,
HLH , and HHL, where the first subscript indicates the filter applied along the rows,
and the second subscript indicates the filter applied along the columns. These four
subband images correspond, respectively, to the coarse image, the diagonal detail, the
vertical detail, and the horizontal detail in the image. As in the one-dimensional case,
the filters can be recursively applied to the coarse image at any resolution to give the
smooth image at the next coarser level and the corresponding detail images.

The wavelet transform, though a complete representation of the data, is not translation
invariant. If, however, we skip the step of subsampling, we obtain the undecimated
transform, which results in k × n × m coefficients for an n × m image and k mul-
tiresolution levels. Further details regarding the translation invariant, undecimated
transforms are available in [540, 66]. The representation with subsampling is also
referred to as the decimated wavelet transform.

Wavelets are useful in several tasks in the scientific data mining process. Their
multiresolution properties allow them to be used for initial exploration of the data
through the viewing of coarse versions of large images. They have also been used in
progressive transmission of astronomical images [624], in image registration [377]
(see Section 6.4), in image denoising (see Section 7.2.1), in representing texture
features (see Section 9.4), and in reducing the dimensionality of time series data (see
Section 10.4).

Based on the discussion so far, it is tempting to create a multiresolution pyramid by
simply averaging pixel values over a 2 × 2 neighborhood of the pixel values at the finer
scale. However, this is not recommended as it can lead to severe aliasing problems [382].

5.3 Summary
In this chapter, I focused on ways we can reduce the size of the data to make the analysis
more manageable. Of course, eventually, we do have to analyze all the data. However, when
faced with analyzing a massive data set measuring in terabytes, it is often helpful to make
the problem tractable by reducing its size, especially in the initial exploratory phase. We can
either use sampling techniques and work with a smaller subset of the data or use multires-
olution techniques to create a coarser-resolution version of the data. These approaches are
useful in other steps of the scientific data mining process as well. For example, sampling is
used in the creation of a training set for classification, or a sample of a large data set is used
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in clustering to make the process more computationally efficient. Further, multiresolution
techniques are used in denoising, feature extraction, and scale-space analysis.

In the next chapter, I will discuss another step in the initial phase of scientific data
mining, namely, data fusion. If we have data from several different sensors, at different
resolutions, it is often useful to try to combine the data available so that we can exploit the
complementary information in the various data sources.

5.4 Suggestions for further reading
Sampling is a subject which has been studied extensively in statistics; texts of further
interest include the books by Lohr [388] and Thompson [583]. In addition, as massive data
sets become the norm, practical approaches to sampling are discussed in various journals
in computer science, data management, and data mining. In the area of multiresolution
techniques, the subject of wavelets and related techniques is one of active research. An
easy-to-understand introduction to wavelets is given in the books by Hubbard [280] and
by Stollnitz, DeRose, and Salesin [568] in the context of computer graphics. The latest
developments in the field can be found in various journals in image and signal processing.





Chapter 6

Fusing Different Data
Modalities

Live with the data before you plunge into modeling.

—Leo Breiman [60, p. 201]

In the previous chapter, I described ways we might reduce the size of the data through
techniques such as sampling and multiresolution analysis. These approaches can be used
in several of the steps in the scientific data mining process, but they are especially helpful
in the early exploratory phases when the data sets are extremely large. In this chapter, we
consider a different aspect of scientific data mining which too must be addressed at the
beginning of the analysis process, namely, the availability of data from several different
sources and the appropriate ways in which we can use these data to improve the analysis.

In many scientific problems, we have access to different modalities of data. For
example, in medicine, we may have both magnetic resonance imaging (MRI) scans as
well as positron emission tomography (PET) scans for a patient. Or, in remote sensing,
we may have multispectral satellite imagery, where each image has four bands covering
the red, green, blue, and near-infrared frequencies. Given the diversity of sensors which
are becoming available, such multimodal sources of data are rapidly becoming the norm
in many scientific domains. In such cases, it makes sense to exploit the complementary
information in all these different modalities to improve both the analysis and the decision-
making process. This process of combining data from different sensors is referred to as data
fusion.

This chapter is organized as follows. First, in Section 6.1, I describe the many reasons
why we might want to combine data from different sensors. Next, in Section 6.2, I describe
the different levels at which we can combine information from these sensors. These are
the sensor level, the feature level, and the decision level. Sections 6.3 through 6.5 describe
the techniques used in these levels in more detail. Section 6.6 provides a summary of the
chapter and finally, in Section 6.7, I provide suggestions for further reading.

First, I present an observation—data fusion, like scientific data mining, is a multidis-
ciplinary topic. Its techniques are drawn from a variety of fields, including computer vision,
signal and image processing, pattern recognition, statistics, and so on. I describe many of
these techniques in the later chapters of this book, so the placement of this chapter early
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on may seem inappropriate. However, when we have the opportunity to exploit several
different modalities of data, we should think about how we will combine the information in
these different sources from the very beginning. In addition, as we shall see in this chapter,
the fusion of data can be done during one or more of the steps of the data mining process.
We can exploit the complementary information either at the level of the raw sensor data, or
the level of the objects and features extracted from the data, or at the level of the decisions
made from the data. If data fusion is done at the sensor level, it is one of the first steps in
the scientific data mining process. Hence, this chapter is placed before the other chapters;
as appropriate, I include pointers to techniques which are described in later chapters.

6.1 The need for data fusion
Data fusion is the process of combining data from different sensors to improve the results
of the analysis. This improvement could manifest itself in several different ways, including
increased confidence in the results, increased robustness of the techniques used in the anal-
ysis, improved coverage in both space and time of the phenomena being observed, reduced
ambiguity, and improved detection of objects in the data.

Data fusion techniques have long been used in military applications, where the benefits
of using multiple sensors was recognized in problems such as military surveillance and
battlefield management systems. Much of the early literature in data fusion focuses mainly
on the needs of such applications, though more recently, several nonmilitary domains such
as remote sensing, medicine, intelligent transportation, and robotics have also started to
exploit the complementary information available via multiple sensors.

In some problems, the sensors used are identical to each other, for example when
multiple cameras are used to increase the spatial coverage of a scene or to provide different
views of the scene. In the latter case, we can use the information from different cameras to
reduce any ambiguity in the analysis. In other problems, the sensors may be different, pro-
viding complementary information. For example, in medical imaging, an MRI would focus
on the soft tissue, while computed tomography would provide information on the bones, and
a PET scan would provide functional information. Similarly, in nondestructive evaluation,
a visual examination could complement information from eddy-current analysis and ultra-
sonics. In the area of remote sensing, there is often a trade-off between the resolution, the
signal-to-noise ratio, and the spectral coverage. This trade-off exists when there are com-
peting constraints in designing the sensors, making it necessary to use multiple sensors if we
desire high resolution, improved signal-to-noise ratio, and a broad spectral coverage. Data
fusion is also important in problems such as biometrics or mine detection, where the error
rates using a single sensor may be too high, making it necessary to use more than one sensor.

Data fusion is useful even in commercial applications, where we want to exploit
information collected in different surveys. These surveys may have focused on different
aspects of a problem, resulting in some information available for a subset of customers,
but not all customers. Or, in some surveys, aggregate information at a higher granularity
is available, say, by zip codes. In such problems, the idea is to use these complementary
sources of information to fill in the gaps in the databases. It goes without saying that this
must be done with care, lest the missing data be replaced with incorrect data.

A more recent demand for data fusion techniques comes from applications involving
networks of autonomous sensors, where it is important for each sensor to take into account
what is observed by other sensors, so it can improve its decision-making process and that
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of the network as a whole. Multiple sensors are also used in the monitoring of complex ma-
chinery, where they can be used to predict failures, and in experimental physics, where they
are used to measure various quantities of interest relevant to understanding the phenomena
being observed.

While using more than one sensor can be beneficial, using multiple sensors may not
always be beneficial. It is possible to have catastrophic fusion (see [429, Section 1.5]), where
the results of using a multisensor system are poorer than using a single sensor or a few of the
individual sensors. For example, in a problem involving the identification of volatile organic
compounds, it was found that the improvement in classification accuracy obtained using
the data from three sets of sensors was not statistically significant compared to the results
obtained using two sets of sensors [470]. However, using two sets of sensors yielded a better
performance than using a single set of sensors. This situation arises when data from a sensor
do not provide any discriminatory information. In such cases, just adding data from a sensor
because it is available can lead to problems with the curse of dimensionality (see Chapter 10).

6.2 Levels of data fusion
The fusion of data from multiple sensors can be done at different levels. Reflecting the early
driving force of military applications, one of the most widely used models for categorizing
the functions related to data fusion is the US Joint Directors of Laboratories (JDL) model.
This model, originally proposed in 1985, provides a distinction among data fusion processes
relating to the refinement of “objects,” “situations,” “threats,” and “processes” [241, 242].
Though the recent refinement of the model has reduced some of the military focus of the ter-
minology, the tasks associated with the processes tend to be related to military applications,
with an emphasis on tracking moving targets.

A different approach to categorizing the functions in data fusion was proposed by
Dasarathy [132], who focused on the type of inputs and outputs considered by each function.
In this functional model, the type could be either data, features, or objects. For example,
if the input was of type data and the output was of type features, the functions would be
feature extraction functions. If instead, both the input and output were of type features, then
the functions used would be feature-refinement functions.

Another commonly used model of data fusion considers three levels of fusion—the
sensor level, the feature level, and the decision level. This fits in well with the overall
process of scientific data mining. We can exploit the multiple data sources in the form of
raw data by combining the data obtained from the sensors. Or, fusion can occur after the
objects have been identified and the features extracted from them; here the task would be
one of combining the features. Or, we can combine the information at a high level, after
the pattern recognition step, when the models have been built and the step of fusion is used
to combine the decisions from the models.

There are specific situations where each of the three different levels of data fusion are
appropriate:

• Sensor-level data fusion: In some problems, it makes sense to combine the raw data
obtained from the sensors. This is especially true when the sensors are commensurate;
that is, they measure the same quantity. For example, images from multiple cameras
viewing a scene can be fused at the image level. Or, satellite images of a region taken
with similar sensors can be fused. When the data are in the form of images, this is
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also referred to as pixel-level fusion. A key challenge in this case is that the images
must be registered, or aligned correctly, before we can combine them. In addition, if
these images are at different resolutions, they must first be transformed into the same
resolution. However, such processing can degrade the data during the registration or
the transformation.

Sensor-level data fusion can be appealing as it allows us to exploit the multiple sources
of data in their raw form. However, it can be time consuming, as raw data are often
larger than processed data. More importantly, the process of registration, and any
transformations involved such as resampling or warping of the images, can degrade
the data, resulting in errors in registration. This could adversely affect the results of
further processing.

• Feature-level data fusion: When the sensors used in an application are noncom-
mensurate, that is, they are measuring very different quantities, then the fusion has
to be done at a higher level. In feature-level fusion, the raw data are processed to
identify the objects and extract relevant features for them. Then, fusion is done by
simply combining the features for each object.

Feature-level fusion reduces the need for registration. However, we must ensure that
the identical object has been identified in the different data sources prior to combining
the feature vectors for the object. This can be a problem if the resolutions of the data
are such that an object is present in one data source, but not in another. Also, as we
have observed before, combining the features results in a longer feature vector and
all the associated problems of high dimensionality of the feature space.

• Decision-level data fusion: At the highest level, the data can be fused by combining
the decisions made by several sensors. This, too, can be appealing, especially if
the sensors are distributed with a relatively low bandwidth among them, making it
prohibitively expensive to communicate either the raw data or the feature vectors. In
this approach, as with feature-level data fusion, we can incorporate information about
the reliability of different sensors by appropriately weighting the decisions. A key
challenge, however, is the optimal approach to combining the decisions.

Data can also be fused at multiple levels to exploit the different characteristics of the
different data sources. For example, in [323], we describe an approach to detect human
settlements in satellite images and show how we can effectively exploit low-resolution,
multispectral images and higher-resolution, panchromatic images. The information in the
four-band (red, green, blue, and near-infrared) multispectral image is first used for pixel-
level classification. The pixels with the associated class labels are then used to identify
regions where there is a high likelihood of human settlements. Next, the higher-resolution
panchromatic images are used to confirm if these regions do indeed have human settlements.
The pixel-level processing done on the lower-resolution images enables us to reduce the
regions processed in the higher-resolution images, making the approach computationally
efficient. In our application, we combined the complementary information in the multispec-
tral images with the panchromatic images, albeit at different stages of the decision-making
process.

I next discuss the different techniques which can be used in the different levels of data
fusion.
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6.3 Sensor-level data fusion
The tasks involved in fusing the raw data collected by different sensors are very dependent
on the type of data and the context in which we plan to use them.

The simplest case arises when the data obtained from different sensors are just scalar
measurements taken over time. For example, in a physics experiment, we may have several
sensors measuring the values of different variables, such as pressure and temperature, over
time; or measuring the same variable at different locations. The intent may be to understand
how the variables are changing when a specific phenomenon of interest occurs in the exper-
iment. Or, we may be interested in understanding what causes a certain phenomenon so that
we can use the values of the variables to try to predict when the phenomenon will occur. In
these cases, data fusion may be as simple as representing the experiment as a series of time
intervals, each characterized by several variables. These variables would essentially be the
mean or median values of the sensors over each time interval. In other words, data fusion
would be done by simply concatenating the different sensor measurements into a feature
vector for each time interval.

A similar approach can be used in problems where multiple sensors are used to mea-
sure different properties of an object such as its radar signature, size, and speed, with
the intent of using these measurements to identify the object as belonging to one of sev-
eral categories. Data fusion is again done by concatenating the measurements from these
sensors to form a feature vector which is then used in an appropriate pattern recognition
algorithm.

Another simple example occurs in multispectral imaging, when relatively few bands
are used. Here, one can display three bands at a time by assigning each of them to the
red, green, and blue channels of the display, thus displaying the three bands simultaneously.
Of course, when there are many spectral bands in the image, this simplistic approach is
inadequate.

A more complex problem arises when the sensor measurements are obtained for mov-
ing objects which are being tracked over time. The problem now becomes one of using
the data from all the sensors to correctly assign or associate an object with a track. This
problem occurs frequently in military applications; I discuss the solution approaches briefly
in Section 6.3.1.

If the data are in the form of images, data fusion becomes much more complex. A
key challenge is that the images which need to be fused must first be aligned appropriately.
This process is referred to as image registration. It is a common task not only when two
images need to be merged, but also when two images of a scene, taken at different times,
need to be compared to detect changes. Registration is also important in problems where,
instead of aligning one image to another, both images have to be transformed into a single
standard coordinate system. Such coordinate systems exist, for example, in remote sensing,
where an image might be rectified so it is aligned to a planar map, or it is orthorectified
so that each pixel is corrected for topographic distortion as well [527]. A standard co-
ordinate system exists even for the human brain, motivated by the fact that there is a lot
of variation across the brains of normal patients, making it difficult to compare, say, the
MRI scan from the brain of a patient with a disease to a normal, disease-free brain. This
standardized, anatomically based, coordinate system is referred to as an atlas [582], and all
images are registered to it prior to analysis. I describe the techniques for data registration
in Section 6.3.2.
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6.3.1 Multiple target tracking

In military and other surveillance applications, one of the key tasks of interest is tracking
moving objects. This can be rather difficult if there are several moving objects in a scene,
some of which may be partially or completely occluded. Further, if the data are noisy and
there is little to distinguish one object from another in the images, the task of correctly
assigning objects to tracks becomes even more complicated. In such cases, an obvious
solution is to use multiple sensors to extract additional characteristics on the moving objects
so that these characteristics may be used in the accurate association of objects to tracks.
This, of course, raises the obvious question, which one of the many measurements should
be used to update the track? The task of assigning a single measurement to one of many
tracks can itself be seen as data fusion, as we are finding the correspondence between two
different types of data.

Section 11.5 briefly describes some of the issues which arise in tracking and the
common techniques used for tracking multiple objects. Specifically, the association of
objects to tracks can be considered to be a bipartite graph-matching problem, where the
objects form one set of nodes, the tracks form the other set, and the goal is to correctly
match each object to a track. The number of links between these two sets can often be
reduced by exploiting the characteristics of the objects. For example, if a radar signature
indicates an object is of a particular class, and a velocity measurement indicates how far it
could have moved since the previous time, we can remove links to tracks associated with
objects of a different class and far away from the current object. This can, however, be
nontrivial given the errors in accurately assigning an object to a class based on its radar
signature, or in measuring the velocity of an object.

More recently, two techniques have been developed to handle the issue of multiple
measurements. The probabilistic data association approach [44], when applied to a single
target, assumes that all measurements which have been observed and validated can be
assigned to a track—however, with different weights or probabilities. This is in comparison
to selecting only one of the validated measurements and ignoring the rest. The problem
becomes more difficult when we have multiple moving objects because now, not only do
the tracks compete for the measurements, but the measurements can compete for the tracks.
This contention is handled by the joint probabilistic data association algorithm [44] which
determines the measurement to track association probabilities and combines them to find
the state estimate.

A more complex approach, the multiple hypothesis tracker, evaluates the probability
that there is a target given the sequence of measurements. Essentially, a series of hypotheses
is maintained, representing the different assignments of measurements to objects, with a
track associated with each object. Based on this, each hypothesis can predict where its
associated object will be at the next frame in the sequence. When new measurements come
in, they are compared with the predictions, and each hypothesis is extended in several ways
depending on how many of the new measurements are valid or feasible for the current
hypothesis. With the addition of these “child” hypotheses at each frame, the hypothesis tree
can grow quite large, representing all possible hypothesis of all previous measurements.
This tree is finally pruned to remove unlikely branches. The multiple hypothesis algorithm
can be computationally exponential in both time and memory; usually, approximations to
it are implemented [124].

Multiple target tracking is a rather difficult problem, especially if the data are noisy,
there are several moving objects, and several sensors are collecting measurements. A brief
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summary of various techniques is given in Chapter 11 of [429], the survey paper by Smith
and Singh [550], the book by Blackman and Popoli [44], as well as several chapters in the
Handbook of Multisensor Data Fusion [242] which describe the more advanced techniques
in detail. In particular, Chapter 21, aptly titled “Dirty Secrets in Multisensor Data Fusion,”
discusses the pitfalls and problem areas which remain to be addressed in building a robust
and accurate system for multiple target tracking. Finally, the detection of moving objects
in video sequences, a topic related to tracking, is discussed further in our Section 8.4.

6.3.2 Image registration

Registration is the process of alignment of data, such as images, in order to relate the
information in one image (called the target image) to information in another image (called the
reference image). As mentioned earlier, there are two main tasks which require registration.
The first is change detection, where the data have been acquired over time and must first be
aligned before any changes can be detected, and the second is data fusion, where data from
different sources must be combined to exploit the complementary information.

Registration is a multistep process. First, characteristic features are identified in the
target and the reference images. These features are called “ground control points” in remote
sensing and “landmarks” in medical imaging. The term “fiducial points” is also used when
the control points are selected before the image is obtained, for example, by using an object
of known dimensions at a specific location in the scene to be imaged. In the next step, the
features are paired by correspondence matching, which essentially matches a feature in one
image to the corresponding feature in the other image. If the features are defined as known
objects, for example the point of intersection of two specific structures in the brain, then this
correspondence is implicit in the definition of the control points. Next, the matched control
points are used to find a transform function which warps the target image to match it to the
reference image. Finally, the transform that brings the features into alignment is applied to
the full image.

There are many options for each of these steps in image registration. In a broad sense,
a registration technique can be thought of as comprising the following four components [65]:

• A feature space: This is the set of characteristic features used to perform the match-
ing. These features can include pixels which satisfy certain constraints such as the
pixel with the highest intensity in an object; the centroids of specific objects such as
certain organs in a brain image; edges and corners; intersection of edges such as the
location of the intersection of roads; points of high curvature; and so on. One can also
think of these features as the salient points in an image (see Section 8.3). Depending
on the problem, these features or markers can be very general, such as the intersection
of roads; or they can be very specific and unique, such as the intersection of two spe-
cific linear structures in the brain. If the features selected are objects or regions in the
images, then we need to select a characteristic point (say the centroid) in the region
as it is computationally more efficient to do registration using the transformation of
points rather than the transformation of entire regions.

Techniques for extracting these features are discussed further in Chapters 8 and 9.
Though the extraction of the control points or features is the first step in registration,
which in turn, is the first step in fusing image data, a nontrivial amount of processing
may be required to identify and extract these features. For example, if we plan to
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use the intersection of roads as control points in registering two images from remote
sensing, then, we first need to identify the roads before we can obtain the intersection
points. Doing this in an automated way can be quite difficult.

It is important to accurately identify the location of the control points, as any errors
will manifest themselves as errors in the registration. This can, however, be a chal-
lenge if the images are of low quality due to noise or sensor errors. Therefore, prior to
the extraction of the control points, the images must be preprocessed to reduce noise
or any blurring, and to incorporate any corrections to account for the motion of the
sensor or orbital distortions due to the satellite.

The control points must also be distributed as uniformly as possible across the image
so that all points in the image can be registered correctly. Concentrating the control
points in one part of the image may give good results in that region, but poor registra-
tion elsewhere [509]. It may not always be possible to have uniform distribution of
the control points, especially if we select features which are not uniformly distributed
in the image. For example, we may select road intersections as control points, but
this would be a poor choice if only a small part of the image has roads. In such cases,
we may want to consider other features in the part of the image where there are no
roads to ensure a uniform distribution of features.

When the data are in the form of three-dimensional images, as is increasingly the case
in medical imaging, the problem of extracting the landmark points becomes even
more difficult; instead of single points randomly scattered, points on specific surfaces
can be used in the registration [195].

• A search space: The search space defines the set of potential transforms that can be
used to establish the correspondence between the images, for example, rotation, trans-
lation, scaling, polynomials, and so on. These transforms impose restrictions on the
types of geometric distortions which can occur during registration. The most common
transformations assume a rigid body model, which asserts that the object can undergo
global rotations, scaling, and translations, but the relative distances and internal an-
gles within the image cannot change during registration. In other words, the objects
retain their relative shape and size. In what appears to be an issue of terminology, we
observe that in medical imaging, a rigid body transformation does not include scal-
ing [195], while in remote sensing, it does [65]. Representing scaling, translations,
and rotations from one coordinate system to another is very simple. For example,

x′ = x +p, (6.1)

y′ = y +q, (6.2)

x′ = αx, (6.3)

y′ = αy, (6.4)[
x′
y′
]

=
[

cosθ sin θ

−sin θ cosθ

]
∗
[
x

y

]
(6.5)

represent, respectively, translations in x and y coordinates, scaling by α in the x and y

coordinates, and a clockwise rotation through the angle θ of the point (x,y), resulting
in the point (x′,y′).
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Other simple transformations include horizontal and vertical shear, a change in as-
pect ratio, and polynomials. More complex transforms based on thin-plate splines,
multiquadrics, or piecewise linear functions are also possible [641], and nonrigid
transformations must be used in medical imaging for registering organs such as the
heart or the brain. For problems such as interpatient registration and registration to an
atlas, curved transforms based on solutions to the equations of continuum mechanics
are also becoming popular [582]. These equations describe the elastic and fluid prop-
erties of the anatomy being registered and are solved using computational techniques
from partial differential equations. Also, in some problems, we may need to consider
local transformations if a single global transformation does not give us the necessary
accuracy in registration.

• A similarity metric: This is a metric used for evaluating the match between images
for a given transformation in the search space. It often depends on how the registra-
tion problem is formulated. For example, if the fiducial markers are at anatomically
known points in a medical image, we already know the correspondence between the
markers in the target and reference images. In this case, the similarity metric may
be just the sum of the squared error between the marker location in the reference
image and the transformed location of the corresponding marker from the target im-
age. The sum is taken over all the markers and the error for each may be weighted
to reduce the contributions of the less reliable markers.

When the images to be registered are three dimensional, instead of matching points
from one image to another, we may want to match surfaces [195]. The similarity
metric is defined in an analogous way by considering the “error” between one surface
and the transformed version of the other surface. However, when we transform a point
from one surface, there is no guarantee it will lie on the other surface. In this situation,
we consider the closest point on the other surface to correspond to the point being
transformed. The calculation of this closest point, however, can be computationally
expensive.

In some problems, we can use an intensity-based similarity metric. For example, a
small region around each control point in one image may be extracted as a window
and correlated with the points in the second image. This idea is very similar to the
block-matching approach for identifying moving objects in video sequences, a topic
discussed in Chapter 8. The correlation measure can be something simple, such as
the absolute differences between the pixel intensities in the two windows, or more so-
phisticated normalized cross-correlation, or a cross-correlation coefficient [65, 527].
Correlation measures can also be used for edge images if we are using edges as the
feature for registration.

It is also possible to combine different features in a similarity metric to make the
registration more robust and accurate. For example, in three-dimensional medical
imaging, we could consider the sum of the errors at the fiducial points and at points
on the surface to be registered.

• A search strategy: The search strategy determines how we compute the parameters
of the transform. This involves transforming the control points from the target image
and evaluating the similarity metric based on how close each point is to the corre-
sponding point in the reference image. However, we first need to ensure that we have
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a correspondence between the landmark points in the target image and the points in
the reference image. In some problems, this correspondence is known, for example,
in medical imaging where the landmarks may have been selected at anatomically spe-
cific locations. In other problems, especially when the control points are determined
automatically, the correspondence is unknown.

There are several ways in which we can find the correspondence. We can use charac-
teristics of the control points such as the curvature or the intensities in a small window
around the point. Alternatively, we can use clustering techniques (see Section 11.1),
match the minimal spanning trees of the control points, or match the convex hull of
the control points [229].

Once we have a correspondence between the control points in the target and reference
images, we need to determine the parameters of the transform. In some cases, the
parameters can be obtained in closed form using a linear least-squares formulation.
For example, the coefficients of a polynomial transformation can be obtained by min-
imizing the sum of the squared error between points in the reference image and the
transformed version of the corresponding points from the target image. If, instead,
we use a transform composed of scaling, translation, and rotation in two dimensions,
then the four parameters (the scale factor, the x and y translation, and the angle of
rotation) can be obtained by considering two sets of matched points, which gives us
four equations in four unknowns [539].

In more complex registration problems, we may need to use a nonlinear similarity
metric to obtain accurate results [195, 652]. For example, we may want to minimize
the energy functional in transforming the three-dimensional surface representing the
transformed target image to the reference image. Or, we may want to maximize the
mutual information between the reference image and the transformed target image.
In such problems, an exhaustive search for the parameters of the transformation is
always an option, albeit an expensive one. More commonly, iterative techniques are
used including those from multivariate optimization such as gradient descent and the
Levenberg–Marquardt technique, as well as the more stochastic approaches such as
simulated annealing and evolutionary algorithms [414], which avoid getting stuck in
a local minima (see Section 11.7.2).

The search for the optimum parameters for the transform can be computationally
expensive. If we are using intensity-based similarity metrics, we can exploit mul-
tiresolution approaches based on wavelets or Gaussian pyramids (see Section 5.2)
to make the task of registration more computationally efficient. Typically, a not-
so-accurate registration is obtained using the data at a coarser resolution. This nar-
rows the search space at the finer resolution, where a more accurate registration
is done. The basic idea behind this approach is discussed further in Section 8.4.2
in the context of detecting moving objects, as well as in [363] in the context of
registration.

Finally, once the transformation has been obtained based on the control points, we
need to apply it to the rest of the points in the image. If the transformation is applied to
all pixels in the target image, that is, it is a forward transformation, it can produce holes or
overlapping due to the discretization and rounding which occurs after the mapping. Hence,
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the reverse approach is chosen and each point in the reference image is mapped back to a
point in the target image using the inverse transform. The rounding and interpolation is done
using the values from the target image [539]. When the mapping back from the reference
pixel to the target is not exact, nearest neighbor resampling or bilinear interpolation is used,
though more complex approaches can also be used [652].

After the images have been registered, they can be fused at the pixel level by simply
averaging the two images, pixel by pixel. However, as we shall see in Section 6.4, this may
not be the preferable approach.

Registration can be a difficult task, given the diversity of sensors that generate data,
the presence of noise in the data, the absence of fiducial markers, the sheer volume of data
even from a single sensor, and the technical challenges associated with the identification of
characteristic features and optimal transforms. Oftentimes, the approaches used are specific
to the application domain and the problem being solved.

There are several general reviews of the techniques used in image registration, includ-
ing the early survey by Brown [65], the more recent survey by Zitová and Flusser [652],
and the excellent text by Goshtasby [229]. In addition, many innovative approaches are
proposed within the context of specific application areas. These exploit the characteristics
of both the objects being imaged and the sensors used to image them.

Medical imaging, with its diversity of sensors, the use of three-dimensional imaging,
and objects ranging from soft tissue to bone in a single image, presents some of the more
challenging problems in registration. The solutions to these can be found in several survey
papers [423, 406, 195] as well as in several chapters in the Handbook of Medical Imag-
ing, edited by Bankman [20], and the books by Modersitzki [433] and Hajnal, Hill, and
Hawkes [238].

Remote sensing, too, is an application area where registration plays a key role, not just
in image fusion, but also in change detection and mosaicking, where two or more images are
merged to create a composite single image [229]. With the advent of very high resolution
and hyperspectral imagery, there is an increasing need for subpixel registration algorithms
as well as techniques which incorporate sensor-related transformations and knowledge of
the application and the content of the images [168]. An interesting review of data fusion
techniques in remote sensing, with a focus on pixel-based approaches, is given by Pohl and
van Genderen [480].

Registration is also important in computer vision problems such as three-dimensional
shape reconstruction from multiple views [647, 183, 258]. Inferring a three-dimensional
object from its two-dimensional projections requires identifying corresponding points in
the multiple views. This is usually done using feature-based techniques or optical flow
techniques. The latter is commonly used in estimating the motion of the objects in successive
frames of a video sequence (see Section 9.5). We have earlier observed the similarity
between registration and block-matching techniques used in the detection of moving objects
in video. This is another example where techniques from motion estimation are used to
find the transformation between two images. In fact, the original article by Lucas and
Kanade [397], describing the popular optical flow technique named after them, is actually
on registration and not optical flow.

Another area related to registration is that of shape analysis [162] (see also Section
9.3). Often the similarity between two shapes is obtained by finding landmark points on
them and evaluating the cost of transforming one shape to the other based on the landmarks.
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6.4 Feature-level data fusion
Data fusion at the feature level is usually considered when either the data are available as
features or the data are from noncommensurate sensors. In the latter case, it may not make
sense to fuse the raw data from the sensors.

The most commonly used approach to fusing data at the feature level is to first identify
the objects in the different types of data to be fused and extract features representing them.
Then, the features are concatenated to form a single feature vector representing the object.
In this process, we need to ensure that the objects being fused in the two data sets are the
same. This is done by spatially associating the centroids of the two objects. However, in
some problems, this can be a challenge. For example, if the two data sets to be fused are at
different resolutions, an object could be clearly identified in one data set but could be missing
in the other if it is smaller than the resolution of the data set. This can be the case with
astronomical data when we want to combine information from several different surveys.

The concatenated feature vector, representing the contributions of several different
data sources, can then be used in an appropriate pattern recognition algorithm. For example,
we extended our similarity-based object retrieval system [314] to work with multivariate
data from computer simulations. We exploited the fact that in a computer simulation, many
variables, such as pressure, density, and velocity, are output at each grid point. Instead of
using just one of these variables in the retrieval system, we could use all of them. In our
approach, retrieval was done using tiles (rectangular regions in the image) as objects. We
combined the different variables by first extracting the same set of features for each of them.
So, for each tile in an image, we would extract the texture features for the density variable,
the pressure variable, and so on. The features were then concatenated to form a long feature
vector which was used in retrieval based on a nearest-neighbor approach in feature space.

Combining feature vectors has also been used in landmine detection, an applica-
tion where data fusion is important to improve accuracy and reduce false alarms. In one
study [562], data from a metal detector and ground-penetrating radar were combined, while
in another study [235] the data from an infrared camera were also included. Both studies
experimented with feature-level and decision-level techniques. Based on the data sets used
in these studies, the results indicated that using multiple data sources is beneficial in reduc-
ing the false-alarm rate, with the feature-level techniques performing slightly better than
the decision-level techniques.

Data fusion at the feature level can also be used to estimate missing features. For
example, in the context of a nonscientific data mining problem, we improved the accuracy
of retrieval results in a problem where we combined features representing faces in an image
with text features from the associated caption [15]. If one of these sets of features is missing,
we could estimate the missing features by using relevance feedback on the results retrieved
using the known set of features.

Features in image data can also be used to improve data fusion done at the sensor
level. If two registered images are fused by averaging the images pixel by pixel, then
the contrast of features uniquely present in either image is reduced. One solution to this
problem is to fuse the data using pyramid-based schemes which create a multiresolution
decomposition of the two images (see Section 5.2). Then, a composite decomposition is
created by appropriately merging the two decompositions. Li, Manjunath, and Mitra [377]
have observed that if a Laplacian pyramid is used for this, the resulting image has blocking
artifacts in regions where the two images are very different. They propose using a wavelet
decomposition which allows them to identify important features as ones with strong detail
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coefficients. The composite decomposition is performed by taking the larger of the detail
coefficients from the two decompositions. An inverse wavelet transform on the composite
decomposition provides the fused image.

Feature-level fusion is also useful when the data to be fused are distributed and large
enough that it does not make sense to move the data to a single location. This is especially
true if the data are such that only a small part of the data is relevant to making a decision.
For example, in medical images, only the regions with the tumors might be of interest. In
such cases, we can extract features from these regions for each type of data and send them
to a centralized location, where the features would be combined to make a decision. The
alternate approach of sending the entire image to the centralized location could be bandwidth
intensive, especially if the data are high-resolution, three-dimensional images. If the features
are too large in size and the bandwidth constraints are severe, then one can use the distributed
features to build a decision tree classifier and use it for the decision making [427].

A key problem with feature-level fusion is that the concatenation of the feature vectors
from each type of data can result in each object being described by hundreds of features.
This is especially true when the feature itself has many components, as is the case with
texture features or histograms. This can result in the curse of dimensionality when we
apply pattern recognition algorithms, such as classification and clustering techniques, in a
high-dimensional feature space. Dimension reduction techniques, such as those discussed
in Chapter 10, are recommended for the identification of the key features prior to the step
of pattern recognition.

6.5 Decision-level data fusion
In problems where the data from each sensor are too large to be sent to a centralized place
for fusion, or there are issues of privacy which prevent the open sharing of data, fusion at
the decision level is an alternative. The basic idea is rather simple—each sensor makes a
decision based on what it observes and the decisions are combined in some way to represent
the combined data from all the sensors.

The difficult part in decision-level fusion is the combination of the decisions from
each of the sensors. Several authors have observed the similarity between this problem and
the problems of ensemble learning and incremental learning (see Section 11.2). In ensemble
learning, we build many classifiers from a single data set, with some randomization so that
each classifier is different in some way. Then, the results from the classifiers are combined
either by a simple majority vote, or by using some weighted voting scheme where decisions
from classifiers with higher accuracy carry more weight than decisions from classifiers with
lower accuracy. In incremental learning, the data for building the classifier are obtained
incrementally, so the goal is to learn the new information as the new data becomes available
while retaining the information learned from the old data, which are now inaccessible.

The idea of using incremental learning in data fusion is explored further in [470],
where the authors train an ensemble of classifiers, each on different data sources and each
represented by a set of features for a data item. The features are different across the different
data sources. Within the data from each source, a weight is assigned to each data item to
indicate how likely they are to be included in the training set for the next classifier to be built
in the ensemble, and the ensembles themselves are assigned a weight based on their training
performance. The data sources are also assigned weights to indicate their reliability. A final
decision is then made, taking into account both the weights of each classifier in the ensemble
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for a data source and the weight of the data source. For the data sets considered in [470],
this approach is shown to give more accurate results than an ensemble of classifiers trained
using the concatenated feature vector.

When we use decision-level data fusion, we may run into problems if not all sensors
observe an object, or the sensors produce conflicting data, or there is uncertainty in the data.
In such situations, probabilistic techniques, such as those based on the Dempster–Shafer
theory of evidence, are used to fuse the decisions [538, 85, 533].

6.6 Summary
In this chapter, I discussed the topic of data fusion, or the process of combining data from
different sensors, to exploit the complementary information available from each sensor. The
expectation is that this will improve the results of the analysis by increasing our confidence
in the results and reducing the ambiguity. I described three different levels at which we can
fuse the data—the sensor level, the feature level, and the decision level. Each of these has
its challenges, and while data fusion does have its benefits, caution is urged lest we have
catastrophic fusion, resulting in worse results than using a single sensor.

Multiple sensors are becoming the rule rather than the exception, and sensor networks
are gaining acceptance in a variety of problems, increasing the need for data fusion tech-
niques. Further, as distributed data become more common and privacy issues influence
what data we can or cannot share, the techniques being used in data fusion will be used in
other areas as well, which in turn will result in new approaches which can benefit the more
traditional data fusion applications.

6.7 Suggestions for further reading
There are several books which cover the general topic of data fusion. The two edited books
by Hall and Llinas [242] and by Blum and Liu [49] provide a good overview of different
techniques and applications, while the texts by Mitchell [429] and Hall and McMullen [243]
focus more on the techniques.



Chapter 7

Enhancing Image Data

It has been my experience, as well as many others who have looked, data
is generally much less accurate than it is advertised to be.

. . . I learned never to process any data until I had first examined
it carefully for errors. There have been complaints that I would take too
long, but almost always I found errors and when I showed the errors to
them they had to admit that I was wise in taking the precautions I did.
No matter how sacred the data and urgent the answer, I have learned to
pretest it for consistency and outliers at a minimum.

—Richard Hamming [248, pp. 313 and 316]

In the previous chapter, I described ways we can use data fusion techniques to ex-
ploit the complementary information available in problems where the data are collected by
different sensors. These data are often in the form of images, for example, observational
images from an astronomical survey, experimental images from a physics experiment, or,
in the case of simulation data, output which is displayed as an image. These images, espe-
cially those from observations and experiments, tend to be noisy, often with poor contrast
and nonuniform illumination. Cleaning and enhancing these images is a crucial first step in
their analysis.

In this chapter, I will discuss ways we can improve the quality of image data. Though
the focus is mainly on images, similar techniques can be applied to one-dimensional signals
as well as temporal data, such as video images. These image enhancement techniques are
mainly motivated by the need to improve the quality of experimental and observational
data; however, they can also be applied to simulation data to smooth the fine-scale structure
and focus on the coarser features.

The techniques discussed in this chapter range from the very simple to the complex.
The efficacy of a method often depends on the noise characteristics and the specific pa-
rameters used in the enhancement algorithm. Often, we may need to apply more than one
algorithm in succession to achieve the desired result.

This chapter is organized as follows. First, in Section 7.1, I describe why enhancing
image data is an important step in scientific data mining. Next, in Section 7.2, I explain
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various approaches for reducing the noise in images while preserving the signal. These
techniques range from very generic to more specialized. In Section 7.3, I describe ways in
which the contrast in the images can be enhanced to clearly separate objects of interest from
the background. Section 7.4 describes the nonlinear methods of mathematical morphology
which are used in many tasks in image analysis, including de-noising. Finally, Section 7.5
summarizes the chapter and Section 7.6 provides suggestions for further reading.

7.1 The need for image enhancement
Enhancing the raw input data to clearly identify the objects of interest is an important step
in scientific data mining. If we can reduce the noise in the data or enhance the contrast of an
image, we can greatly simplify subsequent steps in the processing of the data. For example,
the presence of noise may interfere with the identification of objects in the image. If the
objects are detected using a gradient-based technique (see Chapter 8), we may find that the
regions of high gradient occur not only at the object boundaries, but also in the regions with
noise [322]. Selective denoising of the images may be required before the objects can be
identified. In some problems, we may find that the contrast in one part of an image is not as
strong as in another part of the image. If a simple thresholding approach is used to identify
the objects of interest, we may completely miss the objects in the lower-contrast regions.
Or, we may need to use locally adaptive methods, which, depending on the image and the
variation in contrast, may not give satisfactory results. In such situations, enhancing the
contrast may be beneficial.

Cleaning the data may be useful even when the data are not in the form of images. For
example, if we are interested in the problem of finding peaks in a one-dimensional signal,
it may be helpful to smooth the data first so that small variations due to noise in the data
do not adversely affect the results. This example also illustrates another benefit of cleaning
the data—it makes the subsequent steps of processing less sensitive to the parameters used,
making the analysis more amenable to being automated.

Data enhancement algorithms can also be applied temporally. For example, tech-
niques used to remove noise in images can be used to reduce small camera motion in video
data [112]. Here, the approach is applied across the frames of a video sequence to smooth
out the temporal variation caused, for example, by the slight motion of a stationary camera
due to wind.

The enhancement of the data is often done after a subset of the data has been extracted
through sampling (see Section 5.1). Depending on the specifics of a problem, several steps
may precede or succeed the step of image enhancement. For example, if we are working with
data from different sources and the data need to be fused, we may do some initial cleaning of
the data, then fuse them, and then enhance them further as necessary. Also, several different
types of enhancement techniques may be used in a single problem. For example, we may
first reduce the noise and then apply contrast enhancement to clearly identify the boundaries
of the objects of interest so that it is easy to extract them in the object identification step
(see Chapter 8). Depending on the problem, we could reduce the noise by either a single
application of a technique or successive applications of one or more techniques.

The approach one uses to enhance the data often depends on the quality of the data
and the source of noise in the data. In experimental and observational data, the quality of the
data may be degraded by sensor noise, presence of dust particles, or atmospheric turbulence.
Other factors that could also contribute to the poor quality of data include nonfunctional
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sensors, leading to missing data such as missing pixels in a CCD camera image, as well as
blurred images due to camera movement in a video sequence. Frequently, we may need to
try several different denoising and enhancement techniques before we can find a satisfactory
solution to a problem.

7.2 Image denoising
The noise in two-dimensional signals can be of various types. Additive noise occurs when
noise is added to the value of each pixel. This noise can be impulse noise (also called
salt-and-pepper noise), when it affects some of the pixels. It can also be Gaussian noise
when a value drawn from a zero-mean Gaussian probability density function is added to
the true value of each pixel. Noise can also be multiplicative, as in the case of variable
illumination or speckle noise in SAR imagery [459]. The effects of variable illumination
can be suppressed by considering the image as a product of two factors—an illumination
function and a reflectance function—and taking its logarithm, making the two functions
additive instead of multiplicative. The varying illumination can then be subtracted out, as
discussed in Section 7.2.4.

I next describe various techniques for reducing noise in data without significantly
affecting the signal. I focus mainly on two-dimensional image data, though several of the
techniques can be applied to one-dimensional signals as well. Note that it is seldom possible
to leave the signal unaffected while reducing the noise. A good application of a denoising
technique will leave the signal largely unchanged while reducing the noise. However, in
some cases, this may not be possible, and care must be taken to check that the signal has
not changed substantially before the image is processed further.

7.2.1 Filter-based approaches

The idea behind filter-based approaches is to consider the pixel values in a small window
around the current pixel and replace the current pixel by some linear or nonlinear combina-
tion of these values [596]. Many of these approaches use discrete convolution, which is the
weighted sum of one discrete function, the image, with respect to another discrete function,
the spatial mask, which has first been reflected about the origin and then variably displaced.
Let I be the image and M be the mask. Then, the convolution C of I with M at the location
(x,y) in the image is defined as

C(x.y) = M(x,y)∗ I (x,y) =
∞∑

n′=−∞

∞∑
m′=−∞

I (x −m′,y −n′)M(m′,n′). (7.1)

Usually, the mask is defined over a small window centered at the origin and is zero elsewhere.
Hence, the summation can be done over the small window. Further, if the mask is symmetric,
as is often the case, it does not have to be reflected about the origin.

By using an appropriate mask, or filter, we can enhance an image. For example, a
commonly used mask is the averaging filter, or the mean filter, where all values in the filter
window are weighted equally, that is,

M = 1

4

(
1 1
1 1

)
(7.2)
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for a 2×2 mask, with the origin at the top left, and

M = 1

9

[1 1 1
1 1 1
1 1 1

]
(7.3)

for a 3×3 mask, with the origin at the center. Essentially, the mean filter replaces each pixel
by the mean of the values in a window around it. It acts as a low-pass filter, reducing the
higher-frequency components in the image. The mean filter is frequently used to smooth
or reduce additive Gaussian noise. There is a trade-off between the size of the filter and
the reduction in noise. Larger filters smooth the image more, but, if too large a filter size is
used, then pixel values far from the current pixel influence the new value of the pixel, which
may be undesirable. Application of a larger filter is also more computationally expensive.
An alternative is to use a Gaussian mask, where the values in the mask are smaller as we go
further out from the origin of the mask:

Gσ (x,y) = 1

2πσ 2
exp
(
−|x|2 +|y|2

2σ 2

)
, (7.4)

where σ is the standard deviation of the Gaussian.
For example, Figure 7.1 shows the effect of a simple 3×3 Gaussian filter on a synthetic

image with 20% random noise. The addition of the noise makes a region that originally
had uniformly grey intensity, appear to be speckled, with pixels of varying intensity. The
zoomed-in region clearly shows that the application of the Gaussian blurs the sharp edges
between regions with different intensities. Further, in contrast to the noisy image, the
smoothing reduces the intensity variation in the speckled regions, though it is not as uniform
as in the original image.

It should be mentioned here that convolution with a Gaussian can also be used for scale-
space analysis [382]. The idea in scale-space representation is to generate a one-parameter
family of derived signals in which the fine-scale structure is successively suppressed. One
way this can be done is by successive convolutions with a Gaussian filter with increasing
larger σ . Recall also that Gaussian convolution is used in creating a multiresolution pyramid,
as discussed in Section 5.2.

Unlike the Gaussian or mean filters, some filters, such as the minimum mean-squared
error (MMSE) filter, are more adaptive and use the local image characteristics to determine
their behavior [596]. This filter works best with Gaussian or uniform noise. The pixel
values in the denoised image are given by

I (x,y)− σ 2
n

σ 2
w

{I (x,y)−Mw(x,y)} , (7.5)

where σ 2
n is the noise variance, σ 2

w is the variance in the image in a small window around
the current pixel (x,y), and Mw(x,y) is the mean value of the pixels in the window. If
there is no noise in the image, the noise variance is zero, and the image remains unchanged.
In areas of the image where the pixel intensity is fairly constant, σ 2

w will equal σ 2
n , and

the MMSE filter will function as a mean filter. In the areas of the image where the local
variance is much higher than the noise variance, the influence of the second term in (7.5)
is small, and the denoised pixel value is close to the original pixel value. As observed in
[596], areas with high local variance are typically regions with edges or other details, and
a good denoising filter should try to preserve these details.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.1. Using the Gaussian filter to denoise an image. (a) A synthetic image;
(b) a zoomed-in region near the lower left corner of (a); (c) a noisy version of image (a), with
20% random noise; (d) the corresponding zoomed-in region of (c) showing regions which
had uniform intensity in (b) appearing speckled due to the addition of the noise; (e) the
noisy image after smoothing using a 3×3 Gaussian filter; (f) the corresponding zoomed-in
region of (e). Note that the sharp transition between different grey levels is now blurred
and regions with a uniform grey level now have a variation in the intensity.
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There are several ways in which the noise variance in an image can be estimated.
One of the more popular noise estimators is the median absolute deviation (MAD), which
defines the standard deviation of noise as

median(|I (x,y)−m|)/0.6745, (7.6)

where m is the median of the image and 0.6745 is a factor to make the estimate unbiased
for the normal distribution.

In addition to these simple averaging filters, there are also more sophisticated filters,
such as the bilateral filter [585] which computes the weights in the filter based on both spatial
proximity and similarity of intensity values. The bilateral filter has been shown to be related
to isotropic diffusion approaches to denoising, which we discuss later in this section. The
idea behind the bilateral filter is to apply in the range of an image what traditional averaging
filters do in its domain. Since images typically vary slowly over space, the pixels near
each other have similar values. As the noise in the nearby pixels is mutually less correlated
than the signal values, when we use an averaging filter, the noise is averaged away, while
the signal is preserved. The bilateral filter also applies a similar idea in the range of the
image by using a range filter which averages pixel values with weights that decay with
dissimilarity. In other words, the weights are indicative of the intensity difference (in a
grey-scale image) between the center pixel and its neighboring samples. Such a filter is
nonlinear as the weights depend on the image intensity.

In the bilateral filter proposed by Tomasi and Manduchi [585], the weights of the
range and domain filters are combined using simple multiplication of the weights at each
point in the stencil. The weights are determined using a Gaussian function. Specifically,
the domain weights between pixels p1 and p2 are given by

wd(p1,p2) = exp
(
−‖ p1 −p2 ‖2

2σ 2
d

)
, (7.7)

where σd is the standard deviation in the domain and ‖ p1 −p2 ‖ is the Euclidean distance
between the pixels p1 and p2. The range weights between pixels p1 and p2 are defined as

wr(p1,p2) = exp
(
−{δ(I (p1)− I (p2))}2

2σ 2
r

)
, (7.8)

where σr is the standard deviation in the range and δ(I (p1)− I (p2)) is a measure of the
distance between the intensities at pixels p1 and p2. If the two pixels vary widely in their
intensities, as is the case at an edge, then the corresponding weight in the range filter is
small, thus reducing the smoothing. Each weight in the filter is the normalized product
of the corresponding weights wd and wr . The bilateral filter is thus described by three
parameters: σr , σd , and the filter width.

A different approach to calculating the weights of the filter is the gradient inverse
weighted filter [608] which forms a weighted mean of the local pixels with the weights
depending on the difference between the value of the central pixel and the value of the
local pixels. A small 3 × 3 window around the central pixel is considered and the filter
can be applied iteratively. This filter has been shown to reduce Gaussian noise well while
preserving the image structure.

Another filter which performs denoising by taking the weighted average of the values
in a region around the current pixel is the one based on the Univalue Segment Assimilating
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Figure 7.2. The definition of Univalue Segment Assimilating Nucleus (USAN),
illustrating how the USAN varies based on the location of the pixel. The object of interest
is in grey on a white background. Four different placements of a circular mask are shown.
The nucleus is indicated by +. Within each mask, the area in grey indicates the USAN,
where the pixels have similar intensity to the pixel at the location of the nucleus.

Nucleus (USAN) principle [553]. The idea behind the USAN is rather simple and elegant.
Consider a circular window or a mask whose center, referred to as the nucleus, is placed on
a pixel. When the intensity of each pixel within the mask is compared with the intensity
of the pixel at the location of the nucleus, we can define an area of the mask which has
the same or similar intensity as the nucleus. This area is called the USAN. For example,
consider the grey rectangle which is the object of interest in Figure 7.2. The figure shows
four placements of the circular mask whose nucleus is indicated by +. Note that when the
nucleus is near an edge, the USAN is about half the area of the mask. Near a corner, it is
less than half the area, and if the mask is completely within the object, the USAN is at the
maximum and equal to the area of the mask.

The filter then uses a weighting scheme similar to the gradient inverse weighted filter
by considering the difference between the intensity of the pixel at the nucleus and the pixels
in the USAN. The equation used for weighting, as well as related thresholds, are described
in more detail in [553]. One of the more interesting applications of the USAN principle is
in detecting corners and edges, a topic which I discuss further in Chapter 8.

Another simple nonlinear filter is the median filter, which is frequently used to remove
salt-and-pepper noise. It essentially replaces each pixel by the median of the pixel values
in a window around the current pixel.

Filters such as the median filter can also be applied to temporal data. For example, it
has been applied across the frames in a video sequence to reduce small camera motion and
to remove the effects of falling snow [111]. The filters can also be applied in one and three
dimensions to smooth data and reduce the noise.

7.2.2 Wavelet-based approaches

Denoising data by the thresholding of wavelet coefficients has been extensively studied by
several authors. The early work in this area focused on one-dimensional signals, though
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the approach has been extended to images as well [612, 140, 155, 156, 93, 563, 98]. The
basic idea behind the use of wavelets in denoising is that the noise in an image is usually at
a higher frequency than the background, but not as high as the edges in the image. Thus,
if we thresholded the detail coefficients in a wavelet-transformed image, we would reduce
the noise while preserving the edges.

The statistical approach to denoising data considers the observed data I ′(x,y) as a
representation of a noisy version of the true image I (x,y):

I ′(x,y) = I (x,y)+ ε(x,y), x = 1, . . . ,N; y = 1, . . . ,M , (7.9)

where the image is of size N ×M . The noise, ε(x,y), is assumed to be an independent and
identically distributed Gaussian with zero mean and standard deviation of σn, i.e., N(0,σ 2

n ),
independent of the signal. The goal in denoising is to obtain an estimate Î (x,y) of the
original signal I (x,y) from the realization I ′(x,y) with minimal mean-squared error.

If we denote the observed data, the noiseless data, and the error matrices in equation
(7.9) by I′, I, and E, respectively, then the three steps in wavelet-based denoising can be
summarized as follows:

1. obtain the wavelet coefficient matrix C by applying a wavelet transform W to the
data:

C = W I′ = WI+WE; (7.10)

2. threshold the detail coefficients of C to obtain the estimate Ĉ of the wavelet coeffi-
cients of I:

C → Ĉ; (7.11)

3. inverse-transform the thresholded coefficients to obtain the denoised estimate:

Î = W−1 Ĉ. (7.12)

Under our assumptions, the application of the orthogonal transform W preserves
the normality of the errors WE in the new wavelet basis. Thus, the empirical wavelet
coefficients C(x,y) of the observed signal can be written as noisy realizations of the true
wavelet coefficients {WI}(x,y) = μ(x,y) of the unknown signal:

C(x,y) ∼ N(μ(x,y),σ 2
n ), x = 1, . . . ,N; y = 1, . . . ,M . (7.13)

I next briefly discuss the various parameters in each of the three steps in wavelet denoising.
First, we need to select a wavelet W for the forward and inverse transformations. We

can choose from either the orthogonal wavelets, which include the Haar, the Daubechies
family (daublets), the least asymmetric wavelet family (symmlets), and the Coiflets, or from
the biorthogonal families of b-spline and v-spline wavelets [134]. The latter are symmetric
and provide perfect reconstruction properties. We also have a choice between using deci-
mated or undecimated transforms (see Section 5.2). Denoising using the coefficients of the
undecimated transforms generally leads to fewer visual artifacts than denoising based on the
corresponding decimated transform [117, 446], but requires more computational resources,
in terms of both compute time and memory.
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In addition to the wavelet, we need to select the number of levels of multiresolution and
the boundary conditions necessary to handle the application of the wavelets at the boundaries
of the image. It can be difficult to make appropriate choices for all these parameters, so
some observations might be helpful. It has been argued that biorthogonal wavelets are
preferable over the orthogonal ones as symmetry leads to visually more pleasing results in
images [93]. However, a couple of studies [99, 198] have found that the choice of wavelet,
the number of levels, and the boundary treatment rule has little effect on the results. So, a
first option may be to keep the computational costs low by selecting a symmetric wavelet
with a smaller support, a small number of multiresolution levels, and an easy-to-implement
boundary condition. Based on the results, the options may then be varied appropriately.

For the thresholding step, we need to determine both a threshold value and a thresh-
olding or shrinkage function, which determines how the threshold is applied to the wavelet
coefficients. The thresholding function must be selected first as some threshold values
depend on it.

There are four ways in which we can apply the threshold.

(1) The hard wavelet shrinkage function depends on a single threshold parameter. It
keeps a wavelet coefficient if it is larger in absolute value than the positive threshold
λ and sets it to zero otherwise:

f (x) =
{

0 if |x| ≤ λ,
x otherwise.

(7.14)

(2) The soft wavelet shrinkage function also depends on a single threshold value. A coef-
ficient is shrunk toward zero if its absolute value is larger than the positive threshold
and is set to zero otherwise:

f (x) =
{

0 if |x| ≤ λ,
sgn(x)(|x|−λ) otherwise.

(7.15)

(3) The garrote wavelet shrinkage function also depends on a single threshold value.
A coefficient is shrunk toward zero if its absolute value is larger than the positive
threshold and is set to zero otherwise:

f (x) =
{

0 if |x| ≤ λ,(|x|− λ2

x

)
otherwise.

(7.16)

(4) The semisoft shrinkage function is more general than either the hard or the soft shrink-
age functions, and it includes both of them as special cases. The semisoft function
depends on two positive thresholds, λ1 and λ2, with λ1 ≤ λ2:

f (x) =
⎧⎨
⎩

0, |x| ≤ λ1,
sgn(x)

λ2(|x|−λ1)
λ2−λ1

, λ1 < |x| ≤ λ2,
x, |x| > λ2.

(7.17)

There are several options available for the choice of thresholds in wavelet denoising
[198]. Some thresholds, such as the universal threshold, are independent of the thresholding
function. Others, such as the Stein’s Unbiased Risk Estimator (SURE), provide thresholds
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that depend on the shrinkage function, resulting in different thresholds for the different
shrinkage functions. Also, certain thresholds assume a unit noise scale for the wavelet
coefficients; others do not. This noise variance can be estimated, for example, by using the
MAD estimator (equation (7.6)).

The universal threshold for a normal signal of size N is simply λ =√2logNσn, where
σn is the standard deviation of the noise and can be estimated using equation (7.6) [155].
The universal threshold is determined independently of the thresholding function.

The top method for determining the threshold requires as input the percentage p of
the wavelet coefficients to keep [66]. It does not need an estimate of the noise variance as it
determines the thresholds directly from the data. Given p, the fraction of largest coefficients
to keep, the threshold λ is simply set to be the (1−p)th quantile of the absolute values of the
wavelet coefficients of interest. For the thresholding functions requiring a single threshold,
coefficients above the threshold are assumed to comprise the signal, while those below
are assumed to be part of the noise. Though this threshold does not have any theoretical
optimality properties, it is simple enough to allow the user to experiment with any given
data set by selecting different percentages of the wavelet coefficients to represent the signal.
Note that the threshold is independent of the shrinkage function. For the semisoft shrinkage
function, we obtain the lower and the upper thresholds by using two different values of p.

There are other, more complex, thresholds such as SURE [156] which depend on both
the thresholding function and the multiresolution level, and the BayesShrink [97] which is
appropriate for soft thresholding. While these do provide better denoising than the simpler
methods, they are more complex to implement. A comparison of wavelet-based denoising
with spatial filtering methods indicates that the latter are comparable in performance based
on the mean-squared error metric, but that the wavelet-based approaches result in images
which are less grainy [198].

Finally, an observation regarding wavelet-based approaches for denoising—they can
sometimes create noticeable artifacts which degrade the image substantially [197]. This
makes them unsuitable for use when a large number of images have to be processed in
an automated way. However, more recent extensions to wavelets, such as ridgelets and
curvelets, are possible alternatives which may address these issues [564, 157].

7.2.3 Partial differential equation–based approaches

The use of a Gaussian filter to denoise an image results in smoothing both the signal and
the noise. To reduce the smoothing of an image in areas of interest such as edges, various
researchers have turned to methods based on the solution of partial differential equations
(PDEs), such as the diffusion equation. Convolving an image with a Gaussian filter Gσ ,

Gσ (x,y) = 1

2πσ 2
exp

(
− |x|2 +|y|2

2σ 2

)
(7.18)

with standard deviation σ , is equivalent to the solution of the diffusion equation in two
dimensions

∂

∂t
I (x,y, t) = ∇I (x,y, t) = ∂2

∂x2
I (x,y, t)+ ∂2

∂y2
I (x,y, t), (7.19)
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where I (x,y, t) is the two-dimensional image I (x,y) at time t = 0.5σ 2, with initial con-
ditions I (x,y,0) = I0(x,y), where I0 is the original image. In a general form, this can be
written as

∂

∂t
I (x,y, t) = ∇ ·

(
c(x,y, t)∇I (x,y, t)

)
,

I (x,y,0) = I0(x,y), (7.20)

where c(x,y, t) is the diffusion conductance or diffusivity of the equation, ∇ is the gradient
operator, and ∇· is the divergence operator. When c is a constant, independent of x, y,
or t , it leads to a linear diffusion equation, with a homogeneous diffusivity. In this case, all
locations in the image, including the edges, are smoothed equally. As this is undesirable, a
simple improvement is to change c with the location x and y in the image, thus converting
the equation into a linear diffusion equation with nonhomogeneous diffusivity. When the
function c is image dependent, the linear diffusion equation becomes a nonlinear diffusion
equation. This approach was proposed by Perona and Malik in their 1987 work [473] (also
see [474]), where they considered two values for the function c:

c(x,y, t) = 1
/(

1+ |∇I |2
K2

)
(7.21)

and

c(x,y, t) = exp
(
−|∇I |2/2K2

)
. (7.22)

Here, c varies as a function of the image data, and it is small when the gradient of the image is
large, resulting in lower diffusivity near the edges. The conductance parameter, K , enables
backward diffusion when it is smaller than the gradient ∇I , thus enhancing the edges.

Note that if c is calculated based on the gradient of the original image I0, it is in-
dependent of the time t , resulting in a linear nonhomogeneous diffusion equation. In the
work of Perona and Malik, the gradient of c is taken of the image at time t , making it a
nonlinear, nonhomogeneous diffusion equation. While Perona and Malik, as well as several
other authors, use the term “anisotropic” to refer to the case where the diffusivity is a scalar
function varying with the location, I reserve this term for the case where the diffusivity is a
tensor, varying with both the location and the direction. Instead, following the terminology
used in the PDE literature, I use the term “nonhomogeneous” to refer to the case where the
scalar diffusivity varies with location.

The first formulation of the Perona–Malik approach resulted in an ill-posed problem,
where images close to each other could produce divergent solutions and very different edges
[523]. A common solution to this problem is to use a regularized (or smoothed) version of
the image to calculate the gradient in equations (7.21) and (7.22); that is, the gradient ∇I is
replaced by

∇IG = ∇(Gσr ∗ I (x,y, t)), (7.23)

where Gσr is another Gaussian with standard deviation σr . In other words, the gradient
is taken after the image at time t is smoothed by convolution with a Gaussian. σr can be
considered as a regularization parameter which describes a uniform smoothing used in the
calculation of the gradient of the image at time t . The subscript r indicates that the σ is for
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the Gaussian used in regularization. This σr should not be confused with the σ of equation
(7.18) which characterizes the time parameter of the smoothing through diffusion.

There are several options for the choice of the diffusivity function, c(x,y, t). Fol-
lowing the original two suggestions by Perona and Malik (equations (7.21) and (7.22), and
their regularized versions), several authors have suggested variations or enhancements. For
example, Charbonnier et al. [101, 45] suggested using the diffusivity

c(x,y, t) =
(

1+ |∇IG|2
K2

)−1/2

, (7.24)

while Weickert [617] suggested the use of

c(x,y, t) =
{

1 if |∇IG| = 0,

1− exp
(
−Cm/(|∇IG|2/K2)m

)
if |∇IG| > 0,

(7.25)

where the coefficient Cm, for a given value of m, is derived using

1 = exp(−Cm)(1+2Cmm). (7.26)

For m = 2, 3, and 4, Cm = 2.33666, 2.9183, and 3.31488, respectively. This value of the
diffusivity function is designed to better preserve edges, with the effect most enhanced for
larger values of m.

In addition to the form of the diffusivity, we also need to choose the value of σr used in
the regularization of the image to calculate the gradient (see equation (7.23)). Although σr

is often kept constant throughout the evolution of the PDE, this may not always be desirable.
As the image is smoothed, and the unwanted intensity variations diminish faster than the
signal, the gradient measurements become more reliable. To account for this, the parameter
σr can be reduced as the equation evolves [622].

Another parameter to be determined in the diffusivity is the conductance parame-
ter K . This is typically done experimentally, with a single value of K used during the
entire evolution of the PDE. However, Li and Chen [378] have suggested that this might
not be appropriate. When the gradient magnitude in the image exceeds the value K , the
corresponding edge is enhanced. This assumes that the gradient magnitude of the noise is
typically smaller than that of the edges in the image. But, in some images, this may not
be the case, and as a result, both the edges and the noise (with gradient magnitude greater
than K) are enhanced. Further, by fixing the value of K for the entire process, edges that
lie beyond the range of edge enhancement can never be enhanced. Both these problems
can be addressed by making K a function of the time t . If K is set high at the beginning, it
can reduce the noise significantly, while enhancing only the edges with very high gradients.
As the image is smoothed, the intensity variation of the noise reduces more than that of the
signal. Since the strength of the noise has been reduced, the value of K can also be reduced
without any adverse effects. This would allow edges with lower gradients to be enhanced,
without correspondingly enhancing the noise. Thus, by changing K with time, edges with
different gradients are enhanced at different times in the evolution of the PDE.

Once the diffusivity function c(x,y, t), the regularization parameter σr , and the con-
ductance parameter K(t) have been chosen, the diffusion equation must be solved on the
discrete grid represented by the image. Here, one can borrow extensively from the work
that has already been done in the area of the solution of PDEs through techniques such as
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finite-difference and finite-element methods (see the references in Section 3.1.3). There
are several options which need to be considered in the solution of the PDE itself, including
the choice of a solution approach (e.g., finite difference or finite element), the discretiza-
tion scheme (explicit or semi-implicit), and the solution of the resulting linear system of
equations. Various solution approaches are discussed in [620, 23, 614].

The nonhomogeneous isotropic diffusion described so far limits the smoothing of an
image near pixels with a large gradient magnitude, which are essentially the edge pixels.
As the diffusion near an edge is minimal, the noise reduction near the edge is also small. To
address this, anisotropic diffusion was proposed to allow the diffusion to be different along
different directions defined by the local geometry of the image [617, 130]. Thus, diffusion
across the edges of objects in an image can be prevented while allowing smoothing of the
noise along the edge. This prevents the edge from being smoothed during the denoising.

The anisotropic form of the diffusion equation can be written as

∂

∂t
I (x,y, t) = ∇ ·

(
D(x,y, t)∇I (x,y, t)

)
, (7.27)

where D(x,y, t) is a symmetric, positive-definite diffusion tensor. This 2×2 matrix can be
written in terms of its eigenvectors v1 and v2, and eigenvalues λ1 and λ2, as follows:

D = [ v1 v2
][ λ1 0

0 λ2

][
vT

1

vT
2

]
. (7.28)

By appropriately choosing the eigenvalues and eigenvectors, different diffusivity ten-
sors can be obtained. For example, in edge-enhancing diffusion, the eigenvectors are defined
as follows:

v1 ‖ ∇IG (7.29)

and

v2 ⊥ ∇IG. (7.30)

Here, IG is the regularized (or smoothed) version of the image, that is, the image
convolved with a Gaussian filter with standard deviation σr (see equation (7.23)). Usually
we choose λ2 = 1 to allow smoothing in the v2 direction. λ1 can be chosen to be any of
the diffusivity functions from the traditional nonhomogeneous isotropic diffusion equation.
This limits the diffusion in the direction of the gradient.

As with the isotropic diffusion equation, the anisotropic diffusion equation can be
solved using techniques from PDEs [619]. Again, several choices must be made for various
parameters as well as options for the PDE, the discretization scheme, the linear solver, the
number of iterations, and so on. While the results of these techniques are competitive,
they are nontrivial to implement, can be time consuming, and are sensitive to the choice of
parameters [614, 615].

7.2.4 Removing multiplicative noise

Another problem which can degrade the quality of an image is that of variable illumination.
This problem can be addressed by observing that an image I (x,y) is the product of two
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factors, an illumination function Ii(x,y) and a reflectance function Ir (x,y):

I (x,y) = Ii(x,y)Ir (x,y). (7.31)

The illumination typically comprises the low-frequency components of the Fourier trans-
form of the image. The reflectance, on the other hand, is intrinsic to the imaged surface.
Objects of different materials, when imaged next to each other, cause a sharp change in
the reflectance, which is therefore associated with the higher-frequency components. To
remove the effects of the nonuniform illumination, we first need to find an approximation
to the low-frequency components and then “divide” them out from equation (7.31). Alter-
natively, working with natural logarithms, we can subtract out the component responsible
for the variable illumination:

ln(I (x,y)) = ln(Ii(x,y))+ ln(Ir (x,y)). (7.32)

One approach to addressing the problem of variable illumination is the Retinex algorithm
[357, 497], which is a member of a class of center/surround functions where the center
is defined as each pixel value and the surround is a Gaussian function. The single-scale,
monochromatic Retinex [306] is defined by

R(x,y) = α [ln{I (x,y)}− ln{I (x,y)∗G(x,y)} ]−β, (7.33)

where I (x,y) is the original image, G(x,y) is a Gaussian filter (see equation (7.4)), R(x,y)

is the Retinex output, and α and β are the scaling factor and offset which transform and
control the output of the logarithm function. Here, the illumination is approximated by
convolving the image with a Gaussian to extract the low-frequency components. The scale
is determined by the σ of the Gaussian. The multiscale version of the Retinex method [305]
is essentially a weighted sum of the single-scale Retinex at different scales:

RM(x,y) =
∑

i

αi [ ln{I (x,y)}− ln{I (x,y)∗Gi(x,y)} ]−β, (7.34)

where the different scales are obtained by convolving the image with Gaussians with dif-
ferent standard deviations. The sum of the weights is equal to 1.0. In a multiband image,
the Retinex algorithm is applied to each band separately.

Atechnique similar to the Retinex method is that of homomorphic filtering [297] which
is used in removing multiplicative speckle noise from synthetic radar imagery. However,
comparisons indicate that it is outperformed by the Retinex approach on color images [496].

7.2.5 Problem-specific denoising

In some application domains, the data collected may have specific noise characteristics. For
example, in Planar Laser-Induced Fluorescence (PLIF) images, such as the ones arising in
experimental physics, the noise in the images appears as vertical streaks [321]. These are
typically darker streaks on a lighter background and sometimes may be of the same intensity
as parts of the objects of interest in the image. Similar “noise” in the form of vertical lines
or streaks also appears in old movies where the film has been corrupted with the passage
of time. In this case, we need to differentiate between a vertical streak due to noise and a
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vertical “streak” due to an object in the movie frame such as a rope hanging from a ceiling
[68]. A general approach to denoising is usually not very successful in these cases and we
may need to resort to techniques which are specific to the problem.

One commonly used approach is to build a model of what constitutes the noise and
use the model to reduce the noise while leaving the signal unaffected. For example, in
PLIF imagery, we can use an edge detector to determine edges in the objects, including
the edges of the darker noise regions, which stand out from the lighter background. Then,
we can exploit the fact that the edges due to the noise must be long straight-line segments,
while the edges due to the signal are often curved or shorter straight-line segments. This
characteristic of the noise enables us to selectively apply the more traditional denoising
techniques only in the noisy regions of an image. However, in regions where the noise and
signal characteristics are similar, such as signals which are short line segments near a noisy
region which also appears as a short line segment, it may not be possible to completely
remove the noise in the data [322].

A similar approach to removing problem-specific noise is used for removing line
scratches from archived motion pictures [347, 348]. In this approach, tentative locations of
lines are first identified using a Hough transform. Then, stochastic techniques are used to
determine the lines which are more likely to fit a predefined model. A generalization of this
approach, based on the hypothesis that scratches are not purely additive, is described in [68].

7.3 Contrast enhancement
The quality of image data may also be degraded due to poor contrast. This can be a problem
when some areas of an image have good contrast, making it easy to identify the objects
in these areas, while other regions have poor contrast, making it difficult to separate the
objects of interest from the background. If we use, for example, a gradient-based method
for identifying the objects (see Chapter 8), then, the gradient will be small in regions of low
contrast and the objects in these regions are likely to be missed. Improving the contrast
may not only make the follow-on processing feasible, it may also make it less sensitive to
the parameters used.

There are several ways of improving the contrast in an image. The simplest is contrast
stretching, where a linear transform is used to stretch the range of the intensity values in an
image from its original narrow range to the full range allowed by the type of data used to
represent the image. So, if the image is represented as 8-bit data, its range would be from 0
to 255. Thus, if Imax and Imin are the maximum and minimum intensity levels in the original
image, and max and min are the maximum and minimum values possible for the data type,
then the new values are obtained as

Inew(x,y) = (I (x,y)− Imin)
max−min

Imax − Imin
+min . (7.35)

However, if the original image has a single outlier pixel with intensity much greater
or smaller than the others, it can result in poor scaling of the entire image. A more robust
approach to contrast stretching is to take a histogram of the image and then select the Imin

and Imax values at the 5th and 95th percentiles in the histogram. Note that this linear scaling
can also be used when converting from floating-point images to 8-bit images for the purpose
of displaying the image.
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A more sophisticated way of improving the contrast is to modify the dynamic range of
the image by modifying the histogram of its intensity values. A common approach is to use
histogram equalization which is essentially a nonlinear mapping which reassigns the pixel
values such that the histogram of the new image is flat; that is, it has a uniform distribution
of intensity values. It can be shown that a mapping which achieves this goal is one where
the grey level of a pixel is replaced by the cumulative distribution of the intensities from the
minimum grey level up to the grey level of the pixel. In other words, the mapping function
is the cumulative probability distribution function of the image [227].

A global histogram equalization may not always be effective, especially when the
contrast characteristics vary across the image. An adaptive histogram equalization approach
addresses this problem by generating the mapping for each pixel by using the histogram of
a window centered at the pixel [284]. As this is done for each pixel in the image, this can be
computationally expensive. Alternatives such as dividing the image into regions and using
the histogram of a region to determine the mapping for all pixels in the regions can lead to
poor quality images due to the blocking effect at the boundary of the regions.

Several authors have proposed alternatives to the traditional definition of histogram
equalization. Pizer et al. [478] have proposed a clipped version of adaptive histogram
equalization, where the contrast which is allowed through histogram equalization is clipped
or limited. This addresses regions of the mapping function where the slope is large and,
as a result, two nearby pixel values are mapped to very different pixel values. An efficient
implementation of this approach is described in [508] for real-time image enhancement. Yu
and Bajaj [639] have proposed an adaptive mapping which uses the local statistics of the pixel
such as the local maximum, the local minimum, and the local average intensity in a window
around a pixel. They use a fast propagation scheme to calculate these quantities effectively.

Another approach which is used to enhance images is that of sharpening. When
transitions between details in an image, such as an edge between a dark and a light region,
occur within one pixel, the image captured is such that the intensity at that pixel corresponds
to neither the dark nor the light intensity. To enhance such edges and other high-frequency
components, as well as to adjust the contrast, we can use a sharpening filter. This filter is
also referred to as an unsharp-masking filter, as it identifies the high-frequency components
by subtracting out an unsharp, or smoothed, version of the image from the original. This
high-frequency component is then scaled and added back to the original image, with the
scaling factor determining the amount of sharpening. The unsharp image can be obtained
by smoothing using a mean or Gaussian filter. Alternately, we can directly obtain the
high-frequency component by using one of the following approximations to the negative
Laplacian:

−1
−1 4 −1

−1

−1 −1 −1
−1 8 −1
−1 −1 −1

1 −2 1
−2 4 −2

1 −2 1
. (7.36)

A different approach, which is popular in medical imaging, in particular for the analysis
of mammograms, is the use of multiscale contrast enhancement. Here, the contrast en-
hancement techniques are applied to a multiresolution version of the image obtained by
using either the wavelet transform [356, 654] or the Laplacian pyramid [76, 149]. While
the wavelet transform can better enhance very small details, it can create artifacts in the
large structures in the image. The Laplacian pyramid, on the other hand, appears to be more
suitable, providing a balanced image impression.
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In some images, the quality of the image can be improved through deblurring. In a
single image, blurring is caused by convolution with a point spread function (PSF). The PSF
describes how a point of light is transformed as it passes through the imaging system. The
blur can be linear in one direction, or circularly symmetric, or a combination of different
directional types of blur. One way of determining the PSF is by sending a point of light
through the system and then examining what comes out. However, if the system is not
available, the PSF can be estimated by seeing how known point sources in the image have
been transformed. This would give us an idea of both the size of the mask and the distribution
of weights in the mask which is causing the blur.

When the PSF of the blur is known, a typical solution approach is to filter the image in
frequency domain [596]. The degraded image Id(x,y) can be considered to be the original
clean image I (x,y), convolved with the degradation function p(x,y), which is the PSF,
plus the noise n(x,y) (in the case of additive noise):

Id(x,y) = p(x,y)∗ I (x,y)+n(x,y). (7.37)

In the Fourier domain, this becomes

ID(u,v) = P(u,v)× I (u,v)+N(u,v), (7.38)

where the convolution is replaced by multiplication. The restored image can be obtained
by applying a suitable filter to the Fourier-transformed degraded image ID(u,v) and then
taking the inverse Fourier transform. The simplest filter is the inverse filter, which assumes
the noise n(x,y) to be zero and the filter to be an inverse of the PSF mask. The inversion is
done point by point, where each value in the PSF mask is replaced by its inverse. This can,
however, cause problems if the mask value is zero or if the degraded image has additive
noise. The Wiener filter addresses these problems by attempting to model the error in
the restored image and applying the filter such that this error is minimized. The Wiener
filter is thus sometimes referred to as the minimum mean-square estimator. The Weiner
filter is

P ∗(u,v)

|P(u,v)|2 + Sn(u,v)
SI (u,v)

, (7.39)

where P ∗(u,v) is the complex conjugate of the Fourier transform P(u,v) of the PSF, and
the quantities

Sn(u,v) = |N(u,v)|2 and SI (u,v) = |I (u,v)|2 (7.40)

are the power spectra of the noise and the original image, respectively. Note that when the
noise is zero, this reduces to the inverse filter. When the noise term is large, the filter value
is small, thus attenuating the signal.

In practice, as the original signal is unavailable, the second term in the denominator
of equation (7.39) is replaced by a parameter, which must be experimentally determined
[596].

When the PSF of the imaging system is not known or cannot be determined, it is
possible to deblur the image using blind deconvolution techniques [115]. More recently,
a fast blind deconvolution approach based on fast Fourier transforms has been proposed
which works well on several images with real blur [84].
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7.4 Morphological techniques
Mathematical morphology methods are a class of techniques which can be used for many
tasks in image analysis ranging from denoising and enhancement to segmentation and shape
analysis. These nonlinear methods have their origin in the study of the geometry of porous
media, which can be considered as “binary” data, where a point either belongs to a pore or
to the material surrounding the pore. This led to the development of a set-based approach
where a point would belong to either an object set (the pores) or its complement (the material
surrounding the pores). The data were then processed using simple set operations such as
union, intersection, complement, and translation.

The early work in morphological techniques was done by Matheron [422] who formal-
ized the concept of granulometry, a tool used in the domain referred to as stereology, where
the goal is to understand three-dimensional structure from cross sections. Matheron used
granulometry to understand the distribution of pore sizes in porous media. Later, Serra [534]
applied the concepts to solve image analysis problems, and the subject has been extensively
studied since then, in the context of both binary and grey-scale images [557, 158].

Morphological techniques are best explained in the context of binary images. The
basic idea, as developed in stereology, is to probe an image with a structuring element (also
called a template) and to quantify the manner in which the element fits, or does not fit,
inside the objects in the image. This approach is very dependent, of course, on the shape
and size of the structuring element. Typical elements include crosses, squares, and circles;
these can range in size from small, such as 3×3, to larger ones, as required by the problem.
Associated with each element is its center, which is translated over each pixel in the image.

There are two primary operations one can perform using the structuring element and a
binary image. The operation of “erosion” identifies all pixel locations in the image such that,
when the center of the template is placed at the pixel location, the template fits completely
inside the objects of interest. In a binary image, the objects of interest are typically all the
black regions, with the white regions forming the background. This operation results in
the black regions shrinking in size—hence the name, erosion. The amount of shrinkage is
determined by the size of the template. Objects smaller than the size of the template will
disappear, enabling the use of erosion to remove small objects. The dual of erosion, referred
to as “dilation,” is obtained by considering all pixel locations such that when the center
of the structuring element is placed on these locations, the element hits (or intersects) the
object of interest. If we use a 3×3 structuring element, dilation has the effect of changing
all background pixels neighboring an object to object pixels (hence the name dilation). It
can also be used to close small holes in an object.

In addition to the erosion and dilation operations, there are two secondary operations,
opening and closing. “Opening” is the union of all translations of the structuring element
which fit inside the objects in the image. Opening is equivalent to erosion followed by
dilation. Its complement, “closing,” is dilation followed by erosion.

Using these four basic operations, we can implement several image processing algo-
rithms. For example, the inner boundary of an object can be considered as the difference
between an object and its eroded version using a circular element, while the outer boundary
is the difference between the dilated version and the original object. One can also use two
structuring elements simultaneously, one to probe the inside of the object and the other to
probe the outside of the object. This is referred to as the hit-or-miss transform and probes
the relationship between the objects and their complement relative to the pair of elements.
Its most common use is in thinning an object to find its skeleton.
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The extension of morphological operations to grey scale essentially involves extending
the definition of various set operations such as translation, subset, intersection, and union.
For example, intersection and union are replaced by minimum and maximum, respectively.
Erosion (dilation) of an image results in assigning to each pixel the minimum (maximum)
value found over a neighborhood of the pixel in the image, where the neighborhood is
determined by the structuring element.

The application of morphological operations is computationally inexpensive, though
care must be taken in the appropriate selection of the structuring elements to achieve
the desired results. Additional information on the use of morphological operations for
enhancing images by improving the contrast, reducing the noise, and minimizing differ-
ences in illumination are discussed in [557, 158] as well as Chapter 11 of the text by Sonka
et al. [559].

7.5 Summary
In this chapter, I discussed how image data can be enhanced to make it easier to extract
information from them. This enhancement can involve reducing the noise, improving the
contrast, and deblurring the images. The techniques discussed can be applied to one-
dimensional signals as well as two-dimensional images. They can also be applied across
the frames of a video sequence to reduce temporal noise.

The approach used in enhancing image data often depends on the type of enhance-
ment required. Usually, it is necessary to use more than one method or try several different
parameter settings in an algorithm before finding a combination which works well. If the
algorithm and the parameter settings are not chosen with care, the image enhancement al-
gorithm may result in a poorer quality image than the original. In some cases, for example
in denoising, it might not be possible to reduce the noise without adversely affecting the
signal. This makes image enhancement one of the more difficult steps to automate in the
scientific data mining process.

7.6 Suggestions for further reading
A good source of suggestions for enhancing scientific image data is the domain scientists
who may have collected the data and are therefore familiar with the systems which were
used to generate the data, the characteristics of the noise in the data, as well as domain-
specific techniques used for enhancing the data. In addition, journals in the appropriate field
can be an excellent source of information, for example, the IEEE Transactions on Medical
Imaging can provide valuable insights into the approaches used in the enhancement of
medical images.

There are several books which provide additional information. Introductory texts,
such as the one by Petrou and Bosdogianni [476] discussing the fundamentals of image pro-
cessing and the book by Umbaugh [596] discussing computer vision and image processing
techniques from a practical viewpoint, provide an easy-to-understand introduction to the
subject. These books also provide some intuitive insights into the reasons why the methods
work and the issues which must be considered in the practical application of the techniques.
Other advanced techniques for enhancing images are described in the books by Jain [297]
and Sonka et al. [559].
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More sophisticated approaches are usually discussed in books which are specific to a
domain or a solution approach. For example, the techniques based on PDEs are discussed
in the books by Chan and Shen on variational methods [94]; Sapiro [523] on the use of
geometric PDEs in image analysis; and by Sethian [536] in his text on level set methods
and fast marching methods. For additional information on denoising techniques based
on wavelets and related methods, the text by Jansen [301] on noise reduction by wavelet
thresholding provides statistical insights, and the papers by Donoho and coauthors [157]
provide details on the recent developments in the field. For domain-specific approaches
in medical imaging, the edited handbooks by Beutal, Kundel, and Van Metter [37] and by
Bankman [20], as well as the text by Rangayyan on biomedical image analysis [502], are all
excellent reference texts. More information on enhancing synthetic aperture radar images
is provided in the book by Oliver and Quegan [459]. For video degraded by motion blur,
Tekalp [576] discusses ways of restoring the video.



Chapter 8

Finding Objects in the Data

Problems worthy
of attack
prove their worth
by hitting back.

—Piet Hein [267, p. 2]

In Chapter 7, I described how data, especially image data, can be enhanced to make it
easier to identify the objects of interest in the data. As discussed in various applications in
Chapter 2, these objects could be galaxies in astronomy images, roads or fields in satellite
images, tumors in medical images, or vehicles in surveillance data. In this chapter, I describe
how we can identify these objects by separating them from the background, a process also
known as image segmentation.

There are a variety of techniques for object identification. Some are edge based and
focus on the boundary or edge of an object, exploiting the fact that since the object is expected
to be different from the background, there should be a gradient in the pixel intensities at the
boundary of the object. Other methods, which are region based, focus on the object itself
instead of its boundary and are based on the expectation that object pixels are more similar
to each other than they are to the background. Both the edge- and region-based methods
have their pros and cons, leading some to consider a combination of the two approaches.
In other problems, such as tracking in video data, where we are interested in finding the
moving objects, we can exploit the motion of the objects to detect them.

This chapter is organized as follows. In Sections 8.1 and 8.2, I describe edge- and
region-based techniques. These range from the very simple to the more complex. Section 8.3
describes the concept of salient points or regions, where instead of focusing on objects, we
consider landmarks in an image. In Section 8.4, I discuss the problem of detecting moving
objects in video, where the motion of an object is used to identify it from the background,
which is assumed to be stationary. Section 8.5 describes some domain-specific approaches
which are being used or must be developed for problems which do not lend themselves to
the more traditional approaches. Since the process of object identification can often result
in spurious objects or single objects which are split into many parts, some postprocessing

113
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is required to correctly identify the objects. I address these issues in Sections 8.6 and
8.7, focusing on ways of associating image pixels with objects and cleanup techniques,
respectively. Section 8.8 describes data structures to represent the objects identified so they
can be used in further analysis. Finally, Section 8.9 summarizes the chapter and Section
8.10 provides suggestions for further reading.

8.1 Edge-based techniques
In edge-based techniques for segmentation, we exploit the fact that at the boundary of an
object, there is a gradient in the intensity values across the edge. The magnitude of this
gradient is dependent on how well the object is separated from the background, that is, the
difference in intensities of the object pixels and the background pixels in the region around
the edge of the object.

There are several ways in which the gradient of the image can be obtained. These ap-
proaches typically involve convolving an image with appropriate filters (see equation (7.1)).
These filters, or gradient operators, obtain the directional derivatives in two orthogonal di-
rections at each point in the image. They range from the simplest, which is the Roberts’
cross operator [511], (

0 1
−1 0

)
,

(
1 0
0 −1

)
, (8.1)

to the more complex Prewitt operators [484],(−1 0 1
−1 0 1
−1 0 1

)
,

( 1 1 1
0 0 0

−1 −1 −1

)
(8.2)

and the Sobel operators(−1 0 1
−2 0 2
−1 0 1

)
,

( 1 2 1
0 0 0

−1 −2 −1

)
. (8.3)

Note that the Roberts’ operators operate on the diagonal elements of a 2×2 window
around the current pixel, while the Prewitt and Sobel operators operate along the x and y

directions using 3 × 3 windows. Without loss of generality, we can denote the derivatives
in the two orthogonal directions by ∂I (x,y)/∂x and ∂I (x,y)/∂y, where the two gradients
are obtained by convolution with the operators described above. Then, the magnitude of
the gradient at the pixel location I (x,y) is given by√

(∂I (x,y)/∂x)2 + (∂I (x,y)/∂y)2 (8.4)

and the direction of the gradient with respect to the x-axis is given by

tan−1
(∂I (x,y)

∂y

/∂I (x,y)

∂x

)
. (8.5)

The values in the gradient operators add up to 0, indicating that the gradient is zero
in regions with uniform pixel intensities. Both the Prewitt and the Sobel operators obtain
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the difference of pixel intensities in one direction while smoothing (or taking the average)
in the other direction. In the case of the Sobel operators, the weighted average is used.

Once the gradient magnitude has been obtained, it can be thresholded to obtain the
edge image. Usually, a simple thresholding is done, where pixels with gradient magnitude
less than a certain value are dropped from the edge image. More sophisticated thresholding
schemes are also possible, as I describe in the next section.

The gradient-based techniques described thus far tend to work well in images with
low noise where the objects of interest have intensity values which are very different from
the background, resulting in a high gradient at the edges of the objects. The presence of
noise is handled to some extent by the Prewitt and Sobel operators as they perform some
limited smoothing of the image. Another approach to this problem, proposed by Marr and
Hildreth [421], is to smooth the image first by a Gaussian and then compute its Laplacian,
which is equivalent to convolving the image with the Laplacian of a Gaussian:

∇2(Gσ ∗ I ) = (∇2Gσ )∗ I . (8.6)

The Gaussian is defined as

Gσ (x,y) = 1

2πσ 2
exp
(
−|x|2 +|y|2

2σ 2

)
, (8.7)

where σ is the standard deviation of the Gaussian. The operator ∇2 produces zero-crossings
along the edges in an image; these zero-crossings can be shown to form closed contours.
Marr and Hildreth suggest applying equation (8.6) to the image at several different scales,
that is, for several different values of σ , and then combining the results to produce the final
edge image.

In Figure 8.1, I show the effect of noise in detecting edges in the synthetic image from
Figure 7.1. Only the lower left region of the full image is shown for clarity. The images
in the right column display the inverse of the magnitude of the gradient obtained using the
Sobel operators on the images in the left column. The inverse is used as it is easier to see
the effects of edge detection in the presence of noise. A darker value in these edge images
indicates a higher gradient magnitude.

This simple example reveals several important challenges to edge detection. In the
absence of noise, as in panel (b), the edges can be clearly detected. When a small amount of
noise (10%) is added, the edges can still be detected (panel (d)), but there will be nonzero
values for the magnitude of the gradient in regions which previously had uniform intensity.
This is clearly seen in panel (f), where the image has been corrupted by 20% random noise.
Further, noise in regions with a low magnitude of the gradient can make it difficult to identify
the edge, as is the case in the edge detected in the upper right corner in panel (f). Also,
the gradient magnitude along an edge now varies, so that if a simple thresholding is used
to detect the edge pixels, the edge will be irregular with potentially some gaps where the
gradient magnitude falls below the threshold.

If we smooth the image prior to edge detection, as shown in panel (g), which is the
image in panel (e) after smoothing using a 3×3 Gaussian, we partially address these prob-
lems, but create others. Now, the effect of noise in previously uniform-intensity regions is
minimized. However, the smoothing diffuses the edge, reducing the value of the magnitude
of the gradient, as indicated by the light grey regions in panel (h) in contrast to the darker
grey regions in panel (f). If the magnitude of the gradient is small in the original image, this
can result in completely missing an edge, as is the case for the edge in the top right corner.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.1. Edge detection in the presence of noise: The images in the right
column are the inverse of the magnitude of the gradient obtained using the Sobel operator
on the images in the left column. (a) The original image. (c) The original image with 10%
random noise. (e) The original image with 20% random noise. (g) The image in (e) after
the application of a 3×3 Gaussian filter.
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Further, the smoothing results in a wider edge as indicated by the blurred darker regions in
panel (h).

This illustrates that we should take care in detecting objects in noisy images, as
processing the data to address one problem may result in another problem.

8.1.1 The Canny edge detector

Another popular edge detection algorithm is the one proposed by Canny [80] which, like
the Marr–Hildreth method, uses Gaussian smoothing at different scales. The Canny edge
detector was proposed to meet certain desirable criteria in edge detection including good
localization of the edge, a single response to a sharp edge, and few false alarms.

The Canny edge detector first smooths the image using a Gaussian with a specific value
of σ . Next, a simple gradient-based edge detector is applied to calculate the magnitude and
the direction of the gradient at each pixel. The Sobel operator is typically used, though it
is possible to use other methods. Then, instead of applying a simple thresholding operator
to the gradient magnitude, the Canny approach first thins the edges obtained and then uses
two thresholds to obtain the final edge image.

The thinning of the edges in the Canny edge detector is done by keeping those pixels
for which the magnitude of the gradient is locally maximum with respect to the gradient
magnitudes along the direction of the gradient. Referring to Figure 8.2, where the gradient
direction makes an angle θ with the x-axis, we first calculate the magnitude of the gradients
at points A and B on either side of the pixel P in the direction of the gradient. This can
be done using linear interpolation. Next, the pixel P considered further only if its gradient
magnitude is greater than the gradient magnitudes at points A and B. This process is referred
to as nonmaximal suppression, indicating the suppression of values which are not maximal
in the gradient direction.

After nonmaximal suppression, the edge image is obtained by thresholding. Canny
proposed the use of two thresholds Tlow and Thigh. A pixel is retained in the edge image if
its gradient magnitude is larger than Thigh. A pixel is dropped from the edge image if its
gradient magnitude is smaller than Tlow. For pixels with values in between Tlow and Thigh,
a pixel is retained only if it is adjacent to a pixel which is retained in the edge image. This
recursive thresholding, which is also referred to as hysteresis thresholding, extends and fills
in the edges determined by Thigh.

In the original method proposed by Canny, he suggested that different values of σ be
used in the Gaussian and the resulting edge images be integrated for the final result. The
use of different σ has the effect of determining the scale of the objects detected by the edge
detector. When σ is small, the finer details in the image are captured. As σ is increased,
the coarser details of the image are selected as being more important. Thus, by varying σ ,
we can change the level of details which are discernable in an image [382].

8.1.2 Active contours

I next discuss a different category of edge-based segmentation methods that is based on the
computation of paths of minimal energy. These techniques, which are referred to as active
contours or deformable models, start with an initial guess for the contour of the objects
of interest. This contour is then moved by image-driven forces to the boundaries of the
desired objects. In this approach, two types of forces are considered: the internal forces,
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Figure 8.2. Nonmaximal suppression in the Canny edge detector: The pixel at
location P = (i,j) is considered further only if the gradient at P is greater than the gradients
at locations A and B which are on either side of P in the direction of the gradient (indicated
by the dotted line). The gradients at locations A and B are obtained through interpolation
from the gradient values at neighboring pixels.

which are defined within the contour and are designed to keep the model smooth during
the deformation process, and the external forces, which are computed from the underlying
image data and are defined to move the model toward an object boundary or other desired
features within the image.

There are two forms of deformable models. In the parametric form, also referred to
as snakes, an explicit parametric representation of the curve is used [331]. This form is
not only compact with an efficient implementation, but also robust to both image noise and
boundary gaps as it constrains the extracted boundaries to be smooth. However, there are
several difficulties with the parametric form of active contours. They are sensitive to the
initial conditions, and the contour must be initialized near the objects of interest. They are not
suitable for objects with deep cavities as their formulation prevents them from progressing
into boundary concavities. Further, the internal energy constraints of snake models can
limit their geometric flexibility and prevent them from representing long tube-like shapes
or objects with significant protrusions. Topological changes are also difficult to handle with
the traditional implementation of snakes as the formulation severely restricts the degree
of topological adaptability of the model, especially if the deformation involves splitting
or merging of the contour. All these can cause problems in automated segmentation of
images from scientific domains where the number or shape of objects in an image is usually
unknown. Several approaches have been proposed to overcome these difficulties with the
parametric form of active contours [424, 634, 633] and the topic remains one of active
research.
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Given these limitations of the parametric deformable models, I will focus on the
geometric form of these models, which are also referred to as level set methods or geodesic
active contours. As I shall discuss at the end of this section, these methods also have their
own drawbacks.

The implicit active contour, or level set, approach was introduced by Osher and Sethian
[466] and has since been enhanced by several authors [536, 408, 465, 464]. An easy-to-
understand high-level description of the level set method is given in [535]. The basic idea is
to start with a closed curve in two dimensions (or a surface in three dimensions) and allow the
curve to move perpendicular to itself at a prescribed speed. Instead of explicitly describing
the curve using a parametric form as in the snakes approach, the implicit active contour
approach takes the original curve and embeds it in a higher-dimensional scalar function,
defined over the entire image. The curve is now represented implicitly as the zeroth level set
(or contour) of this scalar function. Over the rest of the image space, this level set function
φ is defined as the signed distance function from the zeroth level set. Specifically, given
a closed curve C0, the function is zero if the pixel lies on the curve itself, otherwise, it is
the signed minimum distance from the pixel to the curve. By convention, the distance is
regarded as negative for pixels inside C0 and positive for pixels outside C0. The function φ,
which varies with space and time (that is, φ = φ(x,y, t) in two dimensions) is then evolved
using a partial differential equation (PDE), containing terms that are either hyperbolic or
parabolic in nature.

In order to illustrate the origins of this PDE, I next consider the evolution of the
function φ as it evolves in a direction normal to itself with a known speed F . Here, the
normal is oriented with respect to an outside and an inside. Since the evolving front is
a zero level set (that is, a contour with value zero) of this function, we require (using a
one-dimensional example) that the following condition:

φ(x(t), t) = 0 (8.8)

be satisfied for any point x(t) on the zero level set at time t . Using the chain rule, we have

φt +∇φ(x(t), t) ·x′(t) = 0. (8.9)

Since F is the speed in the direction n, normal to the curve, we have

x′(t) ·n = F , (8.10)

where

n = ∇φ

‖∇φ‖ . (8.11)

Thus, the evolution of φ can be written as

φt +F‖∇φ‖ = 0, (8.12)

where φ(x, t = 0), that is, the curve at time t = 0, is given. This formulation enables us to
handle topological changes as the zero level set need not be a single curve, but can easily
split and/or merge as t advances.

Equation (8.12) can be solved using appropriate finite difference approximations for
the spatial and temporal derivatives [373]. The image pixels are considered to be a discrete
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grid in the x-y domain with uniform mesh spacing. In order to evolve the level set, we
need the specification of an initial closed curve(s), the initialization of the signed distance
function φ over the rest of the image, the finite difference discretization of (8.12), and the
prescription of the propagation speed F . We next discuss each of these issues in detail.

• Choice of the speed function F : The speed F depends on many factors including
the local properties of the curve, such as the curvature, and the global properties, such
as the shape and the position of the front (i.e., the zero level set). It can be used to
control the front in several different ways. The original level set method proposed
using F as the sum of two terms

F = F0 +F1(κ), (8.13)

where F0 is a constant propagation term and F1 is a scalar function of the curvature κ ,

κ = div
( ∇φ

‖∇φ‖
)

. (8.14)

The propagation term F0, sometimes referred to as the “balloon force,” is independent
of the geometry of the moving front; the front uniformly expands or contracts with
speed F0, depending on its sign [409]. Note that the F0 term is hyperbolic, while
the F1 term is parabolic. The key idea is to play one term against the other—the
hyperbolic term leads to the formation of shocks from which a representation of the
shape can be deduced, while the curvature term smooths the front, which enables
us to distinguish the more significant shape features from the less significant ones
[409, 545].

Since we are using level sets for image segmentation, we want the zeroth level set
to stop evolving at an edge in the image. This can be accomplished by multiplying
the speed term by an image-dependent stopping factor g(x,y) given by the following
equation:

g(x,y) = 1
/(

1+ |∇IG|2
K2

)
, (8.15)

where IG is the image I convolved with a Gaussian with standard deviation σ (see
(8.7)).

Equation (8.15) is also the one used by Perona and Malik in their work on smoothing
images using the diffusion equation [474] and discussed in more detail in Section
7.2.3. In the original work, this term was used to stop the diffusion process near an
edge of an image. When used in the context of level set segmentation, it has the effect
of reducing the propagation speed near an edge in the image where the gradient is
high. By suitably changing the value of K , we can control the strength of the edges
that cause the speed to become zero near an edge. With this definition of the speed
F , the level set equation can be written as

∂φ

∂t
+g(x,y) ‖∇φ‖

(
div
( ∇φ

‖∇φ‖
)

+F0

)
= 0. (8.16)

Further modifications to the speed term have been proposed by several authors.
For example Yezzi et al. [339, 637] observe that the stopping factor given by
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equation (8.15) will not force the front to stop at an edge unless it is exactly zero,
a situation that rarely occurs in realistic images. They propose adding an additional
term of the form (∇g · ∇φ) to the left-hand side of equation (8.16) resulting in the
following equation for the evolution of the level set:

∂φ

∂t
+g(x,y) ‖∇φ‖

(
div
( ∇φ

‖∇φ‖
)

+F0

)
+∇g ·∇φ = 0. (8.17)

Since the edge can be defined as a step function, and ∇g involves two derivatives of
the image, the term ∇g acts as a “doublet” near an edge. It has the effect of attracting
the evolving contour as it approaches an edge and then pushing the contour back out
if it should pass the edge. This additional term is called the pullback term or the edge
strength stopping force multiplier. With the addition of the doublet term, (∇g ·∇φ),
the level set equation (8.17) becomes equivalent to the geodesic snake model that was
proposed simultaneously by Caselles et al. [90] and Kichenassamy et al. [339].

• The placement of the initial contour: A key challenge in both implicit active con-
tours and snakes is the placement of the initial contour. Since the contour moves
either inward or outward, its initial placement will determine the segmentation that
is obtained. For example, if there is a single object in an image, an initial contour
placed outside the object and propagated inward will segment the outer boundary of
the object. However, if this object has a hole in the middle, it will not be possible
to obtain the boundary of this hole unless the initial contour is placed inside the hole
and propagated outward. We must be careful to ensure that the sign of the so-called
balloon force (F0) is selected to generate the appropriate direction of propagation of
the initial contour(s). More than one closed curve can also be used for initialization of
the zeroth level set, for example, by starting with several seed contours identified in
the image, doing an initial segmentation, and then using region merging (see Section
8.2) to merge small regions [640].

• Calculation of the distance function: Once the initial contour has been determined,
we need to calculate the signed distance function φ, that is, the minimum distance
from each pixel in the image to the prescribed initial contour. This can be done by
solving the Eikonal equation [536, 572] which is derived from the level set formulation
as follows. Suppose the speed function F is greater than zero. As the front moves
outward, one way to characterize the position of the front is to compute the arrival
time T (x,y) as it crosses each point (x,y). This arrival function is related to the
speed by

‖∇T ‖F = 1, (8.18)

where T = 0 is the initial contour. When the speed F depends only on the position,
equation (8.18) is referred to as the Eikonal equation. The solution of this equation
for a constant speed of unity gives the distance function. The sign is attached to the
function depending on the location of each pixel relative to the original contour. A
fast sweeping method to solve the Eikonal equation is described by Zhao [646].

As the front evolves, the signed distance function can often lose the “distance prop-
erty” [226]. As a result, when the curve stops evolving near an edge, the zero level
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set is not exactly at the edge. One solution to this problem is to periodically reini-
tialize the distance function φ. However, this can add significantly to the overall
computational cost of the level set approach.

• The discretization of the level set equation: In order to evolve the level set equation,
equation (8.17) must be solved on the discrete grid represented by the image. Using
the finite difference approach [373], we can consider the discretized version of the
image I (x,y) to correspond to the intensity at the pixels (i,j), at locations (xi ,yj ),
where i = 1, . . . ,N , and j = 1, . . . ,M . The distance between the centers of the pixels,
referred to as the grid spacing, is h. The same interpixel distance h is used along the
x and y dimensions.

Following the approach of Sethian [536, page 73], the level set equation (8.17) can
be written as

∂φ

∂t
+g(x,y) ‖∇φ‖ div

( ∇φ

‖∇φ‖
)

+F0 g(x,y) ‖∇φ‖+∇g ·∇φ = 0. (8.19)

The second term on the left-hand side is the curvature term and is the parabolic
contribution to the equation. This can be discretized using a second-order accurate
central difference scheme such as the one described by Weickert [618]. The third
term is the hyperbolic propagation term and can be discretized using the first-order
accurate upwind differencing scheme given in Sethian [536]. The fourth term is a
pure advection term and can also be discretized using a similar first-order accurate
upwind differencing scheme.

When equation (8.17) is evolved using an explicit time integration scheme, such as the
forward Euler scheme, the time step size needs to be bounded in order to maintain the
numerical stability. In general, the stability restrictions imposed by the parabolic
terms tend to be significantly more restrictive than those imposed by the hyperbolic
terms. To alleviate this overly restrictive stability criteria, the time integration of the
parabolic term cna be carried out using an implicit scheme such as additive operator
splitting (AOS) [618].

A comparison of level set techniques with other edge detectors such as the Canny
edge detector is presented in [616]. In this preliminary study, several observations are made
about the pros and cons of the methods considered. The traditional edge detectors, such
as the Canny edge detector, are computationally very efficient and require the setting of
just a few parameters. In contrast, the implicit active contours are computationally very
expensive. Several options have to be determined including the strength of the balloon force,
the parameters σ and K in equation (8.15), the number of time steps before reinitialization
of the distance function, the placement of the initial contour, and whether we should use the
doublet term or not.

Both the level sets and the traditional edge detectors require the parameters to be
tuned to the image and the type of structure that is to be segmented. As the level sets have
several parameters, it may require several attempts of an expensive algorithm before we
find an appropriate combination. If there are several images which must be segmented in
an automated way, level sets might not be the best first choice of a segmentation algorithm.
The active contour approaches also require a good knowledge of the computational solution
of PDEs, making them difficult to implement. However, they do have a very appealing
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quality of generating closed contours, thus eliminating the tedious postprocessing required
to convert the edges from an edge detector into closed boundaries of an object.

8.1.3 The USAN approach

The USAN principle [553] was introduced in Chapter 7 for the structure preserving denoising
of images. As observed earlier, one of the main applications of the principle is in the
calculations of edges and corners in the image.

The basic idea behind USAN, or the Univalue Segment Assimilating Nucleus, is to
consider the area in a circular mask where the pixel intensities are similar to the intensity
of the central pixel, which is referred to as the nucleus. Referring to Figure 7.2, when the
nucleus of a circular mask is near a straight edge of an object of uniform intensity, the region
it covers will be half in the object and half in the background. Thus, the area of pixels which
are similar to the nucleus will be half the area of the mask. If the nucleus is located such
that the entire mask is within the object, the USAN is the area of the mask. And, if the
nucleus is located at a corner, the USAN will be less than half the area of the mask. This
observation led to the SUSAN principle, or the Smallest Univalue Segment Assimilating
Nucleus principle, which states that an image processed to give the inverted USAN area
at each pixel will have the edges and corners enhanced, with the corners (whose USAN is
smaller than the USAN at the edges), enhanced more strongly.

Originally, the SUSAN method was implemented by considering a pixel to contribute
a fixed value of unity to the area if its intensity was within a threshold of the intensity of
the pixel at the location of the nucleus. However, instead of contributing all or nothing to
the area, the similarity function was changed so that the contribution of each pixel was a
function of the difference between the two pixel values. This allowed the contribution to be
unity when the difference was close to zero, and allowed a gradual fall in the contribution
as the difference became closer to the threshold.

The edge response is then obtained by comparing the USAN with a fixed threshold,
usually set to 0.75 times the maximum value of the USAN. The smaller the USAN relative
to this threshold, the larger the edge response. Additional details on the SUSAN approach
for edge detection, including the similarity function, are described in [553].

It should be noted that the SUSAN technique is somewhat unusual in its approach to
edge detection as it uses no derivatives in its implementation.

8.2 Region-based methods
Unlike the edge-based techniques, the region-based approaches focus on the “inside” of an
object instead of its boundary. They exploit the fact that the pixels which constitute an object
are more similar to each other than to the background. This similarity can be implemented
via a homogeneity metric which is often based on the pixel intensities. However, depending
on the problem, the metric can be more complex or include combinations of simpler metrics.
For example, the metric may require that the variance of pixel intensities in a region be below
a particular threshold or that the texture features calculated using a small window around
each pixel be similar for all pixels in a region. In addition, problem-specific constraints
based on the shape or size of the regions could be imposed to discard regions which do not
meet these requirements.
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A very simple approach to region-based segmentation is thresholding, where pixels
with intensities below or above a certain value are considered as the objects. This approach
can work surprisingly well in problems where the objects of interest all have pixels with
similar intensities which is different from the intensities of nonobject pixels. Akey challenge
in this approach is the determination of the threshold, which is done either experimentally
by trying out different threshold values, by considering the shape of the histogram of the
image [559], or by exploiting known information about the intensities of the objects in an
image.

More complex region-based methods, which are described next, often use the concept
of connectivity or neighbors of a pixel. This general topic is discussed further in Section 8.6.

8.2.1 Region splitting

In this approach to region-based segmentation [227, 559], a region is split into subregions if
it does not meet the homogeneity criterion. In the simplest version, the process starts with
the entire image being considered as a region. As there are likely to be several objects in the
image, as well as a background, it is likely that the full image will not meet the homogeneity
criteria. So, the image is split into four quadrants. Next, each of these quadrants is considered
individually, and if the corresponding region does not meet the homogeneity criteria, it is
split further into four. The process continues until all regions meet the criteria or are small
enough that further splitting is deemed unnecessary. The latter condition occurs naturally
when each region is comprised of a single pixel, but a threshold on the smallest size of a
region can also be imposed.

Note that this approach does not require the image to be square or the length of each
side to be a power of two. If the length of a side of an image or region is odd, the region is
split into unequal quadrants. As a result, if a cropped version of the image were segmented,
the results may not be identical to those obtained by applying the technique to the full image.

8.2.2 Region merging

This approach is the opposite of the region-splitting approach. Here the original image is
first split into many small regions, which are then merged as long as the newly created region
continues to satisfy the homogeneity metric. This requires the identification of seed regions,
which are the initial regions chosen as the ones which will grow as a result of the merging
process. The neighboring regions around each seed pixel are considered for merging with
the seed pixel. If the newly formed region satisfies the homogeneity criteria, the regions
are merged. The process is stopped when a region cannot grow anymore and each pixel in
the image has been assigned to a region.

The image is first divided into small regions each composed of either a single pixel
or a small number (say 4 or 16) of pixels. In the absence of seed regions which can be used
to start the region growing, the process considers each region in turn. The results usually
depend on the order in which the regions are considered in the merging process. This can
lead to undesirable results, for example, when the homogeneity metric allows one region to
grow at the expense of others simply because the subregions of that region were considered
for merging first. This problem can occur even if the seeds are known and care must be
taken to grow regions around each seed in turn, instead of growing the region around the
first seed to completion before starting on the next seed.
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Several approaches have been proposed to suitably merge the regions. In seed com-
petition [175], regions are allowed to compete for pixels, and a pixel originally assigned to
one region may be reassigned to another if, in the process of region growing, it is found
to be more similar to the new region. In boundary melting [559], the “edge” between two
neighboring pixels from two regions is first assigned a value based on the similarity of the
intensity values between the pixels. Then, two regions are merged if a significant part of
the edge between them is “weak”; that is, pixels on either side of the edge are very similar
to each other.

The identification of the seed regions is usually dependent on the problem and the
segmentation results can be sensitive to the choice of these seed pixels. In some problems,
one can use the brightest pixels as the seeds, specially if it is known that the brighter pixels
form the objects of interest. Alternatively, we can use regional maxima (minima), where
we consider connected pixels with the same intensity which are surrounded by pixels with
lower (higher) intensity.

Instead of starting with seed pixels, we can also combine the processes of splitting
and merging, and start the merging with the results from splitting, as discussed next.

8.2.3 Region splitting and merging

The process of region splitting may not always give the desired segmentation. Consider as
an example, the simple 4×4 pixel image in Figure 8.3(a), where the object of interest is in
grey on a white background. Assume a homogeneity metric which requires all pixels in a
region to have the same pixel intensity. The first step of region splitting will create the four
regions shown in Figure 8.3(b). Of these, only region IV satisfies the metric and therefore,
is not split further. The other three regions are split, resulting in the image in Figure 8.3(c).
Note that this split creates 13 regions in the image, though only two should result if the
segmentation is correct.

However, the image suggests a solution to the problem as these 13 regions can be
considered the starting point for a region-merging approach. If we start with region Ia , we
can grow it to form the grey object. Next, starting with region Id , we can grow it to form
the white background, thus separating the object of interest from the background.

In reality, however, a metric such as the one we have used here is too stringent as an
object rarely consists of pixels all of which have the same intensity value. Suppose we use
a more realistic homogeneity metric, where we allow the pixel intensity in a region to vary
a little so that 25% of the pixels in a region can have a different intensity value from the
rest. If we start the merging process with region Ia and consider the four neighbors of each
pixel (see Figure 8.3), then we would consider in turn, the pixels Ib, Ic, IIa , Id , IIIa , IIb,
II c, and so on. So, when the region Id is considered for the merge, it could merge into the
grey region, which, after the merge, would have four grey pixels and one white pixel. If
however, the order of regions considered for the merge is based on the eight neighbors of
each boundary pixel, then we would consider, in order, the pixels Ib, Id , Ic, IIa , II c, IV ,
and so on. Then, based on the metric, region Id will not be included in the grey object as
at the time of its merge, the grey object would have two grey pixels (Ia and Ib) and adding
Id would not satisfy the constraint. The results of the merging process are thus sensitive to
the order of regions considered for the merge.

Another issue with the split and merge technique is one of data structures. For the
splitting process, the simplest data structure to use is the quad-tree data structure [530, 531]
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Figure 8.3. Segmentation based on region splitting and merging. Consider the
grey object in the 4 × 4 image in panel (a). Let the splitting of the regions continue until
each subregion has a uniform intensity. Then, panel (b) illustrates the first split into the four
regions, and panel (c) illustrates the second split, where only three of the four subregions
are split further. Panel (d) shows the quad-tree data structure which can be used to store
the split. Cross-hatched regions indicate a mix of pixels while white or grey regions have
uniform intensity. Note that if a quad-tree is used in the splitting process, it is difficult to
identify neighboring regions for the merging process.
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as it supports the split of a region into four. However, with such a data structure, it is
difficult to determine neighboring regions for the merge and we may need to store adjacency
information about the regions as well. This issue of data structures is discussed further in
the text by Sonka [559].

Note that region-merging and splitting techniques can be easily extended to three-
dimensional data on a regular grid.

8.2.4 Clustering and classification

The pattern recognition techniques of clustering and classification (see Chapter 11) can also
be applied to image segmentation tasks. In clustering, we attempt to find natural groupings
of the objects (in this case, pixels) in feature space such that pixels in a group are similar
to each other but dissimilar to pixels in other groups. By applying clustering techniques,
we can group pixels from each object together, thus separating them from the background
pixels. In classification, given a sample of pixels assigned to various objects, we attempt
to build a model which, given a pixel, will assign it to an object. This allows us to identify
the pixels which form each object.

Pattern recognition techniques are often used in the segmentation of multispectral
images, where each pixel is associated with several values from the different bands. For
example, satellite imagery from the IKONOS satellite [212] is available both in grey-scale
as well as in four-band multispectral, with red, green, blue, and near-infrared bands. In the
latter case, each pixel can be considered as a point in a four-dimensional space represented
by the four bands.

Consider, for example, the identification of human settlements in satellite imagery
described in [323], which exploits both the multispectral and the panchromatic (that is,
grey-scale) imagery from IKONOS. In the multispectral images, we can clearly see regions
such as tarred roads and tarred parking lots, concrete buildings and concrete roads, lush
vegetation, and so on. Ideally, a pixel from a tarred road should lie in the same region of
feature space as a pixel from a tarred parking lot. Thus, if we identify regions of different
types in an image and extract sample pixels representing the regions, we can use these pixels
as a training set to build a decision tree or a neural network classifier. Then, given a pixel
and the values of the four bands associated with it, we can identify its class, for example,
tarred or concrete surface. Similarly, if after looking at the image, we can say that there
are k different types of regions in the image, such as regions of lush vegetation or tarred
surface, we can take the pixels of the image and apply a clustering algorithm, which will
group similar pixels regardless of where they are in the image. Thus, pixels representing
tarred surfaces will lie close to each other in feature space, regardless of where in the image
they came from, or whether they came from a tarred road or a tarred parking lot.

The technique of graph partitioning for clustering (see Section 11.1.3) has also been
applied in the context of image segmentation [541]. In this case, the image pixels are
considered as nodes of the graph, with a key challenge being the assignment of weights to
the edges of the graph, where the weight between two nodes indicates the similarity between
the corresponding pixels.

When we use pattern recognition techniques, whether from classification or clustering,
it is often the case that an object will have a majority of pixels from one class and a few
stray pixels from another class. For example, an area of lush vegetation will likely have
a few pixels which are classified as not-so-lush vegetation. These must be addressed in a
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postprocessing step (see Section 8.7); unless the stray pixels form a large enough region,
the usual solution is to merge them into an appropriate neighboring region.

8.2.5 Watershed segmentation

The watershed approach borrows ideas from geography to generate a region-based seg-
mentation of an image. It belongs to a class of related techniques developed somewhat
independently in topography for digital elevation models, in mathematical morphology (see
Section 7.4) for image segmentation [145], and more recently, in scientific visualization for
the topological analysis of simulation data using the Morse–Smale decomposition [118].
Each of these three domains has provided different insights into the algorithm and created
enhancements suitable for their domains.

Watershed algorithms usually operate on the gradient image and consider the grey-
scale gradient image as a topographic surface, where the grey levels represent altitudes.
Region edges in the original image correspond to high altitudes in the gradient image, or
watersheds in topography. The interior of regions in the original image are more homo-
geneous and correspond to lower altitudes in the gradient image, or catchment basins in
topography. The watersheds separate the catchment basins from each other.

There are two ways in which watershed segmentation can be implemented. The first
is based on the topographic interpretation of watersheds. It essentially considers a rain
drop falling on a topographic surface and moving under the influence of gravity to the local
minimum of the image surface altitude. A catchment basin is then defined as the set of pixels
for which these downstream paths all end at the same altitude minimum. The alternative
approach is to imagine the landscape, with holes pierced in its local minima, being immersed
in a lake. The catchment basins will start filling up with water as the landscape is immersed
further. At points where water coming from different basins would meet, dams are built all
the way to the highest point in the landscape. The process stops when the water reaches the
highest level. The dams, or the watersheds, essentially separate the basins, thus segmenting
the image into regions.

A fast implementation of the immersion technique is given in [604]. However, a
straightforward implementation of the watershed algorithm can lead to severe oversegmen-
tation and the regions must be merged to correctly segment an image [392]. Techniques for
addressing this problem are described in [559, 513].

8.3 Salient regions
In recent years, there has been interest in the information retrieval community in identifying
objects using salient points or regions. Salient points, also referred to as interest points,
are landmarks in an image which are often intuitively obvious to a human. These include
corners of a building, the eyes on a human face, a high-contrast region, and so on. Of course,
the edges and corners of an object are also considered salient as these features often help
draw attention to the object by making them stand out from the background. I discussed
the extraction of edges earlier in this chapter. I next briefly discuss the extraction of corners
before describing the extraction of more sophisticated salient regions.

Recall that salient regions are also useful in registering images, as discussed in Sec-
tion 6.3.2, where a transformation to align two images can be obtained by first aligning the
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salient regions. By using salient regions, instead of extracting the entire object of interest
from the image as one would in segmentation, we are extracting only a subset of regions
from that object.

8.3.1 Corners

A corner is a salient region where two edges intersect. Alternatively, it can be considered as
a feature formed at the boundary between two regions in an image with different brightness
levels, where the boundary curvature is sufficiently high [553]. One of the earliest “corner”
detectors was developed by Moravec [438], with the intent of finding “points of interest”
which could be used in image registration across consecutive frames of a video sequence
in a computer vision problem. He defined a point of interest as one where there is large
intensity variation in every direction. This intensity variation was obtained by considering
a small square window around each pixel and obtaining the cross correlation of this window
with a window obtained by shifting a pixel in the eight directions (horizontally, vertically,
and along the two diagonals). The intensity variation at a point was the minimum of the
variation in the eight directions. This idea is somewhat similar to the approach used in the
SUSAN algorithm [553] discussed in Section 7.2.1.

However, there are some issues with the Moravec detector as it is not rotationally
invariant and identifies a different set of corners if the image is rotated. Further, the square
window, with its unequal distances from the center pixel, results in a noisy calculation of
the variation in intensities in the different directions. A circular window, with perhaps a
weight associated with each pixel, can help address this concern. The Moravec detector is
also sensitive to small variations along an edge and can incorrectly identify edge pixels as
corner pixels. This is an issue in problems where the images are noisy and variations in
intensity along an edge are to be expected.

These concerns are addressed in a rather computationally intensive approach proposed
by Harris and Stephens [257], which is also referred to as the Harris corner detector or the
Harris–Plessey corner detector. It uses first-order derivatives to calculate the autocorrela-
tion, making it isotropic, as well as a circular window with Gaussian weights to make the
variation in intensity less noisy relative to a square window with equal weights. The issue
of imperfections in an edge resulting in an incorrect identification of a corner is addressed
by calculating a corner-ness measure for each pixel and using an appropriate threshold to
minimize false positives.

Several alternative techniques have since been proposed to detect corners with varying
degrees of success. These include the SUSAN approach (see Section 7.2.1), different
methods to extract the curvature, as well as techniques where more than one method is used
to detect the corners in an image reliably and localize them accurately. Several of these
techniques are reviewed in [553, 436].

8.3.2 Scale saliency regions

The Scale Saliency algorithm, proposed by Kadir and Brady [311], is a method for measuring
the saliency of image regions and selecting the optimal scales for their analyses. They
were motivated by earlier work of Gilles [220] which used salient points to match and
register two images. Gilles’ definition of saliency was based on the local signal complexity.
Specifically, he used the Shannon entropy of local attributes such as the intensity of the
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pixels in a neighborhood around the current pixel. Image areas with a flatter distribution of
pixel intensities have a higher signal complexity and thus a higher entropy. In contrast, a
flat image region has a peaked distribution and thus, lower entropy. Gilles used a fixed-size
neighborhood, which led to his algorithm selecting only those salient points which were
appropriate to the size of the neighborhood. As an extension, Gilles proposed the use of a
global scale for the entire image, which was automatically selected by searching for peaks
in the average global saliency for increasing scales.

Kadir and Brady [311] extended Gilles’ algorithm by incorporating a local scale se-
lection procedure. They defined salient regions (not points) as a function of the local signal
complexity weighted by a measure of self-similarity over scale space. As a result, the Scale
Saliency algorithm detects regions at multiple scales and the size of the circular salient
patches is determined automatically.

The algorithm of Kadir and Brady has a simple implementation. For each pixel
at location x in the image, a histogram of the intensities in a circular region of radius s

(which reflects the scale) is obtained. The entropy E(x,s) of each of these histograms is
calculated and the local maxima are considered in further processing as candidate scales for
determining the salient regions. Specifically,

E(x,s) = −
∑
d∈D

p(d,x,s) log2 p(d,x,s), (8.20)

where the entropy E is defined as a function of both the location x and the scale s; and
p(d ,x,s) is the probability of the value d occurring in the region of scale s around the pixel
at location x. D is the set of all values that d can take. For example, for 8-bit grey-scale
images, assuming a histogram with a bin width of 1, D is [0, . . . ,255]. The set of scales at
which the entropy peaks is defined as

sp = {s : E(x,s −1) < E(x,s) > E(x,s +1)}. (8.21)

These peaks of the entropy are weighted by the interscale saliency measure, which is de-
fined as

W(x,s) = s2

2s −1

∑
d∈D

∣∣∣ p(d,x,s)−p(d,x,s −1)

∣∣∣ , (8.22)

resulting in the following definition of the Scale Saliency at a point x:

S(x,sp) = E(x,sp) ·W(x,sp). (8.23)

The top n scale-salient regions in an image, ordered based on their scale saliency, are
used for further processing. Note that since the entropy is calculated for scales ranging from
smin to smax , the calculation of the peaks implies that they can occur only between scales
smin + 1 and smax − 1. By their definition, scale-salient regions are invariant to scaling,
intensity shifts, and translations. The use of circular regions also ensures invariance to
planar rotation.
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The Scale Saliency algorithm can be summarized as follows.

Scale Saliency Algorithm: For each pixel location x

• For each scale, s, between smin and smax

– Obtain the histogram of the pixel intensities in a circular region of radius s

centered at the pixel.

– Calculate the entropy E(x,s) from the histogram using equation (8.20).

• Select the scale for which the entropy is a local maximum using equation (8.21). Note
that there may be no scales that satisfy this constraint.

• Weight the peaks by the appropriate interscale saliency measure from equation (8.22).

Evaluating the scale saliency at each pixel in an image can be computationally very
expensive. In addition, there is often little difference in the scale saliency at a pixel and its
neighbor. As a result, if every single pixel is processed, and only a small number (say 100)
of the top scale-salient regions are considered, many of these regions will be right next to
each other, and many of the true salient regions will be missed. A simple way to address
this problem, and reduce the computational cost of the algorithm at the same time, is to
calculate the scale saliency at every nth pixel, where n can range from 2 to 10 or more,
depending on the data. Further, instead of considering every scale between smin and smax ,
we can use a stride for the scale as well [320].

8.3.3 Scale-invariant feature transforms

A recent development that has attracted much attention in the content-based image retrieval
community is the work of Lowe on the Scale-Invariant Feature Transform (SIFT) [395].
This uses a two-step process—the selection of keypoints or regions and the extraction of
features for these regions which are invariant to scale, rotation, and translation. In this
chapter, we focus on the first of these steps, namely the selection of the regions. The
extraction of features will be considered in Chapter 9.

Like the scale-saliency approach, SIFT is also a scale-space approach to the detection
of salient locations, also called keypoints, in an image. Lowe considered locations that
are maxima or minima of a difference-of-Gaussians function. The convolution of a two-
dimensional Gaussian function is first implemented as two passes of a one-dimensional
Gaussian function with σ = √

2 using 7 sample points. The resulting image, A, is again
convolved with the Gaussian function with σ = √

2, to give an image B, which is equivalent
to the original image convolved with a Gaussian of σ = 2. The difference-of-Gaussians
function is obtained by subtracting image B from image A.

The idea of a scale-space approach is next introduced by considering a pyramid of
such difference-of-Gaussians images. The image B is resampled using bilinear interpolation
with a pixel spacing of 1.5 in each direction and the process is repeated on this new image.
The 1.5 spacing implies that each new sample will be a linear combination of four adjacent
pixels. Next, maxima and minima of this scale-space function are determined using an
efficient and stable method described in [393]. A pixel is retained if it is a maximum or
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minimum when compared with the 8 neighbors at its level and the nine neighbors at each
of the levels above and below it.

In his later work [395, 394], Lowe discussed enhancements to the original method
to improve the way in which the sampling was done in the image and the scale domains.
In addition, instead of just locating the keypoints at the location and scale of the center
sample point, further improvements were proposed to locate the keypoints more accurately
and remove points that were poorly localized along an edge or had low contrast. These
keypoints formed the salient regions in the image.

8.4 Detecting moving objects
In problems where the data are available as a video sequence, we can exploit the motion of
the objects to detect them. If we can identify the moving objects accurately, we can track
them over time. This allows us to model the interactions between the moving objects and
use these models to detect anomalous events in a scene. This tracking can be invaluable
in applications such as surveillance, traffic monitoring, and gesture recognition in human-
machine interface.

Detecting moving objects in video in a large scene over a long period of time can be
difficult for several reasons. We need to account for issues such as changes in illumination;
occlusions; moving objects which are not really moving such as trees blowing in the wind;
small motion of a stationary camera; motion of a camera which is mounted on a moving
platform; objects which are moving but come to a stop in the scene; or objects which were
not moving for a while, but suddenly start moving again. In addition, objects may enter and
leave a scene, and then enter again, or we may have several cameras, each covering part of
a scene, and we need to detect and track moving objects across regions covered by different
cameras. This task of detecting and tracking moving objects in video is a difficult one and
the subject of active research, especially in algorithms which are robust and accurate enough
to handle all of these challenging conditions.

I next describe two rather broad categories of techniques for the detection of moving
objects in video. One category is based on maintaining a background image consisting of
nonmoving objects, while the other focuses on identifying where a region in one frame has
moved to in the next frame.

8.4.1 Background subtraction

The process of background subtraction involves comparing each video frame against a
reference or background frame. Pixels in the current frame that deviate significantly from
the background are considered to form the moving objects. These “foreground” pixels
are further processed for object localization and tracking. A good background subtraction
algorithm must adapt quickly to changes in the environment, be able to detect objects moving
at different speeds, provide good localization of the objects, and have a low computational
complexity.

At the heart of any background subtraction algorithm is the construction of a statistical
model that describes the background state of each pixel in the frame. There are different
ways in which the background model can be built. The simplest is to use the previous frame
as the background for the current frame, leading to the frame-differencing approach. This
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Figure 8.4. Block matching for motion estimation. Consider the block centered
at location A in frame k. The corresponding point is location B in frame (k +1), which is
used as the starting point of the search for a best match. The search window indicates the
region over which the search is conducted. If the block centered at location C is the best
match, then the motion vector is given by the arrow connecting B to C.

technique suffers from the aperture problem, as a result of which only the front and back
parts of a large, uniform intensity object will appear to have moved. The middle part, whose
intensity does not change between the two frames (assuming the object has not moved far
between the first and second frame) will appear to have not moved at all.

More complex methods obtain the median value of the previous few frames and use it
to create a single-state model of the background for the current frame [222, 128, 387, 649,
127]. Others use the Weiner filter [587] or the Kalman filter [325, 631, 266, 239, 52]. A
recent approach which has gained popularity is a full density estimation based on Gaussian
mixture models [206, 565, 211, 312, 482, 366] or histograms [169].

All these algorithms have several parameters which must be tuned to the characteristics
of the video and the objects being detected. These parameters range from the number of
frames to include in the frame buffer for the median filter to the adaptation rate used in
the Kalman gain matrix. They determine how adaptive the algorithm is to changes in the
pixel values. Once a background estimate has been created, a simple way to determine the
moving objects, or the foreground, is to subtract the background image from the current
frame and threshold the result to keep only those pixels which deviate significantly from
the background.

The background algorithms described in this section all have their pros and cons; a
detailed study of the performance of the algorithms on several videos taken under different
situations is presented in [111, 112].

8.4.2 Block matching

Block matching is a simple approach to motion estimation which uses a pixel domain
search procedure to determine the best estimate to the motion vector of an object [577].
Given a block (a square or rectangular region of pixels) in the current frame of a video
sequence, the block-matching approach determines the new location of the block in the next
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frame. The displacement of the block is the estimate of the motion vector for that block.
Figure 8.4 shows a block at location (i,j) in the current frame (frame k). Starting with the
corresponding location in the next frame (frame (k +1)), we search for a block of the same
size which is the best match in a search window centered around (i,j). The displacement
from (i,j) to the center of the block which is the best match is the estimated motion vector.

There are essentially three main components to a block-matching algorithm with
several options available for each component:

• Matching criterion: The matching criterion is a metric used to determine how similar
a block in the current frame is to a block in the next frame. These criteria include
the sum of absolute difference, which considers the sum of the absolute value of
the difference between pixels in the identical locations in the two blocks; and the
mean squared difference, which is the mean of the square of the difference between
the corresponding pixels in the two blocks. Typically, all the pixels in a block are
considered for the matching criterion, though we can reduce the processing time by
considering a smaller sample of the pixels, at the risk of increasing the error in the
motion vector estimate.

• Search strategy: This determines where and how we search for the best match
for a block. The simplest approach is the window search (shown in Figure 8.4),
where the block at location (i,j) in the current frame is compared against blocks in
a search window of a fixed size centered around (i,j). Essentially, for each pixel
in the search window, we consider a block of the same size centered at the pixel,
compute the matching criterion, and select the best match over all pixels in the search
window. The most exhaustive case is where the search window is the same size as the
video frame. Typically, the size of the search window is determined by the maximum
distance the objects in a video are expected to move between frames. It is possible to
speed up the search by not considering every pixel in the search window for a possible
match, but by considering, for example, every other pixel. Alternatively, we can use
more sophisticated searches such as the three-step search or the cross search [577],
where the matching criterion is evaluated only at a certain predetermined subset
of locations. These may lead to suboptimal solutions as they are not exhaustive
searches.

• Block determination: This specifies the position and size of the blocks in the current
frame, the scale of the blocks, and the starting location of the search in the next frame.
Typically, a fixed-size block is used for a frame at a given scale; that is, the size of the
block does not vary within the frame. The blocks can be either overlapping or disjoint
and span the frame. The starting location of the search is the same as the center of the
block in the current frame. The size of the blocks is chosen based on the application
and the size of the objects moving in the video. If it is too small, there may not be
enough variation in pixel intensities in the block to enable a good match. If the block
is too large, it may be difficult to accurately detect the motion in the block especially if
more than one moving object is contained in it. In more complex approaches to block
determination, a multiresolution approach is used. First, a multiresolution pyramid
using a Gaussian filter is created for the current frame and the next frame. Then, block
matching is applied at the coarsest resolution and the best match found. The process
is repeated at the next finer resolution, where the search starts at the location of the
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best match from the previous level. This use of multiresolution introduces the idea
of a scale in block matching, where the matching is done starting with the coarsest
scale and progressing to ever finer scales.

A simple way to improve the performance of block-matching algorithms is to incor-
porate a zero-motion bias. A block in the current frame is compared against the block at the
corresponding location in the next frame. If the matching criterion indicates that the block
has not moved, then the search is stopped. To allow for small changes in the pixel intensities,
for example, those caused by small camera movement, a zero-motion bias threshold is used.
This threshold varies based on the video. The zero-motion bias, as well as a comparison of
different options in block matching are discussed in [390, 391].

Another approach to substantially reducing the cost of the block-matching algorithm
is to apply it to select regions rather than an entire image. For example, we can first identify
the salient regions in an image and then consider only these regions in the block-matching
process. This approach is taken in the ASSETT-2 project [552], where the corners in an
image are considered in detecting the moving regions in a video sequence.

Note that unlike the background subtraction methods, where we determine the objects
which have moved, the block-matching approach also provides us information on the new
location of the objects, and therefore, the motion vector. These motion vectors can then be
processed further to track the objects over time. For example, if an object is composed of
many blocks, the motion vectors corresponding to the blocks must be close to each other.
The motion vectors can therefore be clustered to identify a moving object [552].

8.5 Domain-specific approaches
In some problems, it is possible to exploit the characteristics of the domain to identify the
objects in the data. For example, if the objects of interest are straight lines such as airport
runways or railway lines, or in some cases, roads, we can use the Hough transform [227].
Or, if the objects of interest have a particular template, for example, they are circular with a
given intensity variation, we can use template-matching approaches [297, 227, 559]. Here,
we look for a match between the template of an object of interest and locations in the
image where the mismatch energy is a minimum or the correlation is high. This kind of a
matched filter approach was used in the identification of focus of attention regions in the
detection of volcanoes in the imagery from Venus [73]. Sometimes, the shape of an object,
or parts of an object, can be exploited. For example, in the FIRST astronomical survey
[29, 174] the locations of the galaxies are identified by finding pixels of high intensity in an
image and fitting an elliptic Gaussian to it. The information on these ellipses, such as the
location of the center and the lengths of the major and minor axes, are collected to form a
catalog. This catalog can be considered to be a summary of the objects found in the images,
and can then be mined to find the patterns among the galaxies [315]. Another example
of exploiting domain-specific characteristics to detect objects of interest is face detection
using the distance between the eyes or the skin color. Needless to say, such techniques are
not viable in situations where a person is wearing a hat and the eyes cannot be seen clearly;
or is looking sideways so both eyes cannot be seen; or the illumination is poor, so the skin
color cannot be exploited.

In other problems, the characteristics of the data are such that new techniques must
be developed for the identification of the objects of interest. This is especially true for
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simulation data sets. The characteristic of mesh data, where the values of the variables are
available at discrete points in the mesh, can make it difficult to identify objects of interest
using existing technology. If the underlying mesh is a regular Cartesian mesh, with equal
spacing in all dimensions, then the mesh can be considered an image and image processing
techniques can be applied directly, both in two- and three-dimensional problems. However,
it should be noted that the mesh variables are floating-point values and not 8-bit or 16-bit
data as in most images. The analysis techniques must therefore be modified so they are
applied to floating-point data [318].

If the mesh is more complex, such as those resulting from the application of the
Adaptive Mesh Refinement (AMR) technique or from an unstructured mesh, then, a simple
application of traditional image processing techniques is not sufficient to identify the objects
of interest in such data. In this case, one option would be to sample the mesh at regular
intervals, thus converting the data to be similar to an image. Alternatively, one could use the
underlying mesh as is, and use the techniques based on PDEs (see Section 8.1) to detect the
edges in the data. A positive aspect of such data is that they are multivariate, with several
variables associated with each grid point. This additional information can be invaluable
in improving the quality of segmentation or edge detection as we can use more than one
variable in the processing. Further, as simulation data are available over time, we can exploit
the temporal information as well. For example, we can obtain the boundary of an object
using active contours for one time step and use the boundary as the initial contour in the
following time step. This topic of identifying the objects in mesh data from simulations is
a particularly challenging one, especially when the objects are distributed among the files
output by different processors used in running the simulation.

8.6 Identifying unique objects
Once we have identified the pixels in an image which belong to the objects of interest,
there are still several additional steps which must be completed before we can extract
characteristics of these objects as discussed in Chapter 9. One of these steps is identifying
the pixels which form an object, or, in other words, assigning a unique identifier to each
pixel which associates it with either a specific object, all of whose pixels have the same
identifier, or the background, which is usually assigned an identifier of zero. This process
is called connected component analysis or labeling [227, 559].

Essential to the task of connected components labeling is the concept of connectivity,
which, given a pixel, defines which of the surrounding pixels are considered to be its neigh-
bors. The two definitions often used are 4-neighbors or 4-connected pixels and 8-neighbors
or 8-connected pixels. Figure 8.5 illustrates the four and eight neighbors of a given pixel.
The object indicated by the grey pixels in panel (c) can be considered a single object if
we use 8-connectivity, or two objects if we consider 4-connectivity. In the latter case, the
two squares are decoupled as the corner pixels of each square are not 4-neighbors of the
other.

Note that this idea of connectivity is also used in region growing, when we evaluate
the neighbors of a pixel for merging. The idea can be easily extended to three-dimensional
objects, where we can have 6-connectivity or 26-connectivity corresponding to 4- and 8-
connectivity in two dimensions, respectively.

Once an image has been segmented, each of its pixels is assigned a unique object
identifier using connected component labeling. Consider a binary mask image where the
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Figure 8.5. Connectivity of the pixels in an image, illustrating the (a) four and
(b) eight neighbors (shown by an ×) of a center pixel in grey. (c) The region indicated
by the grey pixels could be either two objects if 4-connectivity is used or a single object if
8-connectivity is used.

pixels corresponding to the objects of interest are set to 1 and the background is set to 0. If
the objects of interest in an image are represented using a format other than a binary mask,
such as run-length encoding or a quad-tree structure (see Section 8.8), then the labeling
can be applied to these alternative data formats as well [559]. In the connected component
labeling, we first select a desired level of connectivity (4 or 8 for two-dimensional data),
and then proceed to assign a unique identifier or object number to each of the objects of
interest.

Connected Component Labeling Algorithm:

• Scan the columns of the image, row by row, and assign a label to each pixel with
value 1 (i.e., an object pixel) as follows:

– If all neighbors of the pixel have value 0 (background) or 1, then assign the
pixel a new, that is, not yet used, label.

– If there is one neighboring pixel with a label not equal to 0 or 1, assign this label
to the current pixel.

– If there is more than one neighboring pixel, all with identical labels (excluding
0 or 1), assign this label to the current pixel. If these labels of the neighbors are
not identical, we have a label collision, that is, two pixels in a single object have
different labels. We keep track of the fact that the two labels are equivalent and
revisit the issue in the second pass through the image. In this case, the current
pixel is assigned any one of the labels of its neighbors.

• The image now has a label assigned to all nonzero pixels. However, due to label
collision, some regions may have different labels assigned to the pixels in the region.
In the second pass, the information on label collision is used to assign a single label
to the entire region. This is done by replacing equivalent labels by a unique label.
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8.7 Postprocessing for object identification
In many cases, once the objects have been identified in an image, some additional processing
may be needed to clean up the results after segmentation. Depending on the type of cleanup,
this postprocessing may be done before or after the component labeling. For example, some
object identification methods, such as the ones based on thresholding or region growing, can
result in objects which are too small, consisting of one or two pixels. In such cases, we could
use connected component labeling first to identify the objects. The size of the objects could
then be used either to remove them or to merge them with other nearby objects which are
sufficiently close. The use of a size criterion is particularly useful if we know the approximate
size of the objects of interest. Alternately, one could use morphological operations to perform
postprocessing cleanup. Nearby objects could be merged by first dilating each object (thus
connecting nearby ones) and then eroding them to revert back to their original size. Small
objects could be removed by first eroding the objects, and then dilating them. These steps
may need to be applied multiple times to achieve the desired results.

Sometimes, more sophisticated postprocessing techniques may be needed. For ex-
ample, gradient-based segmentation techniques often result in gaps in the edges. If these
gaps are not too long, they can be completed using various edge relaxation techniques as
described in [559]. These approaches consider an edge in the context of its neighbors and
use simple heuristics to complete edges or remove spurious ones. Other techniques for find-
ing and completing salient edges are the structural saliency approach [537] and the tensor
voting method for inferring structure from sparse information [425, 426].

8.8 Representation of the objects
There are many ways in which we can represent the objects found in an image. The simplest
is by using a mask image, where each object is assigned a unique identifier and all pixels
in the object are labeled using the identifier. The background is assumed to be assigned
the identifier zero. Though this representation is the simplest in terms of its use in further
processing, it makes poor use of memory as the entire image including the background
pixels are stored, and these pixels could constitute a large part of the image.

An alternate approach would be to store only the pixel locations corresponding to each
object or use run-length encoding [559], which stores the locations of only the beginning
and end of each row of object pixels, with the locations of the intermediate pixels being
implicitly defined. However, such approaches can make further processing cumbersome
and it may make sense to reconstruct a mask image first for ease of processing.

It is useful to note that many of the schemes for the compact storage of images were
developed at a time when computer memories were small and compression techniques were
not very effective. Such schemes were therefore necessary if images of a reasonable size
had to be analyzed; as a result, extensive research was done to determine efficient algorithms
for the manipulation of data stored in these data structures. However, given the availability
of larger memories in modern computers, as well as sophisticated compression techniques,
the use of such storage schemes must be carefully evaluated to ensure that the additional
complexity introduced in the implementation of the image analysis algorithms is indeed
worth the savings in storage. Often times, it may make sense to store a compressed binary
mask image, of the same size as the original image, and uncompress it into a full mask
image just prior to use.
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8.9 Summary
In this chapter, I described different ways to identify or segment objects in image data,
where a part of the image may be the background and the task is to separate the object pixels
from the background pixels. These techniques can be applied to both image and simulation
data in two and three dimensions.

The techniques for segmentation range from simple thresholding and gradient-based
approaches to more complex techniques based on PDEs. We also considered ways of iden-
tifying salient regions, where we focus on landmarks in an image instead of entire objects,
as well as techniques where we use the motion of an object to identify its extent in a video
sequence.

These results from the application of segmentation techniques often need to be
postprocessed to complete boundaries and remove spurious objects. Then, a unique iden-
tifier is associated with the pixels which constitute an object. Next, we extract features or
descriptors to characterize each object, a topic I discuss further in Chapter 9.

8.10 Suggestions for further reading
Image segmentation is a topic which has been studied extensively, and new techniques are
being developed to identify objects in new media such as video, or to address long-standing
problems such as edge completion, especially in the presence of noise. The early work
in image segmentation is well summarized in the papers by Haralick and Shapiro [256].
A relatively recent overview of edge detection techniques is presented by Ziou and Tab-
bone in [651]. For those interested in comparing different edge detection techniques for
suitability to their problems, several evaluation strategies are considered in the papers by
Heath et al. [264], by Bowyer, Kranenberg, and Dougherty [54], and by Shin, Goldgof, and
Bowyer [543].

The use of PDEs in segmentation is a topic of active research. Several books have
been written covering various aspects of the topic: the use of deformable models in medical
imaging is the subject of the book by Singh, Goldgof, and Terzopoulos [549] and the edited
collection of papers by Malladi [408]; the fundamentals of level sets, including a chapter on
shape recognition, are discussed in the text by Sethian [536]; snakes and active contours for
segmentation form the focus of the text by Osher and Fedkiw [464], while active contours
and stochastic methods are discussed in the book by Chan and Shen [94]; and several
chapters on edge detection and boundary extraction using geometric level sets are included
in the edited collection by Osher and Paragios [465].

Domain-specific texts describe how one can exploit the characteristics of the domain
to improve the quality of segmentation or use different modalities of images available in
the domain. For example, in the field of medical imaging, a variety of techniques are
used for segmenting images; good references are the handbook by Sonka and Fitzpatrick
[558] and the text by Rangayyan [502]. In contrast, in remote sensing, pattern recognition
algorithms are used frequently to assign labels to pixels as discussed in the text by Lillesand
and Kiefer [381] and by Schowengerdt [527].





Chapter 9

Extracting Features Describing
the Objects

Next, when you are describing
A shape, or sound, or tint;
Don’t state the matter plainly,
But put it in a hint;
And learn to look at all things
With a sort of mental squint.

—Lewis Carroll [88]

In Chapter 8, we considered methods to identify objects in two- and three-dimensional
image and mesh data and separate them from the background. At the end of this step, we
have identified the pixels or the grid points which comprise an object. The next step
in the scientific data mining process is to identify and extract characteristics to represent
these objects. As mentioned earlier in Section 3.2.10, we are often interested in identifying
patterns among the objects in the mesh or image data. Therefore, it is important first to
find the objects accurately in the data, and then to represent them by some higher-level
characteristics, or descriptors, which I refer to as “features.”

The word “feature” is unfortunately used in two different contexts in many scientific
domains. For example, scientists may refer to “features of interest” in their data, by which
they mean structures in the data such as a flame front, an eddy, a road, or a storage tank.
In contrast, I use the word “feature” in a more primitive sense to mean any measurements
which can be easily extracted from the data. These could range from simple characteristics,
such as the aspect ratio or the area of an object, to more complex characteristics representing
the shape of the object or various moments indicating the distribution of pixel intensities.
These features, or descriptors, are then used to find the patterns among the objects identified
in the data. For example, if we are interested in finding round storage tanks in a satellite
image, we can use a feature such as the aspect ratio of the object, along with some measure of
the “circularity” of the object. Or, mushroom-shaped objects in a simulation of a fluid-mix
problem may be characterized by shape features.

It should be obvious that the features we extract to represent the objects in the data
should be relevant to the pattern of interest. For example, if instead of round storage tanks,
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we are interested in finding rectangular buildings in the satellite image, we would focus
on features such as the presence of sharp corners in the object, with an angle close to 90◦.
This observation indicates that the identification of features is likely to be very problem
dependent. However, there are several general features we can extract which have worked
well for several different problems. These will be the focus of this chapter.

This chapter is organized as follows. First, I discuss some general criteria which
should be helpful in guiding the choice of features. Next, in Sections 9.2 through Section
9.4, I describe various features one can extract to represent the data. It should be kept in mind
that, as appropriate, these features can be extracted for objects in the data, for regions in the
data such as subimages or even a whole image, or at points in the data such as pixel locations
or mesh points in simulation data. Further, in case of objects, we can choose to consider the
pixel intensities or focus just on a binary image, ignoring the actual values of the data. The
latter is often the case when we consider shape-based features where the focus is on aspects
of the extent of an object. Then, in Section 9.5, I give examples of problems where it is
necessary to extract specific features tailored to the problem. Section 9.6 describes various
postprocessing steps which may need to be applied to the collection of features describing the
objects in a data set, before we proceed to identifying the patterns among the objects. Finally,
Section 9.7 summarizes the chapter and Section 9.8 provides suggestions for further reading.

9.1 General requirements for a feature
As we have observed, a key criterion a feature must satisfy is that it must be relevant to the
pattern of interest. In many scientific problems, the best way to identify such features is by
working with the domain scientists. They have frequently given much thought to what they
are interested in finding in the data and have a good idea of what characterizes these objects
of interest. Consider, for example, our experiences with the problem of classification of
bent-double galaxies [315]. The astronomers had spent many hours visually analyzing the
images of the galaxies and could explain why they believed a galaxy should be considered
to be a bent-double galaxy. They would indicate the number of blobs in a galaxy and the
spatial arrangement of the blobs as factors behind their assignment of a class label. Or,
they would refer to the relative intensities of the blobs and indicate patterns such as a bright
round blob with two less-bright, elongated blobs around it. This led us to initially focus
on features such as distances and angles between blobs. As we continued our interaction
with the astronomers, we refined the set of features, considering more than one approach to
defining the angles, or adding other features if we found we were consistently misclassifying
galaxies with a certain structure.

This might lead one to believe that a good approach would be to extract as many
features as possible during the first iteration of the feature extraction step of the data mining
process. However, this is not only time consuming, it can also cause problems with the
identification of patterns in the data. I explore this issue further in the next chapter on
dimension reduction (Chapter 10). Instead, a more prudent approach is to identify an initial
set of features in collaboration with the domain scientists and use them to identify the patterns
in the data. Then, based on the results, either add new features or refine the current set by
perhaps using a more robust method for extraction, weighting the features appropriately, or
using dimension reduction techniques to identify the key features. Several iterations of this
process are usually needed to identify and extract the features which will result in a successful
solution to the problem. However, since the quality of the end result after pattern recognition
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is only as good as the features which are input to the pattern recognition algorithm, it is
worth spending the time to extract high-quality features relevant to the problem.

Care must also be taken to ensure that the features used do not bias the results. For
example, when we first used decision trees in the classification of bent-double galaxies, the
tree indicated that the right ascension and declination (which are analogous to longitude
and latitude, respectively, and can be considered the coordinates of the galaxy in the sky),
were important features in identifying if a galaxy was a bent-double or not. As this seemed
improbable, we investigated the issue further. We found that the astronomers had generated
the training set of bent-double galaxies during the early days of the survey, when only a small
part of the sky had been surveyed. The non–bent-doubles, in contrast, were extracted later
on, somewhat randomly from different locations in the sky. As a result, the coordinates of
the galaxy appeared to play an important role in determining if the galaxy was a bent-double
or not. Needless to say, we removed the right ascension and declination features in future
iterations of the data mining process.

It goes without saying that the features of interest should be easily extractable from
the data. Recall that by features, I refer to low-level characteristics which represent the
objects in the data. Science data sets are often massive being measured in terabytes or
more. Features which may be very complicated or time consuming may not be the best
choice, at least in the initial iterations. It makes sense to start with the simpler features
and move to more complex ones only if the results are unsatisfactory. Further, if complex
features are required, then it might make sense to work with a smaller sample of the data to
ensure that the features are effective before processing the whole data set.

Another factor driving the choice of features is that in many cases, the patterns of
interest are invariant to rotation, translation, and scale. For example, a bent-double galaxy
remains a bent-double even if it rotated, moved to another location in the sky, or scaled
to be larger or smaller. This would imply that, to the extent possible, the features we
extract should also be scale, rotation, and translation invariant. This may involve additional
postprocessing of the features after extraction. For example, if we are analyzing satellite
images at different resolutions, instead of measuring the area of an object in pixels, we may
need to convert the area into square centimeters to bring the size of all objects to the same
scale. Features which are sensitive to rotation may require that the objects be aligned along
a certain axis before the extraction of the feature.

Some features may require the data to be preprocessed prior to feature extraction. For
example, many image features require the images to be scaled such that the pixel intensities
lie between 0 and 255. Or, if we are extracting features for images, we may need to scale
all images to have the same size. Else, features such as the histogram of pixel intensities
will be adversely affected by the size of the images. For other features, we may need to
quantize the data into a few levels to make the feature extraction tractable.

A different aspect of feature extraction is the robustness of the features. Ideally, we
want to extract features which are insensitive to small changes in the data. Science data are
often noisy and if the values of a feature change dramatically with minor perturbations in
the data, then it is unlikely that the feature will represent the object correctly. An example of
such a situation is illustrated in the calculation of angles between the blobs which constitute
a galaxy in the problem of classification of bent-double galaxies [315] (see also Section 9.5).

In addition to features which represent the objects, it is advisable to associate with each
object or item other features which help to identify its provenance. These “housekeeping”
features could include the object identification number, the name of the image file containing
the object, the location of the image file (for example, a directory structure which can be



144 Chapter 9. Extracting Features Describing the Objects

used to locate the file), the location of a subimage within a larger image, the date a data set
was created, the name of the person creating the data set, a file name containing information
on the instrument used to obtain the data as well as the settings of the instrument, and so
on. While such features are not used directly in the process of pattern recognition, they are
invaluable in tracking the objects back to their original source. This is useful for displaying
the results of the pattern recognition step, where a user might want to see the images from
which the objects were extracted, or relate the patterns in simulation data with the values of
the parameters used to run a simulation.

I next describe several general features which have been used in a variety of different
problems. As mentioned earlier, these features can be extracted for an image, for objects
in an image or the output of a simulation, or for pixels in the image or mesh points in a
simulation output. For convenience, I refer to all of these as “objects.” Further, in cases
where more than one variable is available at each pixel or mesh point, as is usually the case
in multispectral images or in simulation data, the features can be extracted for each variable
separately, or the variables can be fused prior to feature extraction.

In some problems, the features describing an object may be relatively simple and
obvious such as the values of different sensor measurements in an experiment (where each
experiment is an object of interest) or the history of a patient’s blood pressure in a clinical
trial. In such cases, the feature extraction methods described in this chapter may not be rele-
vant, though postprocessing of these features, as described in Section 9.6, may be necessary.

9.2 Simple features
There are several simple features which can be extracted easily from the data, regardless of
whether the feature is used to represent an image, a subimage, or an object in the image.
As appropriate, these may require the data values to be scaled to lie within a certain range
so that when we try to identify patterns among objects in different images or different time
steps of a simulation, the results will not be adversely affected by the range of values. Such
simple features may include:

• Simple statistics: Simple statistics include the mean, the standard deviation, the
maximum, and the minimum of all pixel values or mesh variables in an object. These
features often work surprising well, not necessarily in identifying patterns of interest,
but in rejecting objects not of interest. For example, areas of simulation where nothing
interesting is happening, and the variable values are almost constant can be rejected
easily from further consideration.

• Histograms: A histogram indicating the distribution of pixel values or variables at
mesh points is another feature which works surprisingly well, given its simplicity. We
can also use histograms of more complex structures, such as edges, as in the MPEG-7
edge descriptor [418].

To ensure that the comparison of histograms across objects is done correctly, care must
be taken to scale the pixel intensities appropriately and to choose a suitable metric
for comparing the histograms. There are several commonly used metrics. Bin-to-bin
comparisons using standard metrics, such as χ2 distance, Minkowski distance, or the
Kullback–Leibler divergence, work well when the histograms are aligned. However,
they can be sensitive to quantization errors and techniques such as the earth-mover’s
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distance [518, 384], which considers cross-bin distances, have been proposed to
alleviate these errors. Other metrics include the diffusion distance [383] and a scale-
space decomposition using scale trees for multidimensional histograms [218]. The
number of bins used to obtain the histogram should also be chosen appropriately,
perhaps by trying different values on a subset of the data.

Note that histogram comparison arises in many tasks, including retrieval and feature
selection. Some additional details are provided in Section 10.3.1.

• Location of the centroid: In many applications, the location of the centroid of an
object may serve as a “housekeeping” feature to enable one to identify the object
in an image. However, it can also serve as a feature in problems such as tracking,
either to display the tracks of a moving object or to enable the implementation of
constraints which require that an object, represented by its centroid, can move only
within a certain neighborhood of its location in the previous frame as determined by
its speed.

• Scalar object descriptors: There are several basic features which one can extract to
describe an object. The size of an object, that is, its area in two dimensions or volume in
three dimensions, is a simple feature which can work well in rejecting patterns which
are not of interest. Scaling is of course required if we are considering data at different
resolutions. Other related features which might be useful are the perimeter in two
dimensions or surface area in three dimensions and features derived from a bounding
rectangle around the object such as elongatedness, aspect ratio, and direction [559].

• Geometric moments: Geometric moments are among the simplest moment func-
tions and can be considered as simple representations of the shape of an object. The
(p +q)th order, two-dimensional, geometric moment mpq is defined as

mpq =
x=+∞∑
x=−∞

y=+∞∑
y=−∞

xpyqf (x,y), (9.1)

where f (x,y) is the pixel value at location (x,y). To make this definition invariant
to translation, we consider the central moment μpq defined as

μpq =
x=+∞∑
x=−∞

y=+∞∑
y=−∞

(x −xc)
p(y −yc)

qf (x,y), (9.2)

where xc and yc are the x and y coordinates of the centroid of the object and can be
written as

xc = m10/m00 and yc = m01/m00. (9.3)

If we consider an additional scale factor, we obtain the scaled central moments which
are invariant under scale and translation:

ηpq = μpq/(μ00)
(p+q+2)/2. (9.4)

From the central moments, Hu [279] obtained seven polynomials of mpq which re-
main invariant under rotation [297]. The corresponding moment characteristics which
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are invariant to scale, rotation, and translation can be obtained using scaled central
moments [559]. These invariant moments are

I1 = η20 +η02, (9.5)

I2 = (η20 −η02)
2 +4η2

11, (9.6)

I3 = (η30 −3η12)
2 + (3η21 −η03)

2, (9.7)

I4 = (η30 +η12)
2 + (η21 +η03)

2, (9.8)

I5 = (η30 −3η12)(η30 +η12)[(η30 +η12)
2 −3(η21 +η03)

2]
+(3η21 −η03)(η21 +η03)[3(η30 +η12)

2 − (η21 +η03)
2], (9.9)

I6 = (η20 −η02)[(η30 +η12)
2 − (η21 +η03)

2

+4η11(η30 +η12)(η21 +η03)], (9.10)

I7 = (3η21 −η03)(η30 +η12)[(η30 +η12)
2 −3(η21 +η03)

2]
−(η30 −3η12)(η21 +η03)[3(η30 +η12)

2 − (η21 +η03)
2]. (9.11)

The Hu moments are very commonly used features in image analysis, especially in the
identification of objects with unique shapes regardless of their location, size, and ori-
entation. Other more complex moments such as Legendre and Zernike moments are
discussed in [440] and the MPEG-7 moment-based shape analysis feature is discussed
further in Section 9.3.

Other simple features which can be extracted for objects include the mean value of a
temporal variable in a time window for use in time series analysis, the locations and number
of maxima and minima of a variable, and the locations of salient regions such as corners in
an image (see Section 8.3).

9.3 Shape features
Shape analysis, which involves both shape representation and shape-matching techniques, is
an important problem in many domains, including image analysis and information retrieval.
An excellent description of representations for shape is given in Chapter 6 of the book by
Sonka, Hlavac, and Boyle [559]. The text by Dryden and Mardia [162] addresses the
problem from a statistical viewpoint, focusing on the case where objects are summarized
by keypoints called landmarks. They also devote a chapter to discussing the problem in
the context of image analysis. The information retrieval perspective is summarized in
[359, 602], while general topics from an image analysis viewpoint are discussed in the book
by Costa and Cesar [121] and the survey paper by Loncaric [389].

There are several ways in which shape features can be defined and extracted from the
data. One can focus on either the boundary of an object or the interior region. We have
already seen one set of features based on moment invariants which can be used to characterize
the shape. This feature is region based as it focuses on the region of an object rather than
its boundary. I next briefly discuss some of the more commonly used shape features.

• Fourier descriptors: The boundary of an object can be considered a closed curve
in the complex plane (in the case of two-dimensional objects). By tracing out the
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boundary using 4-connectivity (see Section 8.6), which ensures a constant sampling
interval, we obtain a function which is periodic in the number of pixels along the
boundary. The Fourier descriptors are the coefficients of the discrete Fourier trans-
form of this function. The descriptors can be transformed to be scale, rotation, and
translation invariant [559]. It is also possible to use the Fourier descriptors of two
curves to obtain a measure of the difference between the shapes represented by the
curves, even if they have different sizes and orientations [297].

• Chord distribution: A chord is a line joining any two points on the boundary of
a region. The distribution of the lengths and angles of all chords can be used to
describe the shape of an object [559]. A similar idea is used in features called shape
distributions in the context of three-dimensional objects [463].

• Skeleton-based representation of a region: Given an object, its boundary pixels
may be iteratively removed by a process called “thinning,” resulting in the “skeleton”
of the object. There are several well-known algorithms to generate this skeleton,
including Hilditch’s thinning algorithm [274], the medial axis transform [48, 559],
and morphological operations [557]. Skeleton construction is often sensitive to
noise in the boundary of a region, resulting in additional “edges” in the skeleton.
Smoothing the boundary prior to the extraction of the skeleton can alleviate this
problem. Alternately, we can postprocess the skeleton to remove the extra edges, but
it may be difficult to identify which edges are caused by noise in the boundary and
which are real edges in the skeleton. Also, some algorithms, such as the Hilditch’s
thinning algorithm, may result in a skeleton which is 2 pixels wide in places. Asingle-
pixel-wide skeleton can be obtained by further processing to ensure that there is only
one path from one pixel to the next, with diagonal pixels favored over 4-connected
ones as this results in a shorter edge in terms of number of pixels.

Once a skeleton of a region is obtained, the shapes of two regions may be compared
by considering each skeleton as a graph (with nodes and edges) and using graph-
matching algorithms [559].

• Angular Radial Transform (ART): This is a region-based shape descriptor proposed
in the MPEG-7 standard [418]. It can be applied to objects composed of a single
region or multiple regions, possibly with holes. The shape feature is obtained by
decomposing the shape into a number of orthogonal two-dimensional basis functions.
The normalized and quantized magnitudes of the coefficients for each basis function
are then used as the feature vector.

ART belongs to a broad class of shape analysis tools based on moments [440]. It is a
unitary transform defined on the unit circle that consists of the complete orthonormal
sinusoidal basis functions in polar coordinates. The ART basis function of angular
order m and radial order n in polar coordinates is given by

Vnm(ρ,θ) =
{

exp(jmθ)/2, n = 0,
exp(jmθ)cos(πnρ), n �= 0.

(9.12)

The ART coefficient Fmn of a two-dimensional signal f (ρ,θ) is defined by

Fmn = 1

π

∫ 2π

0

∫ 1

0
V ∗

nm(ρ,θ)f (ρ,θ)ρ dρ dθ , (9.13)
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where V ∗
nm is the complex conjugate of Vnm. The ART feature is implemented by

discretizing (9.13). The MPEG-7 standard uses twelve angular bases and three radial
bases. Rotational invariance is achieved by using only the magnitude of Fmn, and
scale invariance is achieved by normalizing all the Fmn by the area of the image, i.e.,
F00. This results in a 35-dimensional feature vector as the normalized F00 is always
one and thus dropped from the representation.

In addition to the traditional application of image retrieval, ART features have also
been used in the context of retrieval of “objects” in simulation data [314].

• Shapelets:Another set of shape features derived using coefficients of two-dimensional
basis functions are shapelets, which were developed in the context of astronomy for
describing shapes of galaxies [506]. Shapelets are a complete, orthonormal set of
basis functions constructed from Laguerre or Hermite polynomials, weighted by
a Gaussian. Unlike wavelets, where the basis functions have the same shape but
different sizes, the shapelets model an image as a collection of discrete objects of
arbitrary shapes and sizes. Thus, they are suitable for astronomy data to represent
structures such as clusters of galaxies and are finding use in various applications in-
cluding archival and compression of data, as well as morphological classification of
galaxies.

• The contour shape descriptor: The MPEG-7 standard [418] also includes a shape
feature based on the boundary of the object. This contour shape descriptor is derived
from the Curvature Scale Shape (CSS) representation of the contour [435, 434].

The CSS representation is based on the observation that humans tend to compare
shapes by first breaking up a contour into convex and concave sections and then
comparing these sections based on their position on the contour, their length relative
to the length of the full contour, and so on. To mimic this, the CSS representation
decomposes the contour by considering its inflection points, that is, points where the
curvature is zero. The contour is then iteratively smoothed using a Gaussian. As
the smoothing continues, the inflection points disappear, until the contour becomes
convex, with no inflection points. The CSS image is obtained by plotting the amount
of smoothing on the vertical axis against the location of the inflection points on the
horizontal axis (for example, see Figure 15.13 in [418]). A contour, corresponding to
a particular level of smoothing, is then defined by a horizontal line in the CSS image.

The MPEG-7 contour shape descriptor is a set of characteristics obtained from this
CSS image, the original contour, as well as the contours obtained during the process
of smoothing. For example, the descriptor includes the number of peaks in the CSS
image, the height of the largest peak, and the x and y positions of the remaining peaks.
In addition, for each contour, the circularity

perimeter2

area
(9.14)

and the eccentricity √√√√√√ i20 + i02+
√

i2
20 + i2

02 −2i20i02 +4i2
11

i20 + i02−
√

i2
20 + i2

02 −2i20i02 +4i2
11

, (9.15)
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where

i02 =
M∑

k=1

(yk −yc)
2, (9.16)

i20 =
M∑

k=1

(xk −xc)
2, and (9.17)

i11 =
M∑

k=1

(yk −yc)(xk −xc) (9.18)

are obtained. Here M is the number of pixels inside the contour shape, (xk ,yk) are
their coordinates, and (xc,yc) is the center of mass of the shape.

Additional details, including the extraction of the CSS image features, without the
explicit creation of the CSS image, are described in [435, 434].

This MPEG-7 shape descriptor is invariant to scale, rotation, translation, and mirroring
of the object contour. It has also been shown to be robust to noise in the contour [435]
and performs well in similarity-based retrieval.

• Shape context: An approach proposed for measuring similarity between shapes is
that of shape context [32]. Like CSS, it is also a descriptor derived from the contour
of a shape. First, the contour is represented by a set of points; these are not required
to have any special characteristics such as being landmark points or points with high
curvature. The shape context is then the descriptor, which, for a given point on the
shape, describes the coarse distribution of the rest of the points on the shape with
respect to that point. The distribution is in the form of a histogram of the coordinates
of the remaining points, where the histogram bins are chosen to be uniform in log-
polar space. This makes the descriptor more sensitive to positions of nearby sample
points than points which are further away. The cost of matching two points, one
each on two objects, is thus the distance between the histograms of the two points.
A bipartite graph-matching algorithm can then be used to match the points from one
object to another.

Note that, as appropriate, shape descriptors may be applied to either the original image
with varying pixel intensities, or an object with varying pixel intensities after extracting it
from the background, or a binary object after extracting it from the background. Shape
descriptors for three-dimensional objects are also possible, as discussed in Section 15.6 of
the description of the MPEG-7 standard [418] as well as in the article by Osada et al. [463].
In addition, texture features, which are described next, can, in some situations, be good
representations for shapes as well [452].

9.4 Texture features
Image texture can be considered as the spatial dependence of pixel values. Over the years,
several features have been proposed which provide a quantitative description of the charac-
teristics commonly associated with texture, such as coarseness and directionality. Specif-
ically, texture features have been discussed at length in Chapter 14 of the book by Sonka,
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Hlavac, and Boyle [559], with additional details presented in the book chapters by Tuceryan
and Jain on texture analysis [590] and those by Manjunath and Ma [417] and by Sebe and
Lew [529] on texture features in image retrieval. I next describe four texture features
commonly used in applications.

• Grey-level co-occurrence matrices: Texture features based on grey-level co-
occurrence matrices (GLCMs) characterize the spatial co-occurrence of pixel val-
ues in an image. These features are computed in two steps [255]. First, the pairwise
spatial co-occurrences of pixels separated by a particular angle and/or distance are
tabulated using a GLCM. Then, a set of scalar quantities characterizing different
aspects of the underlying texture are derived from the GLCM.

Let I (x,y) be an N × M image whose pixels take one of L levels, and let �r be a
specified spatial offset. A GLCM entry, GLCM�r (i,j), is then simply a count of the
number of times a pixel with value j ∈ 1, . . . ,L occurs at offset �r with respect to a
pixel with value i ∈ 1, . . . ,L:

GLCM�r (i,j) = #
{
(x1,y1),(x2,y2) ∈ (N ,M)× (N ,M)

|I (x1,y1) = i ∧ I (x2,y2) = j (9.19)

∧ �r = −−−−−−−−−−−→
(x2 −x1,y2 −y1)

}
.

The offset �r can be an angle and/or distance. We can compute the GLCMs corre-
sponding to different numbers of offsets, depending on the application. In our work
in remote sensing [83, 451], we found that the following four offsets worked well:
the adjacent pixel in the 0◦ direction, in the 45◦ direction, in the 90◦ direction, and in
the 135◦ direction.

Intuitively, the diagonal and near-diagonal entries of a GLCM will be larger for im-
ages composed of patches with the same or similar pixel values, at least with respect
to the offset. The off-diagonal entries will be larger for images in which the pixel
values vary locally. The distribution of the GLCM entries are summarized using
five scalar quantities: angular second moment (ASM), contrast (CON), inverse dif-
ference moment (IDM), entropy (ENT), and correlation (COR). These quantities are
computed as follows:

ASM =
L∑

i=1

L∑
j=1

(GLCM (i,j))2 , (9.20)

CON =
L−1∑
n=0

n2

⎧⎨
⎩
∑

|i−j |=n

GLCM (i,j)

⎫⎬
⎭ , (9.21)

IDM =
L∑

i=1

L∑
j=1

GLCM (i,j)

1+ (i − j)2
, (9.22)

ENT = −
L∑

i=1

L∑
j=1

GLCM (i,j) logGLCM (i,j) , and (9.23)
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COR =
L∑

i=1

L∑
j=1

(ij)GLCM(i,j)−μi′μj ′

σi′σj ′
, (9.24)

where

μi′ =
L∑

i=1

L∑
j=1

i GLCM(i,j) , (9.25)

μj ′ =
L∑

i=1

L∑
j=1

j GLCM(i,j) , (9.26)

σ 2
i′ =

L∑
i=1

L∑
j=1

GLCM(i,j)(i −μi′)
2 , and (9.27)

σ 2
j ′ =

L∑
i=1

L∑
j=1

GLCM(i,j)(j −μj ′)2 . (9.28)

Thus, a complete GLCM texture feature vector corresponding to k offsets is

[ASM1,CON1, IDM1,ENT1,COR1, . . . ,

ASMk ,CONk , IDMk ,ENTk ,CORk] (9.29)

resulting in 5 ∗ k features. Note that the GLCM is an L × L matrix for an image
whose pixels take on one of L intensity levels. Some quantization of the image may
be necessary to generate a moderate-sized matrix, even for 8-bit data, but more so for
16-bit data.

• Power spectrum: Texture is often thought of as being related to periodic image pat-
terns. Since Fourier analysis provides a mathematical framework for the frequency-
based analysis of images, the Fourier power spectrum can be used for characterizing
texture in images. Let F(u,v) be the discrete Fourier transform of an N ×M pixel
digital image I (x,y):

F (u,v) = 1

NM

N−1∑
x=0

M−1∑
y=0

I (x,y)exp
[
−2πi

(ux

N
+ vy

M

)]
, (9.30)

where i = √−1. The Fourier power spectrum (PS) is then |F |2 = FF ∗, where ∗
denotes the complex conjugate. The radial distribution of the values of |F |2 in the
two-dimensional frequency space is related to the coarseness of the texture in I ,
and the angular distribution of the values is related to the direction of the texture.
Texture features summarizing these distributions can be computed by dividing the
frequency space into tiles and computing the average of the PS in these tiles. If
the u and v dimensions are divided into Tu and Tv tiles, respectively (assuming N
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and M are divisible by Tu and Tv , respectively), then the PS texture features can be
computed as

PS(i,j) = NM

TuTv

(i+1) N
Tu

−1∑
u=i N

Tu

(j+1) M
Tv

−1∑
v=j M

Tv

|F (u,v)|2 . (9.31)

In addition to these tile averages, there are four additional quantities which can be com-
puted over the entire frequency space. These are the maximum (MAX), the average
(AVG), the energy (ENG), and the variance (VAR) of the magnitude of F(u,v) [9]. If
we divide the frequency space into k×k tiles, the complete PS texture feature vector is

[PS(0,0), . . . ,PS(k −1,k −1),MAX,AVE,ENG,VAR] . (9.32)

The PS texture feature contains (k ×k)+ 4 components.

• Wavelet-based features: Wavelets (see Section 5.2) are used to characterize texture
for the same reason as Fourier based techniques—they provide information about
the frequency content of an image which is often associated with texture. Wavelets,
unlike Fourier based approaches, are also localized in space [230]. This makes them
more suitable for analyzing texture in nonstationary or nonhomogeneous images, such
as in remote sensing applications.

One approach to computing wavelet texture features is to exploit the multiresolu-
tion analysis (MRA) framework using a separable discrete wavelet transform (DWT)
[410]. The DWT applies the wavelet to decompose the image into low-low (LL), low-
high (LH), high-low (HL), and high-high (HH) components (see Section 5.2) . The
MRAframework successively reapplies the DWT to the decimated LL band, resulting
in a multilevel decomposition. The wavelet texture feature vector is then composed
of the energies and standard deviations of the four components at the different reso-
lutions. For example, the feature vector resulting from a k-level decomposition is

[energy(LL1), stdev(LL1), . . . , energy(HHk), stdev(HHk)] . (9.33)

The wavelet texture feature contains 8×k components. Any appropriate wavelet can
be used; we have found the Daubechies-4 wavelet to be a good compromise in terms
of effectiveness and computational efficiency.

• Gabor-filter–based features: Texture analysis using filters based on Gabor functions
is a frequency-based approach which, like wavelets, seeks to localize the analysis in
both the spatial and frequency domains. Gabor functions are particularly appealing as
they can be mathematically shown to achieve the optimal trade-off between localizing
the analysis in the two domains [135].

The texture analysis is accomplished by applying a bank of scale- and orientation-
selective Gabor filters to an image [416]. If we use filters tuned to n scales and m

orientations, the Gabor texture feature vector is then formed from the mean and the
standard deviation of the outputs of each of these images:

[μ11,σ11,μ12,σ12, . . . ,μ1m,σ1m, . . . ,μnm,σnm] , (9.34)
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where μrs and σrs are the mean and standard deviation, respectively, of the output
of the filter tuned to scale r and orientation s. The Gabor texture feature contains
2×nm components.

Some of our work in texture features is described in [451, 452] for the problems of
detection of human settlements in satellite images and shape characterization in simulation
data. The choices we made for the parameters used in the different texture features were
based on the computational cost of feature extraction and the effectiveness of the feature.
As these parameters are application dependent, some experimentation might be necessary
to determine the best parameters for each application.

9.5 Problem-specific features
The extraction of appropriate features describing the objects of interest is an important and
critical step in scientific data mining. It is also a very problem-dependent step—for a given
data set, the features extracted may change if the problem were to change, for example,
searching for round objects instead of rectangular objects in a satellite image. As a result,
one of the best sources of good features are the domain scientists themselves as they have
the best understanding of the data and the problem. They can not only assist in identifying
good features, but also provide guidance on robust ways of extracting these features.

In Sections 9.2 through 9.4, I described some commonly used features which have
found broad applicability in a variety of problems in several application domains. However,
in many problems, we may need to consider problem- or domain-specific features to either
complement the generic ones, or use instead of the generic ones. I next discuss some specific
examples to illustrate the different types of problem-specific features.

• Classification of bent-double galaxies: In this problem, our goal was to classify
radio-emitting galaxies with a bent-double morphology in the FIRST (Faint Images
of the Radio Sky at Twenty-cm) astronomical survey [29]. The data from the FIRST
survey (sundog.stsci.edu) are available both as image maps and a catalog. The catalog
[623] is obtained by processing an image map to fit two-dimensional elliptic Gaussians
to each galaxy. Each entry in the catalog corresponds to the information on a single
Gaussian, including the coordinates for the center of the Gaussian, the lengths of
the major and minor axes, the peak flux, and the position angle of the major axis in
degrees counterclockwise from North.

We decided that, initially, we would identify the radio sources and extract the features
using only the catalog. The astronomers expected that the catalog was a good ap-
proximation to all but the most complex of radio sources, and several of the features
they thought were important in identifying bent-doubles could be easily calculated
from the catalog. The astronomers also suggested that we first group the entries in the
catalog to identify those which formed a galaxy. Then, we could extract the features
using the catalog entries corresponding to each galaxy.

We identified candidate features for this problem through extensive conversations
with FIRST astronomers. Our initial expectation was that shape features might be a
good option as our focus was on the “morphology” of a galaxy. However, when the
astronomers justified their decision to identify a radio source as a bent-double, they
placed great importance on spatial features such as distances and angles. Frequently,
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the astronomers would characterize a bent-double as a radio-emitting “core” with one
or more additional components at various angles, which were usually wakes left by
the core as it moved relative to the earth.

For galaxies composed of three catalog entries, this led us to extract several features
such as the distances between the centers of the three ellipses, the angles of the tri-
angle formed by the three centers, and so on. To order these features appropriately,
we considered several methods to identify the core of the galaxy. We finally selected
the one which gave the least error using a decision tree classifier and also resulted in
a tree which, from an astronomy viewpoint, selected relevant features [196].

We also had to try several different ways of representing the angle feature. An obvious
choice was to use the position angle which is the angle made by the major axis of the
ellipse counterclockwise from North. However, the astronomers pointed out that this
feature was sensitive to small changes in the data. An ellipse tilted slightly to the left
of North had a small angle, while one tilted slightly to the right had a large angle. We
thus had to derive more robust features to represent the angle.

Our approach to mining the FIRST data for bent-doubles has been described in detail
in [196, 315, 200, 316], including the process of refinement of the features to obtain
the desired accuracy of classification.

• Classification of orbits in Poincaré plots: Another problem where the general fea-
tures described in this chapter are not appropriate is our work on the classification of
orbits in Poincaré plots (see Section 2.6). An orbit is a set of points in two dimensions
traced out by the intersections of a particle with a poloidal plane, that is, a plane perpen-
dicular to the magnetic axis of a tokamak. These orbits have different shapes, such as a
“closed” contour in the form of a slightly deformed circle, or a set of “islands” arranged
in a circle, where each island is crescent shaped and the islands do not touch each other.

These data are rather unique as they are very different from either mesh or image
data, being represented by the floating-point coordinates of points in two-dimensional
space. This makes it very challenging to identify the features for the data. Visually,
given just the points, it is often easy to identify an orbit as belonging to a certain class
based on its shape. This is because the human visual system is very good at filling in the
space between the points to generate a closed curve. For example, a circle formed by a
series of dots instead of a continuous curve can still be identified as a circle. Of course,
if the dots are more concentrated in certain parts of the circle than in other parts (which
is the case in some orbits), it may become difficult to correctly identify the circle.

One approach to extracting features for an orbit defined by the set of points is to try
and “fill in” the curve on which the points lie. This approach was used by Yip [638]
to solve a similar problem arising in dynamical systems. His approach was to con-
sider the graph corresponding to the minimal spanning tree of the points and extract
relevant features which could then be used in a simple rule-based system to classify
the orbit. These features were identified by looking at the structure of this graph for
various types of orbits. For example, island orbits would have edges in the graph
with a large edge length as the crescent-shaped structures did not “touch” each other.

Unfortunately, when we considered the points in an orbit generated using a computer
simulation [14], we found that certain characteristics of the orbits generated by the
dynamical systems considered by Yip were no longer valid. For example, in some
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island orbits, the crescent-shaped structures were almost touching each other, making
it difficult to set a threshold to identify long edges in the graph. Further, the cres-
cents were sometimes very thin (considered radially). This made it difficult to use
the graph-based approach to distinguish between such island orbits and incomplete
quasi-periodic orbits which appear like arcs of a circle. Adding to the problem was
that the data from the simulation were noisy, unlike the data shown in Figure 2.5
which were generated from the equations governing dynamical systems. This made
it difficult to select the thresholds to derive the graph-based features.

The extraction of robust features representing the points in an orbit is still an active
area of research. A particular challenge is the wide variation in orbits from a single
class. For example, a quasi-periodic orbit could trace out a complete circle with just
a few points, or, even with many points, it could trace out small arcs which never
completely form a circle. Also, some island chain orbits have wide islands, while
others have very thin islands, with the width of each island clearly visible only after
magnification. Any features used to represent these seemingly different orbits from
one class must identify what is common across the orbits, and at the same time must
be scale-, rotation-, and translation-invariant as well as robust to noise in the data.

• Identification of human settlements in satellite images: Another problem which
required domain-specific features was the identification of human settlements in satel-
lite images [323]. A challenge in this problem was the size of the data, which, given
the resolution of current satellite imagery (less than 1 meter per pixel), implied that
we had to come up with an ingenious solution to generate accurate results in a com-
putationally efficient manner.

Our approach was first to use multispectral imagery at slightly lower resolution of
4 meters per pixel to identify regions likely to contain human settlements. Here, the
choice of features was straightforward—we used the spectral bands as features for
each pixel and classified the pixel as belonging to one of several classes. Regions
where there was a mix of different types of pixels were considered further in the
identification of human settlements.

The next step was to analyze these regions using the higher-resolution imagery at
1 meter per pixel. This was a single band, grey-scale image. Here, we could exploit
the fact that the resolution allowed us to identify straight lines and corners which are
typically associated with buildings. Instead of using these features to explicitly iden-
tify each building (which would have been time consuming and possibly inaccurate),
we divided the region into square tiles and considered each tile to be “inhabited” if it
had a sufficient number of edge and corner pixels.

Our use of the edge- and corner-density features in this problem was motivated by the
need to extract the regions of interest at low computational cost. Further, the accuracy
required was such that a coarse set of features was sufficient.

• SIFT features for image retrieval: The Scale Invariant Feature Transform (SIFT)
[393, 395] has gained wide acceptance in the image retrieval community. It has two
parts to it—the scale-based detection of keypoints, discussed in Section 8.3.3, and
the extraction of features, or descriptors, for the keypoints. Once a keypoint has been
identified, it is assigned a consistent orientation based on local image properties; the
descriptors are then represented relative to this orientation, making them rotation
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invariant. These descriptors are computed by first calculating the magnitude of the
gradient and its orientation at each image pixel in a region around the keypoint loca-
tion. These are weighted by a Gaussian derived from the scale of the keypoint and
accumulated into an orientation histogram for subregions around the keypoint. The
vector containing these histograms for each of the subregions, after modifications to
reduce the effects of changing illumination, forms the scale- and rotation-invariant
feature vector at that keypoint.

• Determination of velocity for moving objects: The tracking of moving objects is
often done using their velocity vectors as features to discriminate between two similar
objects near each other, but moving with different velocities. Sometimes, the velocity
of a moving object may be of interest by itself, for example, in problems where the
velocity sheds light on some physical phenomena or is useful in other ways, such as
the velocity of a hurricane moving towards land.

There are different ways in which the velocity of an object can be determined. We
have already considered one such approach, namely block-matching techniques, in
Section 8.4.2. Another approach to calculating two-dimensional image motion is
optical flow [28, 551, 559]. The optical flow field represents the three-dimensional
motion of objects when projected onto the two-dimensional image plane. However,
what is calculated is the perceived motion; for example, a rotating sphere, with no
markings, will appear to be stationary under constant illumination. Also, a large ob-
ject of uniform intensity moving a short distance will appear as if some of its pixels
have not moved at all due to the aperture effect (see Section 8.4.1).

The early work of Horn and Schunk [277] used spatiotemporal derivatives to calculate
the optical flow. They start with the assumption that the observed intensity of any
point on an object changes slowly with time. Thus,

I (x,y, t) ≈ I (x + δx,y + δy, t + δt), (9.35)

where δx and δy are the displacements in the x and y directions over time δt . Rep-
resenting the right-hand side by its Taylor series expansion, we have

I (x,y, t) = I (x,y, t)+ ∂I

∂x
δx + ∂I

∂y
δy + ∂I

∂t
δt +O(∂2), (9.36)

where the last quantity represents the higher-order terms. These can be ignored if δx,
δy, and δt are very small, leading to the equation

∂I

∂x
δx + ∂I

∂y
δy + ∂I

∂t
δt = 0 (9.37)

which can be written as

∂I

∂x

δx

δt
+ ∂I

∂y

δy

δt
= −∂I

∂t
. (9.38)

Since the optical flow is

−→v =
(δx

δt
,
δy

δt

)T

, (9.39)
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we have

−∂I

∂t
= ∇I ·−→v . (9.40)

This single equation only provides the component of flow in the direction of the
brightness gradient. To determine the flow completely, a constraint is imposed on the
smoothness of the velocity which requires nearby points in the image plane to move in
a similar manner. Combining this constraint with equation (9.40) results in the mini-
mization of a squared-error quantity, which can be solved using iterative approaches.

Several different techniques [24] have been proposed to calculate the optical flow,
with two of the more popular approaches being the ones proposed by Horn and
Schunk [277] and by Lucas and Kanade [397], the latter in the context of image
registration. These techniques have different computational complexities and vary
in how they discretize the different equations and the constraints used to generate a
complete velocity vector. Often, preprocessing by temporal smoothing is necessary to
calculate the derivative estimates and some postprocessing may be required to assign a
single velocity to the pixels comprising an object. Multiresolution approaches are also
an alternative when objects move a large distance between frames and the assumptions
made for the application of the traditional optical flow algorithms are no longer valid.
Motion estimation has also been discussed extensively in the text by Tekalp [577].

Feature extraction is a very problem-dependent task and it is not always easy to
determine which features should be extracted and how. In some problems, we can start
with simple features such as the values of the different spectral bands in a multispectral
image; the values of various variables such as pressure and velocity at grid points of a mesh;
the input parameters used in a series of simulations; or the values of different sensors over
time as an experiment progresses. In others, the features have to be extracted, often in an
iterative manner, by evaluating the results using one set of features and refining them until
the desired results are obtained. If, in the mean time, more data are collected and the data
set becomes larger, with new types of objects or new variants of existing objects, then the
process may have to be repeated all over again, with the new data.

Once the features for all the objects or items in a data set have been extracted, we
are ready to consider the next step in scientific data mining, namely, dimension reduction.
However, it is important to first evaluate this collection of objects, and their associated
features, as a whole, and check that the quality of this reduced representation of the data
set is appropriate. I next discuss various operations which may be necessary to postprocess
this data item by feature matrix representing the data set being analyzed.

9.6 Postprocessing the features
Once we have extracted the features for the objects of interest in the data, some postprocess-
ing may be required. Consider, for example, the case where we are analyzing the data from
a series of experiments and the features for each experiment are the outputs measured by
different sensors. If one of the sensors is not working, or working incorrectly and reporting
erroneous readings, then we need to determine if we should include that experiment in our
data set and if so, how we should handle the erroneous readings. Or, perhaps we are work-
ing with image data, and the parameters for the algorithms used to extract the objects are
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not applicable across all images, resulting in objects which do not correspond to anything
physical. In such cases, the features we extract may be meaningless and we may need to
determine if we should remove these objects from the data set or rerun the algorithms using
a more appropriate set of parameters.

A simple way to evaluate the quality of the reduced data is to extract statistics for the
features including the minimum and maximum values, the mean, and the standard devia-
tion. We can also use visual tools, such as those described in Chapter 12, to understand the
data item by feature matrix and to ensure that its quality is suitable for further processing.
These tools can help us determine if the quality of the data needs to be improved, through
techniques such as

• Normalization of the data: The normalization, or scaling, of data is an issue which
should be addressed in the context of the data and the problem. Though the question
appears simple enough, it is nontrivial to figure out if the features should be scaled
and what is the best way to scale them. It is often recommended that the features be
standardized by subtracting the mean and dividing by the standard deviation so that
each feature has zero mean and unit variance. This is to prevent features with large
numerical values from dominating any analysis. However, as Duda, Hart, and Stork
(see [164, page 539]) point out, such normalization is valid when the spread of values
is due to normal random variation. However, when the spread is due to the presence
of two subclasses in the data, such normalization may be less than helpful. Scaling
can have untoward effects, such as completely obscuring clusters already present in
the data [338].

Sometimes, scaling is necessary as, for example, in the use of parallel plots (see
Section 12.1.3) to view high-dimensional data, that is, data items with many features.
All the features are typically viewed at the same scale, else features with small values
can be completely lost in the presence of features with large values. Normalizing the
features to lie between, say, zero and one, can be accomplished by subtracting the
minimum and dividing by the range between the maximum and the minimum values
for each feature. Alternatively, we can standardize each feature to make its mean
equal to zero and standard deviation equal to one.

Alternative approaches to scaling involve simple transformations of variables, such as
taking the logarithm, or using weighting to emphasize one feature over another. Care
mut be taken in the application of these techniques, lest they do more harm than good.

• Handling missing features: As we have observed, one or more features might be
missing for an object. This can be the result of a sensor malfunction, or an oversight
in the generation of the feature, for example, certain tests were not done in a clinical
trial or certain variables were not recorded in an experiment. There may also be
situations where a feature was not included in early versions of an experiment, but was
added later on as it was found to be useful. Addressing these missing features is very
problem dependent and should be done in consultation with the domain scientists. The
solutions may range from ignoring the feature for all objects to estimating the missing
features using a suitable method, or ignoring objects with several missing features.

• Identification of outliers: A sensor malfunction or a bug in a computer simulation
may also result in objects which are outliers. An object may be an outlier for several
reasons, including having a feature with a value very different from the mean of the
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values of the feature for other objects or having a class label shared by few other
objects. Again, a solution must include input from the domain scientists and may
result in removing the object from further consideration or adding more objects to the
minority class.

Detection of outliers is also an important topic by itself. In some problems, such as
credit card fraud detection, network intrusion detection, or identification of unusual
particles in high-energy physics experiments, the outliers may be the items of inter-
est. A closely related topic is that of anomaly detection, with some domains using
the two terms interchangeably. The topic of outlier detection is discussed further in
Section 11.6.

• Extraction of derived features: In some situations, the features extracted are too
primitive for the problem being addressed. We may need to generate derived features
by considering, for example, ratios of existing features as in the circularity feature
(equation (9.14)) in the MPEG-7 contour shape descriptor which is a function of the
perimeter and the area. Or, instead of the length and width of an object, we could
consider its aspect ratio, which is scale independent.

• Using appropriate units: Another issue which may make one feature appear more
or less important than the others is that of the units used to represent the features.
For example, measuring the length of an object in meters may be appropriate while
measuring it in kilometers may make it appear very small relative to other variables.

All these postprocessing approaches are very problem specific and must be addressed
in collaboration with the domain scientists who may be able to advise on the best way to
improve the quality of the reduced representation of the data in the form of objects and their
associated features. This evaluation is particularly important when the data provided by the
scientists can be directly represented as a data item by feature matrix, rather than mesh data
or images. In the latter case, we have had ample opportunity to become familiar with the
data during the process of extracting the objects and the corresponding features. However,
this is not true in the former case, and a quality check is essential.

And finally, the importance of care in postprocessing the features cannot be overem-
phasized, especially as it can strongly affect the analysis as well as any conclusions drawn
from the data.

9.7 Summary
In this chapter, I discussed the extraction of features, also referred to as descriptors or char-
acteristics, to represent the objects of interest in the data. I use the word “feature” in the
primitive sense to imply a measurement which can be extracted from the data. Starting with
some desired properties of features such as scale, rotation, and translation invariance, I dis-
cussed simple features such as object sizes and moments as well as more complex features
such as shape and texture. Through the use of examples, I illustrated the need to exploit
problem-specific features in collaboration with the domain scientists. I also mentioned the
need to include “housekeeping” features such as file names and locations of objects to enable
one to trace the object back to its origin. Finally, I described various ways of postprocessing
the object-feature data to improve their quality.
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Often, in scientific data mining, not all the features we extract may be useful or relevant
to the problem. Or, the features may not yield results to the desired accuracy, or they may
be sensitive to small changes in the data. In such situations, we will need to revisit the step
of feature extraction, discuss it further with the domain scientists, and extract additional
features until the desired results are obtained. This iterative aspect of feature extraction
can lead to the creation of a large number of features, resulting in the problem of high
dimensionality of the feature space. The problem is aggravated if we are working, for
example, with multispectral data and we choose to extract the features separately for each
band in the data. In Chapter 10, I describe ways in which we can reduce this dimensionality
and identify key features for a problem.

9.8 Suggestions for further reading
The extraction of features relevant to a problem is a task which is strongly dependent on
the problem. Two different problems, based on the same data set, are likely to require the
extraction of different features. The best source of ideas on features to extract for a problem
are likely to be the domain scientists themselves as well as features extracted for other
similar problems. Thus, I would recommend domain-specific journals or articles where
similar problems are addressed. For example, the articles in the IEEE Transactions on
Medical Imaging are a good source of ideas for features in medical image analysis, while
the IEEE Transactions on Geoscience and Remote Sensing or the SPIE Journal of Applied
Remote Sensing would be a help for remote sensing problems.



Chapter 10

Reducing the Dimension of
the Data

It is of the highest importance in the art of detection to be able to recog-
nise out of a number of facts which are incidental and which are vital.
Otherwise your energy and attention must be dissipated instead of being
concentrated.

—Sherlock Holmes [159, p. 254]

In the previous chapters, we have seen how we can identify objects in scientific data
sets and extract features or descriptors representing these objects. This results in a matrix
where each row represents an object or data item and the columns are the values of the
features for that object. These features include both “housekeeping” features, or metadata,
such as the name of the image file and the location of the object in the image; as well as
features which describe the object such as its size, shape, and texture. The latter may number
in the hundreds, and in some cases, such as gene expression data, even in the thousands.
The number of features is referred to as the “dimension of the problem” as each data item
can now be represented by a point in feature space, of dimension equal to the number of
features, with each coordinate representing a feature. In this chapter, I discuss why we need
to reduce the number of features and the ways in which we can accomplish this task. The
focus is on the features describing the data, not on the housekeeping features. I consider
the latter to represent the provenance of the data; they must be retained as the data are
processed to enable us to track the origin of an object, but they are not used in the analysis
algorithms.

A brief note on the terminology used in this section may be helpful. The idea of
reducing the dimension of a problem has been explored in many fields, including statistics
and machine learning, as well as several application domains such as meteorology, fluid
dynamics, bioinformatics, and various social sciences. As is often the case, the terminology
used is not consistent. For example, what is referred to as a “feature” in one domain, may be
called an “attribute” in other, and a “variable” in a third domain. Some authors may use more
than one term, distinguishing them based on subtle differences. Further, similar techniques
may be rediscovered in different domains. Each time, new insights into the approach are
provided, with possible enhancements to the technique, along with a new name, just to add
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to the confusion. These terminology issues must be kept in mind when borrowing ideas
from other fields.

This chapter is organized as follows. First, in Section 10.1, I describe the need for re-
ducing the number of features (excluding the housekeeping features). As mentioned earlier,
this number is the dimension of the problem. Then, in Section 10.2, I describe transform-
based methods which transform the original set of features into a set in a reduced-dimensional
space. Next, in Section 10.3, I discuss feature subset selection methods which select a subset
of the original features. Section 10.4 describes some domain-specific methods for reducing
the dimensions, followed by Section 10.5 on ways of representing high-dimensional data.
Finally, Section 10.6 summarizes the chapter and Section 10.7 provides suggestions for
further reading.

10.1 The need for dimension reduction
The manner in which features are obtained for an object in the data can result in many
features which are irrelevant to the task at hand. Sometimes, scientists may not have
any preconceived notion of all the analyses they plan to do when they start generating
or collecting the data. So, they collect as much information as possible as it may be
prohibitively expensive, or even impossible, to collect the data again. For example, in
a simulation, scientists may choose to output several variables and derived quantities, not
knowing which ones will be important. Running these simulations may require several hours
of computer time on a massively parallel system, making it expensive to run the simulation
again if it is later discovered that a key variable has not been included in the output. Or,
if astronomers are observing a rarely occurring event, they would tend to err on the side of
collecting more data. In other cases, scientists may not know which feature is important
until they do the analysis. For example, they may be interested in identifying objects with a
certain shape but may not be able to identify which shape features are the most appropriate
for the task at hand. All this can result in each object being described by several features.

There are several reasons why we may want to reduce the dimension of the problem
and represent each object by the fewest number of features necessary for the task of analysis.
The simplest reason is that if fewer features are used to describe an object, it means that
fewer features must be extracted and stored, resulting in lower computational and memory
requirements for data mining. Further, when the patterns identified in the data are described
using fewer features, they are usually easier to understand and interpret, a quality which is
important in many scientific applications.

Another key reason why we want to reduce the number of features is that it can
adversely affect the task of pattern recognition in several different ways. For example, if
the problem being addressed is one of classification, irrelevant or redundant features can
often hurt the accuracy of the classifier induced on the data [307]. As Witten and Frank [630]
explain, experiments with a decision tree algorithm have shown that adding a random binary
feature can reduce the accuracy by 5% to 10% for the problems tested. This is because at
some point in the creation of the tree, likely at deeper depths of the tree, the number of data
items at the node is so small that the random feature gets selected for the decision at that node.
Therefore, it is important that such irrelevant features be removed prior to classification.

A large number of features in a problem also leads to the phenomenon of the curse
of dimensionality [31]. One manifestation of this relevant to the task of pattern recognition
is that in high-dimensional spaces, the number of samples (that is, data items) are sparsely
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distributed. So, in classification, where we are interested in the hyperplane which separates,
say, the positive examples from the negative ones, we would need far more training samples
in a high-dimensional space to get the same accuracy as in a low-dimensional space. As
the complexity of functions of many variables can grow exponentially with the number
of variables, the size of the training set must grow exponentially as well. This can be
particularly problematic in scientific data sets where training data are usually generated by
the tedious process of manual inspection of the data.

Another manifestation of the curse of dimensionality is that some algorithms may
lose their meaning. For example, the concept of nearest neighbor in feature space is used
in the k-nearest neighbor classification algorithm, in locally weighted regression, and in
similarity searches. However, recent work has questioned the meaning of nearest neighbor
in problems where the dimensionality is high. This is based on the observation that, under
certain assumptions, in high-dimensional spaces, the nearest neighbor may be just as far as
the farthest neighbor [38]. This observation can also cause problems in clustering algorithms
as it becomes difficult to interpret similarity based on the distance between two points in
feature space.

The need to reduce the number of features may also be driven by the need for fast in-
dexing in retrieval. While the raw data in scientific applications are rarely stored in databases,
the features which have been extracted for each object can be, and sometimes are, stored in a
database. Retrieval is a key part of content-based information retrieval applications, where
the scientist is interested in retrieving objects similar to a query object, with the similarity
being measured in feature space. Retrieval also plays an important role in retrieving objects
which satisfy certain simple queries on the features, for example, all objects in a specific
image, or all objects whose nth feature satisfies some constraint. These retrieved objects can
then be analyzed further. While these retrieval tasks can be accomplished by a sequential
and time-consuming search through the data, it is much faster to use indexing techniques to
speed up the search [209, 177]. However, typical indexing schemes become inefficient as
the dimension increases, and at around 8–12 features, their performance can be worse than
a sequential scan through the data. As a result, dimension reduction is an integral part of all
retrieval applications.

Another concern with a large number of features is the time for pattern recognition.
Some algorithms, such as the Naïve Bayes and decision tree classifiers scale linearly in
the number of attributes. However, in the absence of any of the previous considerations,
one must balance the reduction in pattern recognition time resulting from the use of fewer
features with the additional time necessary to reduce the number of features.

With all these reasons, it is clear that a reduction in the number of features should
be considered before pattern recognition techniques are applied to the data. The simplest
approach is to work with the domain scientists to identify features likely to be irrelevant
or redundant. Another is to understand the relationships between the features through
information visualization tools such as parallel plots (see Chapter 12). More sophisticated
approaches are also possible as discussed in this chapter. However, dimension reduction
techniques must be used with caution. While there are benefits to identifying the key features
in a data set, we may have a data set where different features are important when different
subsets of the data are considered. For example, in a decision tree, the subset of data at one
of the lower-level nodes may be such that a feature which is relatively unimportant when the
full data set is considered, becomes important when only the subset of the data at that node is
considered. If we had removed the features considered unimportant at the root node, where
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the entire data set was considered, then the decision-tree model would be less accurate at
the lower level as an important feature at that level would be missing from the data.

I next describe two categories of techniques for dimension reduction—one where the
original features are transformed into features in lower-dimensional space and the other
where a subset of the original features is selected.

10.2 Feature transform methods
In feature transform methods, the original features extracted from the data are transformed
into a new, reduced-dimension space and the important features are identified in this space.
As a result of the transformation, we often lose the interpretation in terms of the original
features. For example, a variable considered important in the reduced-dimension space may
be a function of several, or all, of the original variables.

A note on terminology—feature transform methods are also referred to as “feature
extraction” methods in some domains [385]. As I use this term to refer to the extraction
of the original features from the data (as in Chapter 9), I will refer to techniques which
generate new features through a functional mapping as feature transform methods.

10.2.1 Principal component analysis

One of the most commonly used transform methods for dimension reduction is the Principal
ComponentAnalysis, abbreviated as PCA. If the number of different names for a method are
an indication of its popularity in solving practical problems and of its simplicity in having
been reinvented many times, then PCA can be considered to be an incredibly popular and
simple method. The basic idea behind PCA is known as Karhunen–Loève transform (KLT)
in signal processing [581], Empirical Orthogonal Functions (EOFs) in meteorology [483],
Hotelling Transform in Psychometry [278], Proper Orthogonal Decomposition (PODs) in
dynamics [103], Latent Semantic Indexing in text mining [137], and the underlying algebraic
formulation is called Singular Value Decomposition (SVD) in linear algebra [33]. The term
Principal Component Analysis itself appears to have arisen in statistics in multivariate
analysis [471, 503]. The developments in each of these fields has further enriched the
insights one can obtain from the application of this method and are therefore worthy of
further investigation even if the problem one is trying to address is not in one of these
domains.

As expected, the idea behind principal component analysis (PCA) is very simple. Let
x be a vector of d input features. These are the features we have extracted using either the
techniques in Chapter 9 or other methods. Ideally, we want these features to be uncorrelated.
Our goal in PCA is to use linear combinations of the input features to transform them into a
set which is uncorrelated and where only a few features are necessary to adequately describe
the data. The first step is to consider the linear combination of features which results in the
maximum variance:

aT
1 x =

d∑
j=1

a1j xj . (10.1)

Next, we look for another linear combination, aT
2 x which is uncorrelated to aT

1 x and has
maximum variance. Proceeding in this manner, at each step p, we look for a linear function
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aT
p x which is uncorrelated to all the previous functions, aT

k x, where k = 1, . . . ,p − 1. The

kth derived feature, aT
k x, is referred to as the kth principal component or PC, for short.

These PCs are obtained by solving an optimization problem

Maximize Var[aT
k x] = aT

k Cov(x)ak , (10.2)

where Var represents the variance of the term in the square brackets, Cov(x) is the covariance
matrix of x, and the maximum is obtained subject to the constraint that aT

k ak = 1. The
solution to this problem is given by selecting the vectors ak to be the eigenvectors of the
matrix Cov(x), with a1 corresponding to the largest eigenvalue λ1, a2 corresponding to the
second largest eigenvalue λ2, and so on [310]. For the vector x of length d, we have

Var[aT
k x] = λk for k = 1, . . . ,d. (10.3)

Note that sometimes there is confusion about what is meant by the term “principal
components.” Some texts refer to the vectors ak as the PCs, while others refer to the derived
variables aT

k x as the PCs. In the latter case, the ak may be referred to as the vector of coef-
ficients or loadings for the kth PC, the principal directions, or the principal vectors. These
principal directions are orthogonal and of unit length, thus forming a set of basis functions
for the data. The PCs are then the original data projected onto the principal directions.

This derivation of the PCs using the eigenvectors allows us to exploit several resources
from linear algebra, both theoretical and computational, for dimension reduction. Let the
data item by feature matrix be denoted by X with n rows (corresponding to the n data items)
and d columns (corresponding to the d features). Typically, X will be rectangular, with the
number of rows and columns being problem dependent. One approach to calculating the
PCs is to obtain the eigenvalues and vectors of the covariance matrix corresponding to X.
However, this involves forming the covariance matrix.

Alternatively, we can use the SVD of X, which is given as

X = U
(

D 0
0 0

)
VT , (10.4)

where U is an n×n orthogonal matrix, V is a d ×d orthogonal matrix, and D is a diagonal
matrix of size r × r with D = diag(σ1,σ2, . . . ,σr) and σ1 ≥ σ2 ≥ ·· · ≥ σr > 0. The σi are
the singular values of the matrix X which is of rank r (hence the r nonzero singular values).
The columns of the matrices U and V are called the left- and the right-singular vectors,
respectively. The σ 2

i are the eigenvalues of the matrix XT X, the columns of U are the
eigenvectors of XXT , and the columns of V are the eigenvectors of XT X. The SVD thus
diagonalizes the matrix X, making the features uncorrelated.

Reducing the dimension of the problem using PCA essentially exploits the idea that
if we consider only the PCs corresponding to the largest eigenvalues, we have captured
most of the variance in the data. When we consider all d eigenvectors, we get a complete
representation (to within roundoff error). However, since the smaller eigenvalues are often
quite small, they can be considered to be noise in the data, and therefore, ignored.

PCA, as defined here, is the orthogonal projection of the data onto a lower-dimensional
space, sometimes called the principal subspace, such that the variance of the projected data is
maximized. It can be shown that this is equivalent to the linear projection which minimizes
the average projection cost which is defined as the mean-squared distance between the data
points and their projections [42].
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This description barely touches upon the rather broad field of PCA. There are several
questions which must be addressed to obtain the representation in the reduced-dimension
space. For example, how many PCs should we use and how do we determine this number?
Is there a way of determining which of the original features are more important? Should the
features be standardized (by subtracting the mean and dividing by the standard deviation)
prior to the use of PCA? There are several texts which delve into these topics in greater
detail, including the very practical book by Jackson [296], the excellent statistical text by
Joliffe [310], and the posthumously published book of Preisendorfer [483] which focuses
on the subject from the viewpoint of meteorology and oceanography.

There are also some excellent software packages available for obtaining the SVD
in a numerically accurate and robust manner. In particular, the Linear Algebra Package,
LAPACK [5], provides much of the functionality needed for dense matrices, while the
functionality for the sparse version using the Lanczos method is available in SVDPACK
[36] and using the Arnoldi method is available in ARPACK [370]. A parallel version of the
LAPACK functionality is available in the SCALAPACK library [43].

10.2.2 Extensions of principal component analysis

PCA is extensively used as, among all the linear techniques, it gives the minimum mean-
squared-error approximation in the reduced-dimension space. This is good for tasks such
as the compression of the data. However, it may not be the best option for all problems. For
example, it is well known that it does not necessarily lead to maximum class separability in
the lower-dimension space (see, for example, Figure 6.1 in [581]). This is to be expected
as the dimension reduction is not being optimized for class separability. Further, PCA finds
a linear subspace and therefore cannot handle data lying on nonlinear manifolds.

Several techniques have been proposed to address these deficiencies [86, 109]. For
example, projection pursuit selects interesting low-dimensional linear orthogonal projec-
tions of a high-dimensional point cloud by optimizing a certain objective function called
projection index [205, 282]. Methods such as principal curves and surfaces, which are
nonlinear generalizations of PCA, have been proposed for the case where the underlying
distribution is unknown [259, 260]. As PCAcan be represented using dot products, a nonlin-
ear version, called the kernel PCA, can be obtained by replacing the product with a nonlinear
kernel [525]. Another nonlinear variant is Locally Linear Embedding (LLE) [517], an eigen-
vector method which computes low-dimensional, neighborhood-preserving embeddings of
high-dimensional data.

Another class of methods worth mentioning are those used in blind source separation
applications [113], where independent source signals are estimated from observed signals
which are linear mixtures of the source signals. One of the methods used in this context
is the Independent Component Analysis (ICA) which determines a transformation which
results in mutually independent features, not just uncorrelated features [285, 286].

10.2.3 Random projections

An interesting technique which has gained popularity recently is random projections [330].
Here the original high-dimensional data are projected onto a lower-dimensional subspace
using a random matrix whose columns have unit length. The basic idea behind random
projections is based on the Johnson–Lindenstrauss lemma, which states that any set of
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points of dimension n in a Euclidean space can be embedded in O(logn/ε2) dimensions
without distorting the distances between any pair of points by more than a factor of (1± ε)

for any 0 < ε < 1 [133]. As the method is computationally very efficient, it has been used
to first project data in a very high-dimensional space to a lower-dimensional space before
using a more computationally expensive technique such as PCA [39].

There are two topics related to random projections which are relevant to the analysis
of scientific data. The first is the concept of a “sketch” which is used in streaming data
to build lower-dimensional models [290]. The second is “compressed sensing” where a
sparse signal is reconstructed from a small number of linear measurements [22, 119]. Both
these topics are relatively recent developments and therefore the subject of active research.

10.2.4 Multidimensional scaling

Given a set of objects in a d-dimensional space, along with a matrix of similarities (or
dissimilarities) between them, the idea behind multidimensional scaling (MDS) is to find
a k-dimensional space, k < d, with each object being represented by a point in this space
such that the distances between the points match the original similarities. Often, MDS is
used to project the data into two or three dimensions so that it can be displayed graphically
to reveal the underlying spatial structure in the data.

The basic implementation of MDS is relatively simple. Given k, and the distances dij

between objects i and j , the algorithm tries to map each object to a point in the k-dimensional
space to minimize the stress function

stress =
√√√√∑i,j (d̂ij −dij )2∑

i,j d2
ij

, (10.5)

where d̂ij is the Euclidean distance between the lower-dimensional representations of objects
i and j . The stress can be considered as the relative error in the distances in the lower-
dimensional space. MDS essentially starts with a guess, assigning each object to a point in
the k-dimensional space, either randomly, or using some heuristic. It then iteratively moves
the points to minimize the stress, until no further improvement is possible.

MDS as a statistical technique has been described at length in the books by Borg and
Groenen [51] and Cox and Cox [123]. However, as it requires O(N2) time, where N is the
number of objects, it can be impractical for very large data sets. A nonlinear variant, which
builds on the classical MDS, is the recently introduced Isomap algorithm by Tenenbaum
et al. [578].

10.2.5 FastMap

An efficient solution to the problem of mapping objects into a lower-dimensional space
while preserving the distances was proposed by Faloutsos and Lin [179] in the context
of information retrieval applications. Given only the matrix of dissimilarities or distances
between the N objects, they assume that the objects are points in a d-dimensional space
and then project them into a smaller number of orthogonal directions. Their method, called
FastMap, starts by selecting “pivot” objects, which are two objects such that the projections
of the other objects onto the line joining the pivots are as far apart from each other as
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possible. A linear heuristic algorithm to select the pivot points starts by arbitrarily selecting
an object, and identifying it as the second pivot. The first pivot is then selected as the object
farthest away from this second pivot, according to the matrix of distances. The second pivot
is then replaced by the object farthest away from the first pivot.

The objects are then projected onto the (d − 1)-dimensional hyperplane which is
perpendicular to the line joining the two pivot objects. The distance between the objects in
this projected space can be obtained from the original distances and the projections of the
objects on the line joining the pivot objects. The problem now reduces to one of N objects
in (d −1)-dimensional space, along with the dissimilarities in this new space. The process
then iterates k times until the projections onto a (d − k)-dimensional space are obtained.
Note that in this approach, the dimension of the original space d could be unknown.

This approach requires that a matrix of dissimilarities or distances between the objects
be provided. The distance function should be nonnegative, symmetric and obey the triangle
inequality. When the objects are described by a feature vector, a common choice is to use
the Euclidean distance between the objects.

10.2.6 Self-organizing maps

A technique commonly used to project higher-dimensional data to two dimensions for the
purpose of visualization is the Self-Organizing Map, or SOM, [346]. In its basic form, it
produces a similarity graph of the input data, converting the relationships between high-
dimensional data into simpler geometric relationship of their representations in a regular two-
dimensional grid of nodes. The SOM essentially preserves the most important topological
and metric relationships between the objects.

The SOM is a specific example of what are referred to as competitive learning algo-
rithms [581]. These start with a set of representatives in the lower-dimensional space. As
each vector in the higher-dimensional space is considered in turn, the representatives com-
pete with each other, with the winner chosen as the representative which is closest in some
distance metric to the vector. The winner is updated to move toward the vector, while the
losers either are not updated or are updated at a much slower rate. In the case of the SOM,
the representatives are “nodes” in two-dimensional space, which are initially arranged in
a regular pattern (often rectangular or hexagonal). In addition to the winner, the nodes in
a neighborhood around the winner are also updated. This neighborhood is defined with
respect to the indices of the winner node. As the original vectors are used in turn to move
the nodes around, this neighborhood shrinks in size to ensure convergence. Eventually, the
nodes are representative of the distribution of the data, and neighboring nodes lie close to
each other, reflecting their distance in the original space.

Though SOMs are similar to clustering algorithms considered in Chapter 11, they do
not optimize a cost function, making it difficult to set parameters and assess convergence
[42]. They are also implemented in “batch” or “incremental” mode, with the nodes being
updated after each vector is presented instead of at the end of an iteration.

10.3 Feature subset selection methods
In contrast to the transform-based methods, many of which have their roots in statistics,
information retrieval, and signal processing, the feature subset selection methods have their



10.3. Feature subset selection methods 169

beginnings in the machine learning and data mining literature. As the reduced-dimension
features are just a subset of the original features, the use of such methods makes it easier
for a scientist to understand the features found by the method and to interpret the results of
the analysis.

Feature subset selection methods have typically been considered when the analysis
task is one of classification (see Chapter 11), where a class label has been assigned to each
item. The very early work in this area focused on the selection of features by searching
the space of all possible combinations using optimization techniques such as branch and
bound, simulated annealing, or genetic algorithms [546]. More recent approaches to the
problem [345] consider two categories of methods—wrappers and filters. Wrappers use the
classification algorithm to evaluate the effectiveness of the feature selection while filters are
independent of the classifier and select features based on other properties such as their ability
to distinguish between different classes. As they do not use the classifier to evaluate the
feature subset, filter methods are computationally more efficient, while wrappers may give
more accurate classification results as they select the features based on their effectiveness
in the pattern recognition task which follows the feature selection step.

Feature subset selection methods are not restricted to classification problems. They
can also be used in the context of regression as discussed in Section 10.3.3 and techniques
such as the PCA filter, which is described in the next section, can be used in the context of
tasks such as clustering.

10.3.1 Filters for feature selection

Filter methods select important features based on how well they discriminate among the
different classes. One approach to this is to consider each feature in turn, and determine
the distance between the histograms or distributions of the feature values for each class.
Ideally, if the histograms of feature values for two different classes have little overlap, the
feature can be used to discriminate between those classes. If a problem has several classes,
we want this condition to hold for each pair of classes.

There are several ways in which we can compare the histograms. We assume that the
histograms for each feature for each class has already been suitably aligned so that a bin
in one corresponds to a bin in another. Further, the histograms have been normalized by
dividing each bin count by the total number of data items to estimate the probability, pj (d =
i|c = n), that the j th feature takes a value in the ith bin of the histogram for a given class
n. The Kullback–Leibler class separability filter [83] uses the Kullback–Leibler divergence
δj (m,n) between the normalized histograms corresponding to classes m and n defined as

δj (m,n) =
b∑

i=1

pj (d = i|c = m) log

(
pj (d = i|c = m)

pj (d = i|c = n)

)
, (10.6)

where b is the number of bins in the histograms. Summing these distances over all possible
pairs of classes gives the class separability for feature j as

�j =
c∑

m=1

c∑
n=1

δj (m,n), (10.7)

where c is the number of classes. The features can then be ranked using �j , as larger
values indicate better separability using the j th feature. In addition, very small values of
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�j may indicate noninformative features while large gaps in consecutive values when the
�j are ranked in descending order may be exploited to determine the number of features
to keep. Class separability filters using other distance metrics such as the χ2 distance, the
L2 distance, or the Bhattacharya distance are also possible.

Some classification techniques (see Chapter 11) also provide an indication of which
features are important. For example, decision trees identify the decision to be made at
each node by considering each feature in turn and determining a split that minimizes (or
maximizes) an impurity (or purity) measure over all possible split points for that feature.
The feature which optimizes this measure across all features is chosen to split the data at that
node. A stump filter [83] is obtained when we apply this process only at the root node of the
tree (hence the name “stump”), where we consider all the data items and rank the features
by using one of the many measures used in creating decision trees (see Section 11.2.3).

Other filter approaches perform a broader search through the feature space. For
example, Almuallim and Dietterich [3] consider minimal combinations of features which
perfectly discriminate among the classes. They start with a single feature in isolation, then
consider pairs of features, and then triples, and so on, until they find a combination which
partitions the data such that each partition has items of only one class.

Alternately, one can identify key features by evaluating how correlated they are to the
target variable, for example, by using the linear Pearson correlation coefficient. Given two
vectors x and y, with values xi , i = 1, . . . ,n, and yi , i = 1, . . . ,n, respectively, the Pearson’s
coefficient is defined as ∑

i (xi − x̄)(yi − ȳ)√∑
i (xi − x̄)2

∑
i (yi − ȳ)2

, (10.8)

where x̄ and ȳ are the mean values of x and y, respectively. If one of the variables is discrete,
as would be the case for the class variable, then k correlations are calculated corresponding
to the k discrete classes [246]. Feature selection is then done by calculating the coefficient
for each feature and keeping only the ones most correlated with the target.

Another filter method, called the PCA filter, is derived from the PCA [83]. Usually,
PCA results in a linear combination of the input features and it is difficult to relate the
transformed features back to the original ones to identify which of the original features is
the most important. Several ways of eliminating unimportant variables using PCA were
suggested by Joliffe [308, 309] and evaluated on both synthetic and real data. One approach
starts with the PC corresponding to the smallest eigenvalue of the covariance matrix and
discards the variable with the largest coefficient (in absolute value) in that vector. This
variable is considered the least important. Next, the variable with the largest coefficient
in the PC corresponding to the second smallest eigenvalue is discarded, assuming it has
not been discarded before. The process continues until all the variables have been ranked.
This process can also be done iteratively, where a prespecified number of variables are first
deleted, the PCA is repeated on the remaining variables, and then, a further set of variables
is deleted. The process continues until no further deletions are considered necessary. A
complementary approach is to start with the largest PC and keep the variable associated
with the highest coefficient in absolute value. These and other techniques are also discussed
in Section 6.3 of the book on PCA by Joliffe [310]. Note that these techniques do not
require the use of a class label and can therefore be applied in analysis problems other than
classification, such as clustering.
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Another approach to feature selection, called Relief, is based on the rationale that a
useful feature should differentiate between instances from different classes and have the
same (or similar) values for instances from the same class [340]. The basic idea behind
Relief is very simple. The algorithm considers a random instance from the data and de-
termines its closest neighbor of the same class and the opposite class (assuming there are
only two classes). The values of the features of these nearest neighbors are then compared
to those of the selected instance and used to update relevance scores for each feature. By
considering several instances from the data, these scores are refined and the features with
scores exceeding a user-defined threshold are retained to form the final subset. Kononenko
[349] extended Relief to ReliefF, which is more robust to noise in the data as it considers
k nearest neighbors in the calculation of the relevance scores instead of the single nearest
neighbor. The technique was also extended to handle multiclass data by considering the
nearest neighbors of each class different from the class of the sampled instance and then
weighting their contributions by the prior probability of each class.

10.3.2 Wrapper methods

Wrapper methods consider candidate feature subsets, evaluate them using the classification
algorithm, and select the subset which yields the most accurate results. As a result of this
evaluation, the wrapper methods are usually more computationally expensive than the filter
methods.

The different wrapper methods differ in the way the feature subsets are selected. The
most exhaustive method is to consider all possible k subsets of features, with k = 1, . . . ,d,
where d is the total number of features, and select the subset which gives the highest ac-
curacy. Alternatively, the process can be made computationally more efficient through the
use of a greedy algorithm, which makes the best decision at each step. There are two ways
in which one can implement such algorithms. In the sequential forward selection method,
the algorithm first considers all subsets with a single feature and picks the one with the
best accuracy on the classification algorithm. Next, it considers each feature not previ-
ously selected and retains the one which gives the best accuracy using the subset of the two
features selected so far. The process continues by selecting the best new feature to add at
each step and terminates when the accuracy cannot be increased by the addition of any new
features. In the backward elimination approach, we start with all the features and tentatively
delete each feature in turn from the set of features which have not been deleted previously.
The accuracy of the feature subset selected is determined by considering the error of the
classification algorithm using cross validation (see Chapter 11).

Techniques which combine the filter and wrapper approaches are also possible, as
described in the work of Das [131]. This hybrid technique exploits an idea called boosting
(see Section 11.2.6) from ensemble learning in the feature selection [202]. In boosting,
the instances of a training set are weighted based on how accurately the class is predicted
for each instance. Instances which have often been misclassified in previous iterations are
given higher weights. In the hybrid filter-wrapper approach, the next feature is selected
using boosted decision tree stumps. This ensures that if there is a part of the feature space
that is often misclassified by the features selected thus far, then the next feature selected
will be one which is a better predictor in this part of the feature space. As in the case of
wrappers, the features selected are evaluated using the classification algorithm which would
normally be used for the learning task.
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10.3.3 Feature selection for regression

Many of the techniques proposed for feature selection tend to be for cases where the classes
are discrete. However, when the problem is one of regression rather than classification,
one option is to use a wrapper-based feature selection technique in conjunction with the
regression algorithm. Alternatively, one can use a filter based on a correlation coefficient
as in equation (10.8).

Another approach, also based on correlation, is CFS, or Correlation-based Feature
Selection by Hall [245, 246]. This ranks feature subsets instead of individual features and
is based on the heuristic that good feature subsets have features which are highly correlated
with the class, yet uncorrelated with each other. Using a heuristic from test theory, Hall
calculates a figure of merit for a feature subset of k features as

k rcf√
k +k(k −1) rff

, (10.9)

where rcf is the average class-feature correlation and rff is the average feature-feature
intercorrelation. The numerator can be considered to give an indication of the predictive
power of a group of features, while the denominator indicates the degree of redundancy
among them. The CFS method first creates a matrix of class-feature and feature-feature
correlation and then searches the feature subset space using a best first search. It first selects
the best single feature, expands the subset by one by selecting the next feature such that
the two taken together are the best, and so on. If expanding a subset does not result in any
improvement, the search drops back to the next best unexpanded subset and continues from
there. This feature selection method can be applied to both discrete and continuous class
labels.

The feature selection algorithm, Relief, described in Section 10.3.1, has also been
extended to regression problems. When the class is continuous, it does not make sense to
consider the nearest instances of the same and the opposite class. Instead, Robnik-Šikonja
and Kononenko [512] introduce the concept of a kind of probability that the predicted values
of two instances are different based on the relative distance between these predicted values.

10.4 Domain-specific methods
The methods discussed thus far to reduce the number of features are domain independent.
However, as I have mentioned earlier, the domain scientists can often provide useful input
in identifying important features. In addition, several domains have specific characteristics
which can be exploited in dimension reduction. Or, they may have special requirements
which must be met by any technique used in dimension reduction. I next discuss some of
these domain-specific methods and requirements in further detail.

An interesting problem arises in the case of information retrieval applications [91].
Here, the goal is to retrieve items which are similar to a query item, where the item can
be an image, an object in an image, or a document. As the number of features used to
represent an item is often very large, in the hundreds or more, it is necessary to reduce the
dimension of the search space. The dynamic nature of the data makes this application rather
challenging from a dimension-reduction viewpoint as the characteristics of the data, such
as the distributions, could change when new data are added. As many of the techniques
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are computationally expensive, attempts have been made to create incremental versions of
various algorithms. The numerical analysis literature has several references to work in the
area of updating the SVD [69, 234, 415, 644]. In the area of image information retrieval, for
example, Ravikanth, Agrawal, and Singh [505] describe an efficient method for updating
the SVD of a data set as well as strategies to determine when the update should occur. An
efficient solution to a more challenging problem is provided by Brand in [55], where he
considers the case when the data arrives as fragments of rows or columns of the data item
by feature matrix. As a result, in his method, rows, columns, or fragments thereof can be
added, changed, or retracted.

It must also be pointed out that there are other problems where the data are dynamic.
For example, in function estimation, where we are interested in relating the output variables
from, say, a computer simulation to the input variables, we may have a dynamic data set as
the input space is explored based on the results of the function estimation. This may result
in new data items being added in parts of the input space not explored thus far. Some data
items may even be removed if they are considered as outliers.

A different approach to addressing the high computational cost of techniques such
as PCA is to exploit the characteristics of the data and create lower-cost alternatives. For
example, Karypis and Han [326] consider the problem of document retrieval using a query
term. They observe that the retrieval performance can be poor as a term can have many
meanings and a concept of interest can be described by several different terms, not just a
single term. To address this problem, they use an approach called concept indexing for
dimension reduction. This can be applied both in a supervised setting, where the data items
have an associated class label, as well as in an unsupervised setting, where there is no class
label. The algorithm first computes a lower-dimensional space by finding groups of similar
documents and then uses the centroids of the groups as the axes of the lower-dimensional
space. If the data are labeled, then the number of clusters is the number of classes, while
in the unsupervised setting, the number of clusters is a prespecified number. The clustering
essentially groups similar documents together, with the centroid containing terms which act
as synonyms for the topic of the cluster. While this application is not of direct relevance
in the context of science data, except perhaps in the mining of biology documents, the idea
behind it could be applied in scientific problems as well. This approach is particularly
interesting as it provides an efficient way of reducing the dimension of the problem while,
at the same time, improving retrieval performance by exploiting the characteristics of the
data, namely, that similar text documents have a common underlying concept.

Another problem in information retrieval is similarity searches in time series data,
such as sensor data from experiments, variations in a physical quantity at a grid point in a
simulation over time, and medical data such as electrocardiograms. The common approach
to this problem is first to reduce the dimensionality of the data and then use a fast indexing
scheme (see Section 10.5) for the retrieval [178]. Typically, the dimensionality is reduced
by using the SVD, the discrete Fourier transform, or the discrete wavelet transform [336].
However, even simple approaches, where a time series is approximated by dividing it into
equal length segments and using the mean in each segment, have provided surprisingly good
results in comparison with the more sophisticated dimension reduction schemes. Keogh et
al. [335] have further enhanced this approach by representing the time series by varying
length segments of constant value, allowing a more accurate representation of the data.
Their results indicate that the method is superior to the more complex dimension reduction
techniques for time series data.
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The field of bioinformatics has some rather special requirements for feature selection.
A microarray experiment typically has between 10 and 100 tissue samples (the data items),
each represented by thousands of genes (the features). Therefore, any analysis of such data
must include dimension reduction techniques [632]. As the data items are few, there are
few samples of each class, and any statistics derived from such small populations can be
unreliable. Further, the data are often noisy, resulting in different values of a gene in two
microarray measurements taken from the same sample. As Dong, Li, and Wong [154] point
out, approaches based on the entropy measure could be considered for such applications.
However, they also observe that many of the feature selection methods provide a ranking of
the features, with the top k features used in further processing. This may result in the genes in
the primary pathways being selected, while those in the secondary pathways are ignored. To
address this issue, they suggest the correlation-based approach of Hall (see Section 10.3.3)
which considers groups of features correlated with separating the different classes, but not
correlated with each other. However, this may result in selecting the more important gene in
each pathway, but neglecting the secondary genes. The topic of determining all the relevant
pathways, as well as all the genes relevant in each pathway, is an open research problem
which must be addressed to obtain the best understanding of gene expression profiles.

And, finally, in the context of domain-specific methods for reducing the dimension
of a problem, there is the excellent book by Preisendorfer [483] on the use of PCA in
meteorology and oceanography.

10.5 Representation of high-dimensional data
A practical problem which must be addressed in the analysis of data is the way the data
item by feature matrix is represented. Many tasks require identifying objects whose feature
values fall within a specific range, or objects which are close to a query object in feature
space. For example, the Relief feature selection method described in Section 10.3.1 requires
the nearest neighbors of an instance with the same and the opposite class. The k-nearest
neighbor classification algorithm described in Chapter 11 also requires the nearest neighbors
of an instance. In such problems, if we were to represent the data item by feature matrix
in a simple and straightforward way using a two-dimensional array, such similarity search
queries would become prohibitively expensive, especially when the data are too large to fit
into memory.

A more efficient way to access the data is to use more sophisticated data structures for
storage and indexing to allow fast access to the data. For example, if we just had a single
feature, we could sort the data on the feature, allowing us to easily identify the nearest
neighbors of a given data item without having to search through the entire data set. Further,
by using traditional indexing methods, we could directly access the information we need.

The field of relational databases is replete with indexing techniques which support
not only efficient access, but also insertions and deletions. The B-tree and its variants are
the most popular methods in database management systems, though they are not suitable
for higher-dimensional data, where the R-tree and its variants are more appropriate [379].
However, the performance of even these data structures degrades as the dimension of the
problem increases beyond 20. Dimension reduction techniques have to be applied first to
reduce the number of features before an indexing scheme can be used.

A description of various data structures, indexing schemes, and the implementations
of various search algorithms on these data structures is beyond the scope of this book. An
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excellent reference for this topic is the detailed text on multidimensional data structures by
Samet [521] and the extensive reference list included therein.

Choosing an appropriate indexing structure for multidimensional data for a particular
application is very difficult. Some guidance is provided in Section 5 of the book chapter
by Castelli [91] as well as Chapter 4 of the text by Samet [521]. However, any benefits
provided by indexing should be considered in light of the additional time spent in identifying
the appropriate indexing scheme, the building of the index itself, and the implementation
of the algorithms using these data structures.

10.6 Summary
This chapter has focused on the task on dimension reduction, namely, the identification
of key features used to represent the objects or data items in a data set. I first discussed
the many reasons why dimension reduction is useful and necessary. I then described two
broad categories of methods, one where the original features are transformed into a lower-
dimensional space, and the other where we consider a subset of the original features. A sec-
tion on domain-specific approaches to dimension reduction was followed by a brief note on
indexing structures, a topic which may be appropriate for some problems.

It should also be mentioned that we should be careful when ignoring the features not
identified as important in the dimension reduction process. Sometimes, features identified
as unimportant when all the data items are considered may become important when a subset
of the data items is considered. In addition, if the data set grows with time, the dimension
reduction must be repeated to ensure that the new data has not made previously unimportant
features, important.

While the focus in this chapter has been on reducing the number of features, I would
be remiss in not mentioning the “blessings of dimensionality” [60]. In this viewpoint, the
number of features is increased, not reduced. The idea is to exploit the fact that each feature
potentially carries a little piece of information about the problem and we may stand to
gain by extracting and integrating these pieces. For example, a problem in classification of
handwritten numerals was solved to high accuracy by extracting a large number of features
and creating forests of decision trees (see Chapter 11), where each tree is built using a
random subset of the features [4]. Also, in support vector machines (see Chapter 11), the
dimensionality of the problem is increased by adding new features which are functions of
existing features, such as monomials of various degrees.

It is also interesting to note that the features which are not selected can be put to good
use. Instead of just discarding these input variables, Caruana and de Sa [85] show that using
some of these as output variables can increase the performance of the main output.

10.7 Suggestions for further reading
Dimension reduction techniques have seen much use in several different application do-
mains. In addition to techniques which have been tailored to specific domains, there are also
several general techniques which have been widely investigated and enhanced over the years.
The more popular of these, the PCA, is described in detail in several books [483, 296, 310],
which also provide practical guidance in the application of the method. The books by Liu
and Motoda [385, 386] provide the data mining viewpoint on the subject of feature selection.
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There are also several surveys on dimension reduction both from the machine learning
perspective [47, 236] as well as the pattern recognition perspective [546]. A nice summary
of filter methods is provided by Duch [163], including techniques based on information
theory, while the use of feature selection for unlabeled data is discussed by Dy and Brodley
in [166].

The interested reader is referred to the literature in their own problem domain for
problem-specific methods. Often the subtleties associated with each problem may influence
how a method is applied or its results interpreted.

Finally, I recommend the excellent book by Samet [521] for indexing schemes used
to improve access to the data both before and after the dimension reduction techniques have
been applied.



Chapter 11

Finding Patterns in the Data

The first principle is that you must not fool yourself—and you are the
easiest person to fool.

—Richard P. Feynmann [189, p. 212]

In the previous chapter, I discussed techniques to identify key features which are
relevant to the problem being addressed. Some of these techniques, such as wrappers
(Section 10.3.2), incorporate the pattern recognition algorithm, while others, such as filters
(Section 10.3.1) or the transform-based methods (Section 10.2), are independent of the
pattern recognition algorithm.

In this chapter, I describe the different types of analyses we can do once we have the
data item by feature matrix where the key features have been identified. In some problems,
the scientist may be interested in the statistics of the features for the different objects in
the data. For example, they may want the distribution of sizes of the objects in an image
or the variation in the number of objects in a simulation data set over time. These simple
summaries may provide insights on the physical phenomenon being studied or provide
a “model” which can be used in other, more complex, simulations. In these cases, the
information of interest can be directly obtained from the data item by feature matrix.

However, more sophisticated analyses are also possible, where the scientist is inter-
ested in finding patterns in the data. For example, they may want to group the data items
so the items in one group are similar to each other, but different from the items in another
group. Or, they may know that some items belong to one group and others to a different
group, and they would like to build a “model,” which, given an item, would assign it to
one of these groups. In other cases, instead of a discrete group, there may be an output
value or values associated with each data item, and the scientist may be interested in being
able to predict these values. Or, given the structures of interest in a simulation, the scientist
may be interested in tracking them to understand how they evolve over time, the processes
associated with their birth and death, and any correlations between the evolution of the
structures and other events which may shed light on how they may be able to control the
behavior of the structures.

The analysis algorithms described in this chapter are referred to by names such as “data
mining,” “machine learning,” “pattern recognition,” “artificial intelligence,” or “statistical
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learning” algorithms in the literature. Given the diversity of domains which have contributed
to this area, the algorithms have been extensively described in several textbooks. They
include both general texts covering a broad range of techniques [430, 252, 164, 261, 581,
630, 574, 42], as well as specialized texts on a specific technique, which I will refer to in the
appropriate sections in this chapter. This diversity of names is the result of techniques being
created in different domains at roughly the same time, or being independently reinvented in
a different domain and given a new name, with the similarity between techniques known by
different names becoming clearer over time. Each domain provides its own interpretation
of a technique and it can often be helpful to exploit the wealth of information available in
the literature and look at the results of an analysis from different perspectives.

As I have observed earlier, much of the analysis using “data mining” algorithms is done
on commercial or nonscientific data, such as market basket analysis, customer relationship
management, and text mining, where the data are presumed to have been preprocessed and
the key features extracted using relatively simple techniques. In contrast, for scientific data,
much of the time spent in the analysis is in the steps prior to the actual identification of
patterns in the data. In these preprocessing steps, we need to identify the objects in the data
correctly and extract features that accurately represent them; else, we run the risk of using
garbage as input to the pattern recognition techniques. In my experience, if the features are
of high quality, the actual algorithm we use for detecting the patterns is less important. On
the other hand, if the features are inadequate, even the best algorithm will fail. In light of
this consideration, and the extensive literature already existing on the topic of identifying
the patterns in the data, I will describe the pattern recognition algorithms relatively briefly
and provide references to texts where further details can be found. I will also mention
some of the practical issues which must be considered when these techniques are applied to
science data. These issues are often the result of characteristics unique to science data and
can make the identification of patterns rather difficult.

This chapter is organized as follows. Sections 11.1 through 11.6 describe various
algorithms for clustering, classification, regression, tracking, association rules, and anomaly
detection. In each section, I describe the commonly used algorithms and provide extensive
references for further reading. Next, in Section 11.7, I discuss some general topics such as
optimization and distance metrics which are useful in the implementation of the algorithms
described in this chapter. Finally, a summary of the chapter in Section 11.8 is followed by
Section 11.9 which provides suggestions for further reading.

11.1 Clustering
The task of clustering is essentially one of grouping data items, each represented by a set of
features, into similar clusters or groups. Typically, items within a group are similar to each
other, but items from two different groups are less similar. In clustering, we do not have
a priori information on the number of groups in the data or examples of items from each
group. Therefore, clustering is also referred to as unsupervised learning to distinguish it from
supervised learning, or classification, which is discussed in Section 11.2. In classification,
we start with a collection of items, each of which has already been assigned to a group or
class, and thus, has a class label. The goal is to build a “model” to distinguish among the
different groups. The model can then be used to assign a class label to an item which is
described by a set of features, but which does not have a class label. Since the learning of the
model is supervised through a set of examples with known labels, classification techniques
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allow us to exploit a priori information, while clustering algorithms have to learn how to
group similar items based solely on the features used to represent the items.

There are two key issues which must be addressed before we apply a clustering
algorithm. The first is the choice of a similarity metric. This essentially indicates how
similar (or dissimilar) two objects are in feature space (assuming that each object is described
using a feature vector). The most obvious choice of a similarity metric is the distance
between the two data items. The Euclidean distance is often chosen, though other distance
metrics (see Section 11.7.1) are also possible. Alternatively, one can use a similarity matrix
which directly provides the value of the “distance” between two objects. This matrix can be
obtained using a domain-specific function whose value is large (small) when the two objects
are similar (dissimilar). Sometimes, a dissimilarity matrix is used as it is more appropriate.

The second issue is the clustering criterion, which is used to evaluate a partitioning
of the data items into groups. The task of clustering then becomes one of optimizing this
function. Acommonly used criterion is the sum of squared error. Suppose we have n objects
described by the features vectors x1, . . . ,xn which we want to group into c clusters, Ci ,
i = 1, . . . ,c. If ni is the number of objects in cluster i, then the mean of these samples is

mi = 1

ni

∑
x∈Ci

x. (11.1)

Then the sum of squared error is given by

c∑
i=1

∑
x∈Ci

‖x −mi‖2. (11.2)

By minimizing this error, we ensure that the sum of squared error in representing each object
by its cluster mean is minimized. This is an appropriate metric to use when the objects form
clusters which are compact and well separated from each other. However, the presence of a
few outliers can result in an unnatural split of a cluster using this criterion [164]; care must
be taken to evaluate the clustering results and incorporate additional constraints as needed.
Other clustering criteria are also possible, such as optimizing the average, the median, or
the maximum distance between objects in a cluster, or using criteria derived from scatter
matrices which minimize the within-cluster scatter, while maximizing the between-cluster
scatter [252, 164]. There are several different categories of clustering algorithms which I
describe next.

11.1.1 Partitional algorithms

Partitional algorithms create the clusters by partitioning the data into a predetermined, or an
automatically derived, number of clusters. The k-means algorithm [17, 18, 164] is the most
popular and perhaps the simplest method for clustering. Here, k is the number of clusters
and is assumed to be given. The algorithm essentially starts with k cluster centers, often
assigned randomly. It then assigns each data item to its closest cluster center. The centers
are then recomputed as the mean of the data items assigned to the cluster, and the process
repeats until the cluster means do not change significantly.

The k-means algorithm, while popular, has certain restrictions [261, 574]. It is appro-
priate when the dissimilarity metric is the Euclidean distance, but is inapplicable when the
features are such that there is no notion of a mean or center. It can also be sensitive to outliers.
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One solution to these restrictions, albeit a computationally intensive one, is to require the
point which represents the “center” of a cluster to be one of the items in the cluster. This is the
case for the k-mediods clustering algorithm which uses as the center of a cluster, the item in
the cluster which minimizes the total distance (or dissimilarity) to other items in the cluster.

The k-means technique has several modifications which vary based on how the ini-
tial cluster centers are obtained, the stopping criterion, as well as ways of splitting and
merging clusters. It is also related to techniques in several other domains, including vector
quantization [214], Voronoi diagrams [10, 458] and the Expectation Maximization (EM)
algorithm [252].

11.1.2 Hierarchical clustering

Hierarchical clustering algorithms produce a hierarchy of clusterings and often exploit the
fact that such a hierarchy may occur naturally in the data, as in biological taxonomy. Hierar-
chical clusterings are conveniently represented by a tree-like structure called a dendrogram
[252, 164, 581]. At the lowest level, each item in the data set, which can be considered as
a cluster consisting of a single item, is represented by a leaf of the dendrogram. When two
clusters merge, the two branches of the tree merge. At the highest level, there is a single
branch representing the cluster with all the data items. As we traverse the tree from the
lowest leaf level to the highest root level, the number of clusters reduces by 1 at each level.

This indicates that there are two ways in which we can build the tree. Algorithms
which start at the lowest level and build the dendrogram by merging clusters are called
agglomerative algorithms, while algorithms which start at the top level and work down to
the leaf level are called divisive algorithms as they divide the original cluster which consists
of all the data items.

Agglomerative, or bottom up, approaches start with each item being a cluster by itself
(see Figure 11.1). Nearest clusters are merged in turn, until there is just a single cluster of
all the data items. The “nearest” clusters are identified using some metric like the clustering
criterion. The single linkage technique uses the intercluster dissimilarity to be that of the
closest (that is, least dissimilar) pair, where one item of the pair is from one group and the
other item is from the other group. The complete linkage technique uses the intercluster
dissimilarity to be that of the farthest (that is, most dissimilar) pair, while the group average
technique uses the average dissimilarity between the items in the two groups.

The divisive technique is the less popular of the two hierarchical methods as it is less
robust and requires more computations. It starts with all items in one cluster and splits it
into two. One way to accomplish this is to use an algorithm such as k-means or k-mediods
recursively to perform the splits. However, the results would be dependent on the initial
cluster centers used at each step. A more computationally expensive approach is to start
with all items in one cluster, consider all possible pairs of clusters which partition the items
and select the one which optimizes a criterion. Then, we repeat the process on each of the
two subclusters and, among all the partitions from each of the two subclusters, we select
the one which optimizes the criterion, and so on.

11.1.3 Graph-based clustering

There is another category of clustering algorithms which shares aspects of both partitional
and hierarchical approaches. This is the category of algorithms which exploits a graph
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Figure 11.1. Top: A data set with five instances, x1, . . . ,x5, each of dimension
two, and the corresponding dissimilarity matrix obtained by considering the Euclidean
distance between two instances. A larger distance indicates greater dissimilarity between
two instances. Bottom: The dendrogram indicating how similar instances are merged to
form clusters.

representation [233] of the data. These algorithms consider the nodes of the graph to be the
data items while the edges represent the similarity or the relationship between the nodes.

Simple graph-based clustering algorithms have been in use for quite a while (see, for
example, Section 15.2 of [581] and the references therein and [642]). For example, some
algorithms obtain the minimal spanning tree [233] of a graph and remove inconsistent edges.
These are the edges with a relatively large weight, where the weight of an edge between two
nodes is defined as the distance in feature space between the data items corresponding to the
nodes. The idea is that edges with a large weight typically connect two different clusters.

More recently, there has been considerable interest in exploiting techniques originally
developed for the solution of partial differential equations (PDEs) on large parallel machines.
The clustering algorithms which arise from this field are derived from two tasks in the
solution of these equations. One is domain decomposition, where the goal is to partition
the grid over which the PDE is to be solved into subdomains, such that the subdomains are
roughly equal in size and the connections between subdomains are minimized. This ensures
that when a subdomain is assigned to a processor, the work done by each processor will be
roughly the same; that is, the computation will be load balanced. Further, the communication
between processors, which is time consuming, is minimized as the connections between the
subdomains is minimized. The other task is the solution of a sparse set of linear equations
using a parallel direct solver [213, 354]. Here, one of the goals is to reorder the equations
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so that the process of fill-in, which occurs during the factorization of the matrix, leads to a
high degree of concurrency. Often, the other goal of re-ordering is to minimize the fill-in
to reduce the computations.

This connection between the tasks in the parallel solution of PDEs and clustering has
been exploited in several ways to make the graph-partitioning techniques suitable for clus-
tering. For example, Karypis, Kumar, and coauthors have explored a multilevel approach
which improved both the computational cost and the quality of partitioning obtained by
directly partitioning the graph [328, 329]. This approach first coarsens the graph, partitions
the smaller coarser graph, and then uncoarsens the graph to produce a partition for the
original graph. The coarsening is done by collapsing the nodes and edges, and the uncoars-
ening incorporates refinement to produce high-quality partitions. This work resulted in the
METIS software [428] which has seen extensive use for unstructured graph partitioning
and sparse matrix reordering. The technique was then extended to hypergraphs, which are
a generalization of graphs, where a set of edges is replaced by a set of hyperedges, with a
hyperedge connecting more than two vertices at a time. Thus, the weight of a hyperedge
represents the strength of the affinity among the objects represented in the hyperedge. A
hypergraph-partitioning algorithm allowed clustering of the objects by identifying partitions
such that the items in a partition were highly related and the weight of the hyperedges cut
by the partitioning minimized [249]. This algorithm is available via the hMETIS software
[428] for hypergraph partitioning.

Karypis, Han, and Kumar have also extended their hierarchical clustering algorithm
to address clusters of diverse shapes, densities, and sizes. They first obtain a fine-grain
clustering solution by using hMETIS. Then, they merge clusters based on measures of
relative interconnectivity and relative closeness. Their algorithm, Chameleon [327], has
been shown to work well on a number of data sets with points in two-dimensional space,
indicating the potential of the technique for use in image segmentation, especially as it is
relatively insensitive to noise.

A different approach to partitioning the graph is the use of graph Laplacians and
spectral graph theory [114]. The Laplacian of a graph is a square matrix of size equal to
the number of nodes in the graph. Any element in the matrix at location (i,j) represents an
edge in the graph connecting the nodes i and j . The value of this element is zero if there is
no corresponding edge in the graph and it is −1 if there is an edge in the graph (for i �= j ).
For diagonal elements in the matrix (i = j ), the value of the matrix element is the degree
of the node, that is, the number of nodes adjacent to it. However, as Luxburg [400] points
out, there are several definitions of graph Laplacians and one must be careful while reading
the literature on the subject.

The spectral partitioning of a graph is obtained by first computing the second eigen-
vector of the Laplacian of the graph, which is also referred to as the Fiedler vector. The
smallest eigenvalue of the Laplacian is zero, and the second smallest is thus the smallest
positive eigenvalue. Then, the nodes are partitioned into two subsets using the eigenvector
components. One option is to have one subset be generated using the positive values in the
eigenvector, and the other subset be generated using the negative values. However, to ensure
that the two subsets are balanced in size, the values in the eigenvector can be ordered and the
median component be used to create the two subsets. Pothen, Simon, and Liou, in their well-
known algorithm on partitioning sparse matrices [481], recursively applied the partitioning
to each of the subsets. Hendrickson and Leland [271] extended this approach to create four
or eight subsets at a time for the task of domain decomposition for parallel computation.
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These spectral partitioning algorithms have since made their way into the clustering
literature. For example, Shi and Malik [541] have used it in image segmentation. The
nodes of the graph represent the pixels in an image, while the edge weights are determined
by a function which incorporates both the brightness values and the spatial location of the
pixels. Then, they use recursive spectral bisection to partition the graph, thus segmenting the
image. Spectral partitioning is also being used in clustering protein sequences. For example,
Paccanaro, Casbon, and Saqi [467] show that traditional clustering algorithms are local, as
they assign a protein to a cluster by considering only the distances between that protein and
the others in the set. In contrast, spectral clustering considers distances between all proteins
in the set. As a result of this global perspective, it provides clusters which are of a higher
quality from a biological viewpoint. Spectral clustering has also been used in the separation
of speech between two speakers recorded using a single microphone, as shown in [13].

11.1.4 Observations and further reading

There are several challenges in the practical implementation and application of a clustering
technique. A key problem is the number of clusters. In rare cases, we may know the number
of clusters or the scientists may have an idea of what this number should be. If the number
is unknown, we can try different values and compare some criterion for each clustering.
A large gap in the criterion will indicate a possible value for the number of clusters (see,
for example, Section 14.3.11 of the text by Hastie, Tibshirani, and Friedman [261]). For
hierarchical methods, if we make a horizontal cut in a dendrogram, it will intersect the tree in
a number of branches, which is indicative of the number of clusters. The issue then becomes
one of determining where to make the cut. Theodoridis and Koutroumbas (Section 13.5 in
[581]) suggest several techniques for choosing the number of clusters in the hierarchical
method, including one based on the “lifetimes” of clusters. This is defined as the difference
in the levels between when a cluster is created and when it is absorbed into another cluster.
Clusters with a long lifetime are indicative of an inherent grouping in the data.

Another challenge is the choice of the initial set of cluster centers in algorithms such
as k-means. Often, these are selected randomly and the clustering repeated with different
random selections to ensure that the results are not sensitive to the initial cluster centers.
Alternatively, if we are selecting the number of clusters as well, we can start the n-cluster
solution with the centers of the clusters obtained for the n−1 cluster problem, plus the item
which is farthest from the nearest cluster center.

It is a challenge to determine an appropriate algorithm for clustering the data, identify
the different parameters, and select an implementation suitable for the size of the data.
However, it should be kept in mind that a clustering algorithm will identify clusters in data
regardless of whether the data are naturally clustered or random. Therefore, to avoid a
misleading interpretation of structure in a data set where none exists, it makes sense to first
determine if the data possess a clustering tendency. This is usually done by looking at the
randomness of the data as described in Section 4.6 of the book by Jain and Dubes [298] and
Section 16.6 of the text by Theodoridis and Koutroumbas [581].

Even if we assume the data have an underlying clustering structure, our choice of
parameters for the algorithm and restrictions on the clusters, such as their shape, may not
match the underlying structure in the data. The topic of cluster validity plays an important
role in the quantitative evaluation of a clustering algorithm. This topic is discussed briefly
in Section 10.10 of the text by Duda, Hart, and Stork [164] and in more detail in Chapter 4 of
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the book by Jain and Dubes [298], Chapter 16 of the text by Theodoridis and Koutroumbas
[581], and in the article by Halkidi, Batistakis, and Vazirgiannis [240].

It is also important not to lose sight of the end goal of clustering, which is often to
assign labels to the items in a cluster and then use the labeled examples in classification to
build models. Different choices of clustering algorithms, clustering criteria, and distance
measures might yield very different results. The domain scientist should be involved in
interpreting and validating the results. It is also helpful to look at the data initially to
identify any outliers—these may be the result of errors in the data or they may indicate
something scientifically interesting.

Clustering is a pattern recognition technique which has been studied extensively.
Several relatively recent surveys provide an excellent overview of the field, including the
ones by Berkhin [34]; Han, Kamber, and Tung [250]; Jain, Murthy, and Flynn [299]; and Xu
and Wunsch [635]. Asurvey of the literature on scalable clustering techniques is summarized
in the article by Ghosh [217], while Murtagh [441] focuses on issues in the context of massive
data sets. Several texts also provide good summaries and excellent practical suggestions
including the early texts by Jain and Dubes [298] and Kaufman and Rousseeuw [332], as
well as Chapters 11 through 16 of the text by Theodoridis and Koutroumbas [581].

Finally, the CLUTO clustering software [116] provides an extensive collection of
functions for various clustering algorithms including partitional, agglomerative and graph-
partitioning-based techniques. It supports various distance measures, as well as several
clustering criterion functions and agglomerative merging schemes.

11.2 Classification
In classification, the goal is to build a “model” using a set of classified or labeled data items
so that the model can be used to classify items without a class label. For example, we may be
given a set of galaxies, each of which has been assigned a label or class indicating if the galaxy
is of type bent-double or not [315]. Each galaxy is represented by a set of features. The goal
is to use these data to build, say, a decision tree, which, given a new galaxy with its associated
features, can be used to assign a label of bent-double or non-bent-double to that galaxy.

In this example, the decision tree is the classifier or the classification algorithm. The
labeled data are referred to as the “training” data as they are used to “train” the decision
tree to “learn” how to discriminate between bent-double and non-bent-double galaxies. The
decision tree is a particular kind of model in that it discriminates among classes using hy-
perplanes parallel to the feature axes. More complex models using nonlinear discriminating
functions are also possible.

Classification algorithms are usually evaluated by testing them on a part of the training
data which has been set aside specifically for this purpose and not used during training. The
accuracy on this “test” data is a measure of how well the classifier will perform on data it
has not seen before. However, to ensure that a high accuracy is reflective of the predictive
ability of a model rather than an artifact of the data, there are several issues which must be
considered prior to measuring the accuracy of a classifier; I consider these in further detail
in Section 11.2.7.

In addition to accuracy, another metric which is often important in scientific data is
the interpretability of the model. Scientists are usually interested in understanding how a
model arrives at its decision as, among other things, this can indicate which features are
considered important and for what range of values. Or, the model may indicate which



11.2. Classification 185

features are unimportant. In either case, such information can shed light on the scientific
problem being investigated. Black-box models, which do not reveal their inner workings
may therefore be less acceptable in some cases than a less accurate, but interpretable, model.

11.2.1 k-nearest neighbor classifier

One of the simplest classification algorithms is the k-nearest neighbor algorithm. This
algorithm belongs to the category of instance-based learning, sometimes called delayed or
lazy learning. In such techniques, the learning occurs only when the data item to be labeled
is presented to the classifier. The classification typically involves the data items nearest to
the query instead of all the data items. This allows a different model to be used for different
parts of the feature space, enabling us to model a complex function using a collection of
simpler functions which work well locally, but not necessarily globally.

The k-nearest neighbor algorithm assigns to an unlabeled item the most frequently
occurring class label among the k most similar data items. The similar data items are obtained
using Euclidean distance metric between the feature vectors. The k-nearest neighbor can
also be applied using weights, where the neighbors which are closer to the query item have
larger weights.

As we have observed in Chapter 10, if the feature vector is high dimensional, the most
similar data items could be quite a large distance apart. This indicates a need for dimension
reduction techniques prior to the use of the k-nearest neighbor classifier. Alternatively, we
could weight the features in the calculation of the distance, with the more relevant features
having larger weights.

Further, as we are interested in retrieving the nearest neighbors, an operation which
can be quite expensive if the size of the training data is quite large, it may be beneficial to
consider the use of an indexing scheme (Section 10.5) to store the data and make the access to
the nearest neighbors more efficient. Alternatively, we could use the version of the algorithm
which weights the data items based on distance from the query. We can then consider all the
data items, with items farther away contributing a smaller amount, possibly zero, to the final
result. This global version of the algorithm allows us to trade off the extra cost of building
and maintaining an index with a computationally expensive sweep through the entire data set.
It is also possible to determine approximate nearest neighbors as discussed byArya et al. [7].

It is interesting to note that when k = 1, a query item is assigned the class of the
closest item in the training data. There is a convex polyhedra around this data item which
indicates the region of feature space closest to the data item; any query item in this region
will be closer to this data item than any other item in the training set. The combination of
these polyhedra, which form the decision surface for the problem, is essentially the Voronoi
diagram of the training data (see, for example, Section 8.2 of [430]).

11.2.2 Naïve Bayes classifier

Another simple classifier is the Naïve Bayes classifier, so called as it is based on the Bayes
theorem and naïvely assumes that the feature values are conditionally independent given
the target class label [430, 252]. The Bayes classifier essentially assigns to a data item the
most probable class label, given the values of its features.

The conditional independence of the feature values implies that, given the target class
label, the probability of observing all the feature values for a data item is just the product of
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the probability of observing each of the individual feature values. Suppose the query data
item is represented by the following d feature values:

q = q1, . . . ,qd (11.3)

and we need to assign one of the following m class labels:

C = c1, . . . ,cm (11.4)

to this data item. Then, for a class label cj , the simplifying assumption states that

P(q1, . . . ,qd |cj ) =
∏
i

P (qi |cj ). (11.5)

Using Bayes rule, this implies that the class label assigned to the data item is the one which
maximizes

P(cj )
∏
i

P (qi |cj ). (11.6)

The number of distinct P(qi |cj ) terms which must be estimated from the data is just the num-
ber of distinct feature values times the number of distinct class labels. These probabilities,
along with P(cj ), can be estimated based on their frequencies over the training data.

However, as Witten and Frank [630, Section 4.2] point out, things can go awry with
the naïve Bayes classifier if, in the training set, we do not have a particular feature value
occurring in conjunction with every class label. This would make one of the probabilities
P(qi |cj ) zero. As a solution, they suggest using a Laplace estimator by adding a small
constant to each count. This ensures that a feature value which does not occur even once in
the training data has a small, but nonzero, probability of occurring. In the case of numeric
features, which is almost always the case with scientific data, instead of probabilities, we
assume that each feature has values with a normal or Gaussian distribution and consider
the probability density function [630]. If we know that a feature has a distribution different
from a normal distribution, we can use the estimation procedures for that distribution.

The Bayes classifier often works well in practice though it makes certain assumptions
on the independence of the feature values. This is especially true when the data have been
preprocessed to remove redundant, that is, nonindependent, features. Given its simplic-
ity, it is therefore worth trying the Bayes classifier before considering more sophisticated
approaches.

11.2.3 Decision trees

Decision trees [61, 490, 493] are a popular technique in classification as they are accurate,
relatively simple to implement, produce a model that is easy to interpret and understand,
and have built-in dimension reduction. A decision tree is a structure that is either a leaf,
indicating a class, or a decision node that specifies some test to be carried out on a feature
(or a combination of features), with a branch and subtree for each possible outcome of
the test. The decision at each node of the tree is made to reveal the structure in the data.
The traditional version of a decision tree algorithm creates tests at each node that involves
a single feature. These trees are referred to as axis-parallel trees because the tests can be
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considered as hyperplanes that are parallel to one of the axes in the attribute or feature space.
As the tests at each node are very simple, it is easy for the domain expert to interpret the trees.

In a typical decision tree, the decision at each node is of the form

fi < ai , (11.7)

where fi is the ith feature and ai is a value used in the decision. Given a data item with
its feature values, there are two outcomes of this decision. This node of the decision tree
therefore splits the data items at the node into two subsets. Starting at the root of the tree
with all the data items in the training set, the building of the tree essentially consists of
identifying the test to be made at the root node, using the test to split the set of items into
two subsets, and repeating the process on each of the two subsets. The process of splitting
the data items stops when we have a subset where all or a majority of the items have the
same class label. This forms a leaf node of the tree. Then, to assign a class label to an item
with its associated features, it is “dropped” in the root node of the tree and its path followed
down to a leaf node, where it is assigned the class of the majority of the data items at that
leaf node.

There are two key issues in the construction of a decision tree—the type of split at
a node of a tree and the split criterion to be used in making this split. The simplest type
of split is the axis-parallel split, which consists of a single feature on the left side of the
decision. While such trees are easy to interpret, they may be complicated and inaccurate in
the case where the data are best partitioned by an oblique hyperplane. In such instances, it
may be appropriate to make a decision based on a linear combination of features, instead
of a single feature. However, these oblique trees can be harder to interpret. They can also
be more compute intensive as the problem of finding an oblique hyperplane is much harder
than the problem of finding an axis-parallel one.

There are several variants of oblique decisions trees which differ in how the linear
combination is obtained. In the CART-LC method [61], Brieman et al. use an approach
which cycles through the features trying to find the best split on each feature, while keep-
ing the others constant. A backward deletion process is then used to remove features that
contribute little to the effectiveness of the split. This approach is fully deterministic and
can get trapped in a local minima. The oblique classifier OC1 by Murthy [442] attempts to
address this limitation by including randomization, where multiple random restarts are used
to escape local minima. As the problem of finding the best oblique hyperplane is essentially
an optimization problem, it is also possible to use evolutionary algorithms, as described by
Cantú-Paz and Kamath [81]. This allows us to work with the coefficients of all the features
at a time instead of the series of univariate splits considered in OC1 and CART-LC.

There are also several different split criteria one can use in the creation of the decision
tree. A split criterion is a heuristic measure which evaluates the suitability of a proposed
split. Depending on whether the measure evaluates the goodness or badness of a split, it is
either maximized or minimized. The basic idea is to consider each feature for all data items
at a node, sort the values of this feature in ascending order, propose a split at the midpoints
between the sorted values, and evaluate the effectiveness of the split using a split criterion.
This will give us the best split for a single feature. The split decision at the node is then just
the best split over all the features.

Let T denote the set of n examples at a node, each of which belongs to one of k

classes. Let TL and TR be the two nonoverlapping subsets that result from the split, that is,
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the left and right subsets. Let Lj and Rj be the number of instances of class j on the left
and the right, respectively. Then, the most commonly used split criteria are [442]:

• Gini: This criterion is based on finding the split that most reduces the node impurity,
where the impurity is defined as follows:

LGini = 1.0−
k∑

i=1

(Li/|TL|)2, (11.8)

RGini = 1.0−
k∑

i=1

(Ri/|TR|)2, (11.9)

Impurity = (|TL| ∗LGini +|TR| ∗RGini)/n, (11.10)

where |TL| and |TR| are the number of examples, and LGini and RGini are the Gini
indices on the left and right side of the split, respectively. This criterion can have
problems when there are a large number of classes.

• Twoing rule: In this criterion, a “goodness” measure defined as

Twoing value = (|TL|/n)∗ (|TR|/n)∗
(

k∑
i=1

|Li/|TL|−Ri/|TR||
)2

(11.11)

is maximized.

• Information gain: The information gain associated with a feature is the expected
reduction in entropy caused by partitioning the examples according to the feature.
Here the entropy characterizes the impurity of an arbitrary collection of examples.
For example, the entropy prior to the split in our example would be

Entropy(T ) =
k∑

i=1

−pi log2 pi , (11.12)

pi = (Li +Ri)/n, (11.13)

where pi is the proportion of T belonging to class i and (Li +Ri) is the number of
examples in class i in T . The information gain of a feature F relative to T is then
given by

Gain(T ,F) = Entropy (T )−
∑

v∈values(F )

|Tv| ∗Entropy (Tv)/|T |, (11.14)

where Tv is the subset of T for which the feature F has value v. Note that the second
term above is the expected value of the entropy after T is partitioned using feature F .
This is just the sum of the entropies of each subset Tv , weighted by the fraction of
examples that belong to Tv . This criterion tends to favor features with many values
over those with few values.

• Information gain ratio: To overcome the bias in the information gain measure,
Quinlan [490] suggested the use of information gain ratio which penalizes features
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by incorporating a term, called the split information, that is sensitive to how broadly
and uniformly the feature splits the data. This term is defined as

Split Info(T ,F) = −
c∑

i=1

(|Ti |/n) log2(|Ti |/n), (11.15)

where Ti are the subsets resulting from partitioning T on the c-valued feature F . Note
that the split information is the entropy of T with respect to the values of the feature
F . The Gain ratio is then defined as

Gain Ratio(T ,F) = Gain(T ,F)/Split Info(T ,F). (11.16)

• Max minority: This criterion is defined as

Lminority =
k∑

i=1,i �=maxLi

Li , (11.17)

Rminority =
k∑

i=1,i �=maxRi

Ri , (11.18)

Max minority = max(Lminority ,Rminority). (11.19)

This has the theoretical advantage that a tree built by minimizing this measure will
have depth at most logn. This is not a significant advantage in practice and trees
created by other measures are seldom deeper than the ones produced by Max minority.

• Sum minority: This criterion minimizes the sum of Lminority and Rminority , which
is just the number of misclassified instances.

In addition to the type of split at a node and a criterion for making that split, there is
an additional issue which must be considered in building a tree. In an attempt to create leaf
nodes which have items of only a single class, we may overfit the model to the data. This
would imply that the tree would be an accurate representation of the training data but would
very likely not generalize well, performing poorly on the test data. The solution to this
problem is to “prune” the tree by replacing some subtrees by leaf nodes. This increases the
error on the training set as the replacement leaf node will no longer be as pure as the replaced
leaf nodes. However, the tree is likely to perform better on an independently chosen test set.

There are several approaches to decision tree pruning such as the cost complexity
pruning technique of Breiman [61], the minimum description length approach suggested by
Quinlan and Rivest [492], the pessimistic error pruning suggested by Quinlan [494], and
an error-based pruning used in the C4.5 software [493]. An important issue in pruning is
determining when to prune a subtree. This is typically done by considering the error rate of
the nodes and leaves of the tree on a separate verification set [630].

11.2.4 Neural networks

Decision trees algorithms are well suited to problems where the decision surfaces separating
the different classes can be modeled using axis-parallel or oblique hyperplanes. However,
when these surfaces are more complex, it is worthwhile to consider artificial neural networks
as they are often better at modeling complex data [430].



190 Chapter 11. Finding Patterns in the Data

Figure 11.2. A simple perceptron which takes as input a d-dimensional vector x,
obtains a linear combination using the weight vector w and outputs the value 1 if the result
is greater than a threshold and −1 otherwise.

The simplest neural network, called a perceptron, takes as input a real-valued vector
of feature values, obtains a linear combination of them, and outputs a 1 if the combination
is greater than a threshold and −1 otherwise (Figure 11.2). This corresponds to the linear
discriminant function

g(x) = wT x −w0, (11.20)

where x is a feature vector, w is the vector of weights, and w0 is the threshold. Thus
g(x) = 0 is the surface which separates items in class C1 : g(x) > 0 from items in class
C2 : g(x) < 0, enabling the perceptron to act as a linear classifier for a two-class problem
when the two classes are linearly separable. The perceptron must be trained, that is, the
weight vector w is obtained, before it can be applied to classify an item without a class label.
A simple approach to obtaining the weight vector is to start with random weights, apply the
perceptron to classify a data item in the training set, and modify the weights whenever the
item is misclassified. The process is repeated, iterating through the training examples until
none are misclassified. Thus, if the perceptron misclassifies an item x, whose true class is
Cj , then the weight associated with the ith component, xi , of x is updated by

−ηxi if Cj = C2 (11.21)

and

+ηxi if Cj = C1. (11.22)

Here, η is the learning rate which may be fixed for all iterations, or may vary, becoming
smaller as convergence is reached.

There are several ways in which such a linear discriminant function can be extended
to multiple classes, though, as Duda, Hart, and Stork [164], point out, care must be taken
to ensure that we not end up with regions of feature space where the classification is
undefined.
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If the classes are not linearly separable, or the learning rate is not small enough,
the algorithm above will not converge. When the two classes are not linearly separable,
we can use a gradient descent approach to find the weights which best separate the two
classes in the training data [430, 164]. This concept is perhaps best understood in the
context of an unthresholded perceptron, that is, equation (11.20) with w0 = 0, where we are
trying to predict a real-valued output. Given the weight vector w, and the feature vectors
corresponding to the training data, we can calculate the training error between the predicted
values o and the desired output values t as

E(w) = 1

2

N∑
i=1

(ti −oi)
2, (11.23)

where there are N items in the training set, ti is the target output of item i and oi is
the corresponding output from the perceptron. The fraction, 1/2, is used to simplify the
calculation of the gradient. The error is a function of w as the output o is a function of w
as defined in equation (11.20). For different weight vectors, this error forms a surface (see,
for example, the text by Mitchell [430] or the book by Duda, Hart, and Stork [164]). Our
goal is to find the weight vector corresponding to the minimum of this error surface.

The standard approach to this problem is to start with a random set of weights, which
corresponds to a point on the error surface. At each step in the iterative process, we change
the weight vector in the direction which produces the steepest descent along the error surface.
This direction is the negative of the gradient at that point on the error surface, where the j th
component of the gradient can be obtained by differentiating (11.23) with respect to wj , the
j th component of the weight vector, as

∂E

∂wj

=
N∑

i=1

(ti −oi)(−xij ). (11.24)

Thus, given a weight vector, we can apply the perceptron to each of the training examples to
determine the output oi , and obtain the update to the j th component of the weight vector as

δwj = η

N∑
i=1

(ti −oi)(xij ), (11.25)

where η is the learning rate and must be chosen to be small enough so that the gradient
descent does not overstep the minimum in the error surface. The weight vector is then
updated and the process is repeated.

A stochastic approximation to the gradient descent process [430] updates the weight
vector after each data item, though it uses the gradient calculated at the end of each epoch,
where an epoch is one iteration through all items in the training set. Instead of gradi-
ent descent, alternate optimization techniques such as Newton’s method, conjugate gradient
method, and the Levenberg–Marquardt algorithm are also possible (see, for example, Chap-
ter 7 of [41] or any standard text on nonlinear optimization methods [454]).

A single perceptron is somewhat limited as a classifier as it can only model linear
decision surfaces. To model more complex surfaces, we need several additions. First, we
need multiple layers which can express a variety of complex surfaces. Second, we need
units which can model a nonlinear function. Using only linear units will produce only linear
functions. And finally, we need units such that the output of a unit is a differentiable function
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Figure 11.3. A multilayer network with an input layer of five units, a hidden layer
of three units, and an output layer of two units. The network is fully connected as each unit
in a layer is connected to all units in the next layer.

of its inputs, so we can use techniques such as steepest descent and other gradient-based
optimization methods.

Figure 11.3 shows a multilayer feed-forward neural network with an input layer, a
hidden layer, and an output layer, each with several units. This topology of the network,
which includes the number of units and their connectivity, is typically determined first, often
by trial and error, prior to the start of training. Each unit is a sigmoidal unit, where instead of
a discontinuous threshold as in the case of a perceptron, we have a smoothly differentiable
function (see Figure 11.4)

f (x) = 1

1+ e−x
. (11.26)

This function is also called the logistic function or the squashing function as it shrinks a
large input domain to a range between 0 and 1.

The most commonly used learning algorithm for a multilayer network using sigmoidal
units is the backpropagation algorithm. As in the case of a single perceptron, the error
function is defined as the sum of the errors over all outputs units. The updates of the weight
vectors is now more complex as there are multiple units as well as a layer of hidden units. The
derivation of the updates, as well as various practical issues related to the implementation
and application of the backpropagation algorithm, can be found in several texts on neural
networks, including Chapter 4 of the book by Mitchell [430], Chapter 6 of the text by Duda,
Hart, and Stork [164], and Chapter 4 of the text by Bishop [41].

Once a neural network has been trained, it is applied by taking a data item characterized
by its features, which are input to the network. The prediction of the network is the class
associated with the output unit with the highest activation.
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Figure 11.4. The continuously differentiable sigmoid function used in neural net-
works (see equation (11.26)). It is also referred to as the squashing function as it shrinks
values on a large domain to lie in the range 0 to 1.

While the multilayer neural network can be a highly effective function approximation
method, unlike the decision tree, it tends to function more as a black box, making it difficult
to interpret how it arrives at a result. As with decision trees, overfitting is also an issue
with neural networks. To avoid overfitting, the error on a separate test set is often used as a
stopping point for the gradient descent.

Another key issue in neural networks is the determination of the topology of the
network, that is, the number of layers, the number of nodes in each layer, and the connections
between them. If the network has too few nodes and connections, it may not be able to
learn complex patterns; if it has too many nodes and connections, it is likely to overfit the
data. The topology of a network is usually determined by trail and error, though the use
of sophisticated evolutionary algorithms (see Section 11.7.2) for determining the topology,
as well as other aspects of neural network training, has indicated that it is often difficult to
improve upon hand-designed networks with backpropagation [82].

A technique related to neural networks is projection pursuit regression from the statis-
tics literature [204, 282]. This essentially obtains the output variable as a linear combination
of a nonlinear transformation of linear combinations of the input variables. Unlike neural
networks, where the transformations are fixed, in projection pursuit, they are data driven.

11.2.5 Support vector machines

A category of classification algorithms which has received much attention in recent years is
the support vector machine (SVM). SVMs use linear models to implement nonlinear decision
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boundaries. This is done by transforming the input data using a nonlinear function into a
higher-dimensional space, where the classes are linearly separable. As there are often several
hyperplanes which can linearly separate the classes, SVMs choose the one which minimizes
the generalization error. This is the maximum margin solution, an approach motivated
through statistical learning theory. The margin is defined as the smallest distance between
the decision boundary and the closest example of each class (assuming there are two classes).
The data items which are closest to the maximum margin hyperplane are called the support
vectors as they uniquely define the separating hyperplane. This hyperplane is obtained by
solving a quadratic optimization problem subject to a set of linear inequality constraints.

There are several excellent references for SVMs, including the introductory tutorial by
Burges [70], Chapter 7 in the text by Bishop [42], the text by Cristianini and Shawe-Taylor
[122], and the references therein. The description above assumes that the data are linearly
separable, either in the original space, or in the transformed space, though determining if
the data are linearly separable is far from trivial. The technique has been generalized to the
case when the data are not linearly separable [120] and a fast algorithm for training SVMs
was proposed by Platt [479].

11.2.6 Ensembles of classifiers

An approach in classification which has gained much acceptance in the community is the
concept of ensembles or committees of classifiers, which involves combining multiple
models. The idea behind this is very simple. The training set is used to build several
different models, each of which is used to assign a class label to a previously unseen
instance. These class labels are then combined suitably to generate a single class label for
the instance. This has been found to improve the accuracy of the resulting models, though,
given that several models are used to make a decision, the process is computationally more
expensive and it is now harder to understand how the decision was obtained.

Ensembles have been used extensively in the context of decision tree classification
algorithms, though they can be used for other classifiers and in the case of regression (see
Section 11.3) as well. There are two main issues in ensembles, how do we create the different
models and how do we combine the results for classification of an unseen instance? The latter
is typically done by taking a vote, or a weighted vote, of the output from each classifier and
assigning the label of the class which occurs most frequently. The use of the weights allows
better models to contribute more to the result than models which are not as accurate. In the
case of regression, the corresponding solution is to take an average or a weighted average.

The task of building the different models is more involved. There are several ways
in which this can be done [141]. They all exploit the fact that the different models are
built from the same training data. However, the approaches vary in how they introduce
randomization into the process of model building so that different models are generated. I
next describe several commonly used techniques for introducing this randomization.

One approach used in creating ensembles is to change the instances which form the
training set for each classifier in the ensemble. The most popular methods for this include:

• Bagging: In this approach, a new sample of the training set is obtained through
bootstrapping with each instance weighted equally [56]. Given a training set with
n instances, bootstrapping essentially samples the training set with replacement to
obtain a new training set, also with n examples. This new training set will have some
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instances repeated and others which are not included at all. By creating several such
training sets, we can introduce randomization into the ensemble. The results of the
ensemble are then obtained by using a simple voting scheme.

This technique works very well for unstable algorithms such as decision trees and
neural networks, where the classifier is sensitive to changes in the training set and sig-
nificantly different classifiers are created for different training sets. In bagging, each
classifier can be generated independent of the other, and randomization is introduced
through the random sampling used to create each sample of the training set.

• Boosting: In this case, a new sample of the training set is obtained using a distribu-
tion based on previous results [202]. Unlike the bagging algorithm, which uniformly
weights all the instances in the training set, boosting algorithms adjust the weights
after each classifier is created to increase the weights of misclassified instances. This
essentially implies that the training sets for the classifiers have to be created in se-
quence, instead of in parallel, as in the case of bagging. The different weights for
the ensembles can either be incorporated directly into the classifier by working with
weighted instances, or be applied indirectly by selecting the instances with a proba-
bility proportional to their weights. Further, in boosting, the results of the ensemble
are obtained by weighting each classifier by the accuracy on the training set used to
build it. As a result, better classifiers have a greater contribution to the end result than
the poorer classifiers. There are several variants of boosting which differ in the way
the instances are weighted, the conditions under which the algorithm stops, and the
way in which the results from the ensemble are combined [202, 58, 26].

• Pasting: In this approach, the ensemble of trees is grown using a subsample of the
entire training set [57]. This technique has been shown to be useful when the entire
training set is too large to fit into main memory.

Instead of changing the instances, we can introduce randomization by focusing on
the features. One approach is to create each new classifier by using a subset of the original
features. For example, this technique has been used with decision trees in [275] and with
neural networks in [110]. This approach tends to work only when the features are redundant,
as poor classifiers could result if some important feature is left out. Alternatively, in the case
of decision trees, one can introduce randomization by considering a subset of the features
for making the split decision, as in the case of random forests, proposed by Breiman [59].

It is also possible to create an ensemble by changing the output targets. In [143],
Dietterich and Bakiri describe a technique called error correcting output coding which can
be applied to a problem with many output classes. The problem is first reduced to a two-
class problem by randomly partitioning the classes into two, which are assigned labels 0
and 1. A classifier is created with this relabeled data. The process is repeated, creating
a new classifier for each random partitioning of the original set of classes. To classify an
unseen instance, each classifier assigns a label to the instance. If the label assigned is 0 (1),
each class that was relabeled as a 0 (1) for that classifier gets a vote. The class with the
maximum number of votes is assigned to the instance.

Unlike the previous techniques, where the input or output to the classifier is changed to
generate the ensemble, it is possible to create the ensemble by changing the classifier itself.
For example, in neural networks, the initial weights are set randomly, thus creating a new
network each time. In decision trees, instead of selecting the best split at a node, one can
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randomly select among the best few splits to create the ensemble [142]. The random forests
approach, mentioned earlier, creates different classifiers by randomly selecting the features
used to determine the split at each node of the tree [59]. Alternately, one can randomize
the classifier by using only a sample of the instances at a node of a decision tree in order
to make the decision [313]. As the split made at a node is likely to vary with the sample
selected, this technique results in different trees which can be combined in ensembles. It is
also possible to use histograms to determine the split at each node, instead of sorting on the
values for each feature. Then, one can introduce randomization by selecting a split value
randomly in the best histogram interval [317].

Ensembles provide several benefits, including a significant improvement in accuracy
[56, 202, 489, 26, 462], the potential for online classification of large databases that do not fit
into memory [57], and the ease with which many of these techniques lend themselves to scal-
able parallelization [244]. If the techniques involve using a subsample of either the instances
or the features, creating n ensembles can take less time than creating n classifiers [313].

11.2.7 Observations and further reading

There are several issues which must be considered in the practical application of a classifica-
tion algorithm. The first is measuring the accuracy of a classifier. Typically, the labeled data
are divided into a training set, which is used to create the classifier, and a test set, which is
used to evaluate it. The test set should be selected prior to creating the classifier and should
not be used in any way in the training. If the training requires two stages, one to determine
a basic structure of the model and another to determine the best parameters, then the labeled
data should be split into three—a training subset to determine the structure of a model, an
evaluation subset to determine the parameters or to select one classifier among many, and
the test subset to obtain the error of the final classifier. The actual accuracy which is required
from a classifier is very problem dependent and should be set in consultation with the domain
scientists. Often, the initial accuracy obtained may not be sufficient and several iterations
may be required to refine the previous steps of extracting the features, postprocessing them
to select key features, selecting more appropriate training data, and so on.

The selection of the training, testing, and validation subsets must be done so that each
subset reflects the same distribution of the classes in the data. If the training subset is missing
one of the classes, it is unreasonable to expect that the classifier built using this training set
will be able to perform well on a test set which contains instances of that class. When the
amount of training data are limited, which is often the case in scientific data mining as the
data have to be labeled manually, a technique known as cross validation is used to divide
the data and estimate the accuracy of the classification algorithms.

In cross-validation, we first decide the number of folds or partitions of the data. A
typical choice is tenfold cross-validation, where the data available for training are divided
into 10 approximately equal parts. Next, each part is held out in turn as the test set, and the
classifier is trained on the remaining 9 folds of the data and evaluated on the subset which is
held out. The 10 error estimates are then averaged to get the error estimate for the classifier.
To minimize the effect of random variation in choosing the 10 folds, the process is often
repeated several times. A typical number is 10, resulting in error estimates obtained from
averaging ten, tenfold cross-validations.

To reduce the computational time, the leave-one-out cross validation is used, where
each instance is left out in turn. This deterministic process is identical to n-fold cross
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validation if there are n instances. However, it does not ensure that the training and test set
have the same distribution of classes. Alternatively, one can use the bootstrap approach,
which is sampling with replacement. When a data set of n instances is sampled with
replacement to result in another data set of n instances, it is well known that for a sufficiently
large data set, the test set will contain about 36.8% of the instances and the training set will
contain about 63.2% of them [630].

When we have a choice of different algorithms to use in a classification task, it is
obvious to ask which method is better. In my experience, if the features selected are
appropriate to the learning task and the training set accurately reflects the data, many of the
classification algorithms will give similar results in term of cross-validation accuracy. In
such cases, one may select the more interpretable model or the one more meaningful from
the scientist’s viewpoint. There are also statistical tests which can be used to determine
when the mean of one set of samples, such as the accuracy resulting from each fold of cross
validation, is significantly greater or less than the mean of another set of samples. Witten
and Frank [630] suggest the use of the t-test, while the paper by Dietterich [144] addresses
the broader problem of comparing classification algorithms in the context of the sizes of the
training and test data, especially when the data set is small.

There are several approaches to increasing the often small size of the training data.
It is always possible to manually label additional data items and add them to the training
set, though this can be rather tedious. A more automated approach is active learning. The
primary goal of active learning is to reduce the number of examples used in training, while
maintaining the accuracy of the model built from the data. It can also be considered a
smart way of increasing the size of the training set by judiciously adding instances which
contribute more to the learning process. Active learning systems use the classifier to identify
instances which are likely to be mislabeled and add them to the training data. This can be
done by using a measure which indicates that the label assigned has a high uncertainty [374]
or through adaptive resampling using methods such as boosting, which adaptively resample
the training data biased towards the misclassified instances and then combine the predictions
of several classifiers [295]. Another approach to addressing the scarcity of labeled data is
semisupervised learning where the small labeled data set is extended by a larger unlabeled
data set to build a better learner. Further details are available in the survey by Zhu [650]
and the edited book by Chapelle, Schölkopf, and Zien [100].

Additionally, in science data, we often need to consider the nonuniform costs of
misclassification. For example, the cost of misclassifying a tumor as benign is much higher
than misclassifying it as cancerous. Or, predicting incorrectly that an experiment will be a
success can be disastrous, if it fails causing irreparable damage to the experimental setup.
Of course, predicting all tumors to be cancerous or all experiments to be failures is not an
option.

This issue of misclassification cost arises when the cost of making one kind of error is
much greater than the cost of other errors. Several solutions have been proposed to address
this. One option is to use stratification [61] which changes the frequency of examples in the
training set in proportion to their cost. However, this can adversely affect the class distri-
bution. A more general approach to incorporating the cost information has been proposed
by Domingos in his MetaCost approach [153], which wraps a metalearning stage around
a classifier which minimizes cost while seeking to minimize the error rate. Alternately,
one can build a classifier from the training set as is, and then make an optimal decision
incorporating the cost using the probability estimates given by the classifier [170].
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Another important issue which can influence the results from a classifier is the quality
of the labeled data. There are several aspects to this issue, ranging from the accuracy of the
labeling to the number of examples of each class in the training data. I next discuss how
these problems can be addressed.

We have assumed so far that the labels assigned to the objects are consistent and that
no object is mislabeled. However, in the case of classification problems in science and
engineering data sets, the training data are usually labeled manually by the scientists. This
is a tedious process and a scientist could assign different labels to an object at different
times simply due to human fatigue during a labeling session. Further, in some problems,
there is insufficient information to make an accurate decision regarding a label, especially
in the borderline cases. Or, the level of understanding of the scientific phenomenon is such
that the scientist is unsure of the label to assign to an object or different scientists disagree
on the label. In such cases, one option is to ask several scientists to label the same data
and then assign the majority label to an object. Alternatively, one can create a new class
label for objects which do not belong to any of the existing classes, but are interesting, and
therefore, must be flagged to separate them from uninteresting objects. Any solution to this
problem must be considered in collaboration with the domain scientists to ensure that the
classifier produces scientifically meaningful results.

In some problems, the data may be accurately labeled, but there may be far more
objects of one class than another, resulting in an unbalanced data set. This situation arises in
scientific data when the scientists are interested in one class of objects and therefore focus on
objects of that class to the exclusion of others. For example, at the beginning of our work in
the classification of bent-double galaxies [316], when we asked the astronomers for exam-
ples for a training set, they provided a set of bent-double galaxies they had visually identified
when their survey was small. These consisted of two or more blobs. However, when we
requested examples of non–bent-double galaxies to create a two-class training set, they pro-
vided a set of examples all of which were composed of a single blob. Thus, in principle, we
had a set of bent and non–bent-double galaxies in our training set, but the negative examples
were not very useful as they would lead to the erroneous conclusion that all single-blob galax-
ies were non-bent, while all multiblob ones were bent. To address this, we had to work with
the astronomers to identify non–bent-doubles which were composed of two or more blobs.

Unfortunately, it is not always easy to add to the training set if the initial set is unbal-
anced. Consider the problem where we use a computer simulation to mimic an experiment
and understand under what input conditions the experiment will be a success. The com-
putationally expensive simulation is run many times with different inputs and the output is
analyzed to determine if the simulated experiment was a success or not. Understandably,
the scientists would be more interested in running the simulation to understand the range of
settings over which the experiment is a success. This would result in far more examples of
successful experiments in the training data and far fewer examples of experiments which
failed. This problem of unbalanced data also arises when the item of interest occurs rarely,
for example in the detection of oil spills in the sea from satellite images [352], as discussed
in Chapter 2.

The subject of classification when the training data are unbalanced has been studied
extensively in recent years; see, for example, [302, 303, 106, 105, 161], as well as the papers
in the special issue of SIGKDD Explorations [104], and the references therein. The solutions
range from evaluation metrics which take into account the rarity of one class, segmenting
the problem into two or more subproblems such that the rare class is no longer rare in one
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of the subproblems, and sampling of various forms. This includes a simple subsampling of
the majority class or an oversampling of the minority class. More sophisticated sampling
techniques have also been considered including removal of the majority class items only
when they are redundant, or adding minority class by creating synthetic examples along
the lines joining the k nearest minority class items, or by combining various techniques for
reducing the items of the majority class and increasing those of the minority class. Any
solution approach to this problem must be taken with care and also include input from the
domain scientists to ensure the scientific validity of both the approach and the results.

When the training data are unbalanced, we may need to use a different evaluation
technique rather than one based on accuracy. For example, if a training set has two classes
appearing in the 99:1 ratio, we can get 99% accuracy simply by predicting all examples as
the majority class. In such case, alternative metrics have been proposed such as the use of
the geometric mean [353] or techniques derived from the Receiver Operating Characteristic
curves [487, 486, 411].

Another issue which is becoming important in the context of classification of streaming
data is concept drift, where the probability distribution of the examples is nonstationary,
that is, changing over time. A category of algorithms, known as incremental or online
algorithms, allows the model to be built one, or a few, examples at a time, rather than all the
examples. In machine learning, concept drift is handled using one of two approaches, both
of which exploit the fact that in a nonstationary environment, only the more recent examples
are relevant to learning the target concept. The first approach uses time windows of fixed or
adaptive size and selects the examples in these time windows for the training [360]. In the
second approach, either the data or earlier models are weighted based on their utility or age
[626, 343, 526]. In this context, incremental versions of algorithms, such as incremental
decision trees [210], are also relevant.

The subject of classification has been extensively studied and described in various
books, including general texts on data mining, machine learning, and pattern recognition,
as well as texts specific to a technique. In the former category, the texts by Mitchell
[430], Duda, Hart, and Stork [164], Hastie, Tibshirani, and Friedman [261], Hand, Mannila,
and Smyth [252], Witten and Frank [630], and Bishop [42] provide insights from various
perspectives. Specific books on decision trees would include the classics by Breiman et al.
[61] which presents a statistical perspective and the one by Quinlan [493] which addresses
the problem from a machine learning viewpoint. Neural networks have been studied by
various authors, including Bishop [41], Haykin [262], and Rojas [514], while SVMs have
been described by Burges [70] and Cristianini and Shawe-Taylor [126].

11.3 Regression
Regression can be considered as a variant of classification where the desired output consists
of one or more continuous variables, sometimes called target variables. Consequently, many
of the techniques used in regression are variants of the corresponding techniques used in
classification.

Regression problems occur in scientific data in many contexts. For example, they
can be used to build code surrogates, which, given the input parameters for a computer
simulation, predict the continuous output variables. These models can be used to explore
the input parameter space for the problem being studied, instead of running an expensive
simulation code on a multiprocessor system for each set of input parameters. This can
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be quite effective when the training set samples the input space adequately. Regression
problems also arise in experimental and observational data when the variable being predicted
is continuous.

11.3.1 Statistical techniques

The simplest approach to regression is to build a linear regression model. Here, the model
is a linear function of the parameters of the model. Thus, a target variable y may be written
as a function of the model parameters ai and the d input variables xi as

y(a,x) = a0 +a1x1 +·· ·+adxd , (11.27)

where a is the vector of the model parameters and x is the vector of the input parameters.
Since the model is a linear function of the input variables, it is limited in the types of
functions it can model. This linear regression model can be extended by considering linear
combinations of m nonlinear functions of the input variables as follows:

y(a,x) = a0 +
m∑

i=1

aiφi(x). (11.28)

Here, φ(x) are nonlinear functions, such as polynomials, sigmoid functions, or sinusoidal
functions. These are often referred to as the basis functions. As the model is still linear
in the model parameters a, it is called a linear model, though it can model more complex
functions than equation (11.27).

Given the known target variable values y and the corresponding input parameters x
for n instances, we can obtain the model parameters by optimizing a sum-of-squares error
function

n∑
j=1

(
yj −

m∑
i=1

αiφi(xj )
)2

, (11.29)

where the subscript j indicates the instance number. These model parameters can then be
used to predict the target variable y for any input vector x.

Linear regression has been extensively studied in statistics. Some excellent material
for additional reading can be found in Chapter 11 of [252], Chapters 3 and 5 of [261], and
Chapter 3 of [42]. Another approach which is suitable for problems of moderate dimension is
the MultivariateAdaptive Regression Splines, or MARS, [203]. It is a data-driven technique,
producing models which are interpretable. Its computational requirements unfortunately
grow rapidly with the increase in dimension.

11.3.2 Machine learning techniques

Several of the techniques described in Section 11.2 on classification easily extend to regres-
sion as well. For example, the k-nearest neighbor classifier can be adapted to regression by
considering the output to be the mean or the weighted mean of the output values of the k

nearest instances.
One can also combine the linear regression technique described in Section 11.3.1

with the idea of using nearest neighbors to create a local approximation to the target func-
tion. Thus, instead of using all the instances to determine the model parameters a in
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equation (11.28), and creating a model which can predict the target for any input x, we
create the model only after we know the input for which we are to predict the target. Then,
we assume that the target function can be modeled locally in the neighborhood of the input
by a linear regression model using either linear or nonlinear functions. There are several
ways in which we can obtain this local approximation [430]. We can either minimize the
sum-of-squares error over the k nearest neighbors; or we can use all training examples,
but weight them by their distance to the query; or we can combine the two approaches by
considering only the nearest neighbors and weighting them based on their distance from the
query. This idea of locally weighted regression is discussed further in [8], while techniques
for solving the minimization problem can be found in the text by Bishop [41].

Corresponding to classification trees which predict a discrete quantity, regression
trees predict a continuous variable [61]. As in a decision tree, the split at each node of a
regression tree is made to optimize a certain quantity. Usually, this quantity is the variance
of the target variables at a node. At the leaf node, instead of a class label corresponding to
the majority class of the instances at the node, we use the mean value of the target variable
of the instances at the node. However, this use of a constant value will cause a discontinuity
at the decision boundary corresponding to each leaf.

To address this problem, we can predict the value of the target variable using a more
sophisticated model at the leaf node. Such trees are referred to as “model trees.” The
simplest option is to use a multivariate linear model which essentially approximates the
continuous function by linear “patches.” However, instead of using a model based on all
the input variables, Quinlan [491] suggests using only the variables which occur in the tests
leading up to the leaf node. Other more complex models have been proposed by Torgo
[586] and Malerba et al. [407].

It should be pointed out that using the variance of the target variable to make the
decision at a node of the regression tree, while computationally efficient, is appropriate
only when the model used at the leaf node is the mean value of the instances at the node. To
be consistent, if we use a more complex model at the leaf of a regression tree, we must use
the squared error from the same model to make the decision at each node. For example, if
we use a linear model at the leaf node and the variance at each decision node, we could have
the possibility that the data are well predicted by a linear model, yet have a large variance
[324]. The latter condition would suggest splitting the data, while the former would suggest
otherwise. Using a complex model at each decision node can be expensive. Dobra and
Gehrke [152] show how it is possible to efficiently construct regression trees with linear
models in the leaves which are both accurate and easy to interpret.

Another commonly used classification algorithm, namely neural networks, is by its
very construction very appropriate for regression. A network with three layers of units can
approximate any function to arbitrary accuracy [430], making neural networks very useful
in regression when the form of the function is unknown in advance [362, 361]. SVMs are
another category of classification algorithms which can be used for regression [554]. In
addition, the idea of ensembles, introduced in the context of classification, can also be used
for improving the accuracy of regression.

11.4 Association rules
Association rule techniques, which originated in the analysis of commercial data for market-
basket transactions, are now being used in the context of science data as well. The goal in
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market basket analysis is to analyze the transactions at, say, a grocery store, to determine what
types of items are being bought by customers. By understanding the purchasing behavior
of its customers, a store could target marketing promotions and manage its inventory better.

The idea in association rules is to identify rules of the form

{X} → {Y }, (11.30)

where X is one set of items and Y is a different set of items, disjoint from X. The rule states
that there is a strong relationship between X and Y ; many customers who buy X also buy Y .

There are several key concepts in association rules which are best described in the
context of items bought in a grocery store. Let I = {i1, . . . , id} be the set of items in a
store, and let T = {T1, . . . ,TN } be the set of transactions at the store. For simplification, we
assume that an item refers to all similar items, that is, the item “pasta” is a single item which
includes different varieties, different brand names, as well as different package sizes.

The term “itemset” is a collection of items, that is, a subset chosen from I . Ak-itemset
is an itemset with k items. Associated with each itemset is its “support,” S, which is the
number of transactions which contain the itemset. Thus

S(X) = |{ti |X ⊆ ti , ti ∈ T }| . (11.31)

Each association rule also has its support which is the number of times a rule appears in the
transactions; that is,

S(X → Y ) = S(X ∪Y ). (11.32)

The support of a rule is used to remove rules which occur rarely and therefore are
uninteresting, indicating a chance occurrence. The “confidence,” C, of a rule is the fraction
representing the number of times Y appears in a transaction which contains X; that is,

C(X → Y ) = S(X ∪Y )/S(X). (11.33)

The confidence of a rule is the conditional probability of Y given X and it measures
the reliability of the inference made by a rule.

The support and confidence of a rule are key concepts in association analysis where the
goal is to find rules which have support and confidence greater than user-provided thresholds.
This is done by first generating all the frequent itemsets which meet the threshold constraint
on the support, and then extracting all the high-confidence rules from these frequent itemsets.
While computationally expensive, brute-force method is an option for these two steps, many
algorithms have been proposed to speed up the process, as discussed in the book by Tan,
Steinbach, and Kumar [574].

Association rules are just beginning to be accepted in the analysis of scientific data,
in fields such as bioinformatics, medicine, and climate. It is important to note that an
association rule of the form {X} → {Y } does not imply causality, that is, it does not say
that X causes Y , just that when X occurs, so does Y . Of course, interpretation of any rules
obtained from the application of these techniques must be done with care in collaboration
with the domain scientists.

11.5 Tracking
Tracking is a subject not usually associated with the task of recognizing patterns in data.
However, I include it here for completeness as one of the tasks of great interest to many
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scientists is the tracking of “objects” in data over time. The intent in these problems is to
understand how these “objects,” which may refer to a region of interest in simulation data
or real physical objects such as cells in a culture of micro-organisms, evolve over time.
Unlike physical objects, objects in simulation data may be poorly defined, with one of the
main challenges being the identification of the objects prior to their tracking.

In many problems, the objects may split or merge; they may die out or be born; or
change shape and size over time. For example, an object may be a low-pressure region
surrounded by a flow of a particular kind, as in a hurricane, and the goal may be to track
the path of the (simulated) hurricane over time. Such a region of interest may weaken,
only to strengthen suddenly under the right conditions. In such problems, scientists may be
interested in understanding what causes these regions to weaken or strengthen, so that in
the case of a real hurricane, they can predict the path it will take.

Tracking is key to understanding the dynamics of the objects in the data. It is usually
done after the objects have been identified in the data and features extracted to represent
them. There are several techniques which can be used to track objects, ranging from the
very simple ones which exploit the overlap between the objects from one time step to the
next, to more sophisticated techniques such as Kalman or particle filters.

The simplest case arises when there are relatively few objects being tracked, the objects
are far enough from each other, and move a relatively small distance between frames. In
this situation, we can easily identify where an object has moved to from one frame to the
next by considering the locations of the center of mass of the objects and/or the degree of
overlap between objects in two consecutive frames.

The tracking problem becomes more difficult when there is more than one object in
the frame at time (t +1) which could correspond to a certain object at time t . In such cases,
the best option is to use the features which represent the objects to correctly track the objects
from one frame to the next. These features are very problem dependent. For example, if
all objects in a frame are roughly the same size or the sizes of objects change significantly
between frames, then the size of an object is unlikely to be a good feature. The features
may also be erroneous, especially when they are the result of incorrect mapping of objects
between frames. For example, this could be the case when the feature is the velocity of an
object calculated using the position of its center of mass from one frame to the next.

In some cases, the task of tracking can be stated as matching objects at time (t +1) to
tracks which have existed till time t . This can be considered as a bipartite graph-matching
problem, with the tracks forming one set of nodes, the objects forming the other set, and the
weights linking the two sets being determined by how well a given object matches a track
using the features of the given object and the object associated with the track. It is very easy
to incorporate domain-specific constraints, for example, by removing graph links between
an object which is too far from certain tracks.

A further complication arises when objects merge or split, or in some cases, appear
to touch and then separate [628, 215]. Here again, domain information must be exploited
to determine when two objects can be considered to have merged or split, or how long two
objects should appear to be merged before they can be considered as merged. Merging and
splitting also require the use of complex data structures to keep track of how an object has
evolved over time. This can be complicated if an object splits into two or more while it is
merging with two or more other objects.

It is often insightful to create movies which show the dynamics of various objects over
time. Further, the statistics on the objects, such as their average lifetime or the variation of
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their features over time, can also help in understanding the gross behavior of the physical
phenomenon. Often, once the objects are tracked, their behavior may need to be correlated
to other phenomena for further insights.

Simple tracking techniques often work quite well on many scientific problems, es-
pecially if thousands of objects have to be tracked [215]. However, I would be remiss
in not mentioning the more commonly used tracking techniques in computer vision and
surveillance. These are often probabilistic in nature such as the Kalman filter [325, 631,
63, 266, 239, 21] and particle filters [403]. Many of these techniques also exploit problem-
specific features, such as the availability of radar signatures, or focus on problem-specific
constraints, such as tracking in the presence of clutter, tracking of rigid objects, or track-
ing using data from multiple cameras. The process of tuning the parameters for tracking
algorithms is still somewhat of an art rather than a science and the interested reader should
explore tracking techniques used in their specific domain for methods which are most suit-
able for their problem. For example, tracking in the context of military applications is
discussed in Section 6.3.1 on multiple target tracking.

11.6 Outlier or anomaly detection
An area of increasing interest in the context of scientific applications is the detection of
outliers or anomalies. When data sets were relatively small, the typical reason for identifying
outliers was to remove them, lest they skew the statistics being extracted from the data.
However, as data sets have become much larger, and data from new applications are being
mined, the outliers themselves have become interesting as they often indicate something
unusual in the data, that is, a deviation from normal behavior. Typical examples where
outliers are of interest are credit card fraud detection and network intrusion detection, where
a large majority of transactions or network connections are normal, but the few which are
anomalous are indicative of possible fraud or intrusion of a computer network.

Scientific applications too have problems where detection of anomalies is important;
these often arise in the context of streaming data, with the anomaly indicating something
unusual which requires the attention of a scientist. For example, sensors monitoring an
experiment in progress or a critical piece of equipment, such as an electric generator, may
show an anomaly, indicating that the experiment or equipment is about to fail. Or, data
being monitored from a telescope could indicate that an unusual event is about to occur,
enabling scientists to focus additional resources to observe the event.

The basic idea in anomaly detection is to build models of what is considered normal
in the data, and then identify deviations from it as anomalies. The models can be built using
either the supervised or the unsupervised techniques described in this chapter. It is important
to note that what is an outlier is very dependent on the problem and the data being moni-
tored. For example, if we are collecting the data from different sensors in an experiment, an
anomaly may occur in one of the sensor measurements, or each sensor measurement may
be normal for that sensor, but when all the sensor measurements are considered together,
the measurements are anomalous.

An extensive survey by Chandola et al. [95] on outlier detection describes various
formulations used for the problem as well as different solution approaches, while the book
chapter by Ertoz et al. [172] focuses on the subject in the context of network intrusion
detection.
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11.7 Related topics
There are several topics which are related to the tasks in pattern recognition, but do not fit
neatly into a topic for the actual detection of patterns. These general topics are the focus of
this section.

11.7.1 Distance metrics

A common issue which arises in many algorithms is the similarity or dissimilarity between
two objects (which we also refer to as data items or instances), which are represented as
feature vectors. This similarity, or dissimilarity, is obtained by using a proximity measure,
or a distance metric. As discussed in Chapter 11 of the text by Theodoridis and Koutroumbas
[581], a proximity measure must satisfy certain mathematical conditions such as the triangle
inequality and transitivity to qualify as a metric.

There are several distance measures commonly used in pattern recognition. The most
popular one is the Minkowski metric

distance(x,y) =
( d∑

k=1

|xk −yk|q
)1/q

, (11.34)

where the parameter q ≥ 1 and the vectors x and y, of dimension d, are the feature vectors
for the two objects. Setting q = 2 gives the commonly used Euclidean distance, while q = 1
gives the city-block or Manhattan distance.

Sometimes, instead of a formal distance metric, we can use a similarity function which
is defined on two vectors and is large when the two vectors are “similar” in some way. For
example, in many problems, the cosine of the angle between two vectors x and y

xT y
‖x‖ ‖y‖ (11.35)

is used to measure their similarity, especially as it is invariant to rotation and scaling. The
Tanimoto measure

xT y
‖x‖2 +‖y‖2 −xT y

(11.36)

is another metric used for real- and discrete-valued feature vectors. A common approach
to handling discrete features is to take the difference between two values to be 1 if they are
not the same, and 0 otherwise.

In some problems, we may need to account for the fact that some features, such as
histogram values or texture features, appear in groups. For example, if we use a 16-bin
histogram for the intensity values of an image, there will be 16 entries in the feature vector,
whereas using an 8-bin histogram would result in only 8 entries. To avoid having such
features dominate the distance metric and overwhelm the contribution of single features
such as area or aspect ratio, we may need to normalize the contributions of such features by
scaling by the number of bins of the histogram, or the number of texture values used.
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11.7.2 Optimization techniques

Mathematical optimization is a topic very relevant to pattern recognition as many pattern
recognition algorithms can be recast in the context of maximizing or minimizing certain
functions. For example, the k-means clustering algorithm is essentially minimizing the
sum of squared error between the data items in a cluster and the cluster mean, taken over
all clusters. In other cases, such as regression, we need to fit models to the data, with the
parameters of the models determined by minimizing the error between the model prediction
and the actual value. Optimization techniques also form a key component of neural networks
and SVMs which are used in both classification and regression.

In some problems, the traditional mathematical optimization techniques such as gra-
dient descent, the conjugate gradient method or the Levenberg–Marquardt method, can be
used effectively [41, 454]. However, in other problems, when the model whose parameters
we are trying to learn becomes more complex, or the problem is high dimensional, we may
need to consider stochastic methods for solving the optimization problem.

There are two classes of stochastic methods commonly used in pattern recognition
[164]. The first is Boltzmann learning, specifically simulated annealing, which is derived
from the field of statistical mechanics. The second is evolutionary or genetic algorithms,
derived from biology, specifically, the theory of evolution. Both these methods involve
stochastic searching, tend to avoid getting stuck in a local minimum, and are often compu-
tationally expensive.

Annealing is the process where a material is heated and then slowly brought to a lower
temperature. The high temperature excites the atoms or molecules. As the material is cooled,
these atoms or molecules assume their optimal position in the resulting crystalline lattice,
resulting in fewer irregularities in the crystal. In simulated annealing, the free variables
are updated as long as the value of the function to be minimized is reduced. However, to
avoid getting stuck in a local minimum, if the new values of the free variables increase the
value of the function, the new values are accepted based on a certain probability which is
dependent on the temperature [514]. The probability is such that at high temperature, there
is a higher probability of an increased function value being accepted. As the temperature
reduces, this probability also goes down to zero, corresponding to the heating and cooling
phases.

In contrast to simulated annealing, where local minima are avoided by explicitly
allowing parameter values which increase the value of the function to be minimized, in
evolutionary algorithms, local minima are avoided by including randomization which allows
a better search of the parameter space [225, 136]. First, a population is created, each
“individual” of which is a set of values that the parameters of the model can take. Using this
population, the next generation is created through crossover, where parts of two individuals
are split and spliced to each other as in genetic mating of two chromosomes; mutation,
where a part of an individual is changed randomly by flipping a bit in its representation;
and replication, where an individual is copied over unchanged. Only the individuals in this
new generation which meet a fitness criterion, such as how well they do in minimizing the
function, are kept. The expectation is that the individuals in each generation will do better
at minimizing the function than the individuals in previous generations. There are several
versions of genetic algorithms which vary in how the individuals are represented, the types
of operations used to go from one generation to the next, the selection of individuals for
“mating,” and so on.
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11.8 Summary
In this chapter, I described the different techniques which can be used to identify the patterns
in the data. These include clustering, classification, regression, association rules, tracking,
and anomaly detection. I briefly described some of the more frequently used methods in each
class of techniques as well as various issues one might need to consider in their application.
The class of technique used is very dependent on the category of problem being solved.
Descriptive problems, where the goal is to group similar items so we can determine what
makes them similar, benefit from clustering techniques, while predictive problems, with
discrete or continuous output, are addressed using classification or regression techniques,
respectively.

Any pattern recognition algorithm must be applied carefully to the data. The patterns
that one obtains are only as good as the data which were input to the algorithm. This is
one of the main reasons why most of the time in scientific data analysis is spent in the steps
preceding the pattern recognition step. Also, it can be easy to fool oneself into thinking that
patterns have been detected in the data, or that one has obtained reasonable accuracy on an
algorithm, when the results can be traced back to some artifact of the data. This makes it
important that the patterns detected be validated, first by the data miners to ensure that they
are what one would expect from an analysis viewpoint, and then by the domain scientists
to ensure that they are scientifically meaningful. We next consider this topic of validation,
and the related topic of visualization, in Chapter 11.

11.9 Suggestions for further reading
As mentioned earlier, there are many texts which describe pattern recognition techniques in
general. These include the texts by Tan, Steinbach, and Kumar [574]; Bishop [42]; Witten
and Frank [630]; Theodoridis and Koutroumbas [581]; Hand, Mannila, and Smyth [252];
Duda, Hart, and Stork [164]; Hastie, Tibshirani, and Friedman [261]; and Mitchell [430].
These books provide insights from several perspectives, including machine learning, data
mining, pattern recognition, and statistical learning. It is often beneficial to look at a
technique which may have been developed by one community from the perspective of a
different community as it provides additional insights.

There are also several texts which focus on specific techniques. These have been
mentioned in their respective sections in the chapter. Oftentimes, surveys on a particular
technique, either by themselves, or in the context of an application area, also provide
additional insights.





Chapter 12

Visualizing the Data and
Validating the Results

The greatest value of a picture is when it forces us to notice what we never
expected to see.

—John W. Tukey [594, p. vi]

. . . the highest standard of statistical integrity and statistical thinking
should apply to every data representation, including visual displays.

—Edward R. Tufte [592, p. 35]

An important aspect of any data mining endeavor is the visualization of the data and
the validation of the results by both the data miners and the domain scientists. These tasks
can occur at any step of the data mining process. We may want to visualize the raw data not
only for exploratory data analysis but also to ensure its correctness. We also need to validate
the results of each step. This must be done first by the data miners to ensure that the correct
algorithm has been selected and applied with the right parameters and to confirm that the
results are consistent with what one would expect from the application of an algorithm. Once
the results from each step have been validated by the data miners, they must also be validated
by the domain scientists to ensure that they are scientifically meaningful. As the data can
be in the form of images, mesh data, or just a simple data item by feature matrix, we need
several tools and techniques not only for visualizing the data during the initial exploratory
analysis, but also for validating the results of each step of the data mining process.

But first, a caveat: the term “visualization” in this book is used in the context in
which Tukey [594] and Tufte [591, 592, 593] use it, namely, quantitative visualization
which includes the fundamentals of scale, orientation, and labels. Such visualization can
be invaluable in scientific data mining as it can aid our abilities to draw statistically sound
and scientifically meaningful conclusions about the data. It is, however, different from the
work done in the scientific visualization and graphics communities where the visualization
tends to be more qualitative and often results in the dequantification of the data.

This chapter is organized as follows. First, in Section 12.1, I describe ways of visual-
izing table data, where the data are usually represented as a table or a data item by feature
matrix. Next, in Section 12.2, I focus on image data, especially images with floating-point
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data, followed by a short section, (Section 12.3), on how these visual tools might be enhanced
for validation. Finally, I summarize the chapter in Section 12.4 and provide suggestions
for further reading in Section 12.5. As appropriate, I also include pointers to free software
available from the public domain.

12.1 Visualizing table data
Some scientific data sets are in the form of a data item by feature matrix. This could be
the raw data for a problem where the goal is to take different runs of a simulation (the data
items), with each run described by the input parameters (the features) and the corresponding
outputs, and build a model which, given a set of inputs, will predict the output. Or, it could be
data obtained after processing images or mesh data, identifying objects in it, and extracting
features for these objects. The resulting data item by feature matrix is typically used in
pattern recognition or to extract statistics on the features of interest.

Visualizing such table data can be a very useful way to gain insight into the data.
When the data are large enough that it is not possible to understand or explore the data by
just looking at them in the form of a table, it often helps to obtain simple statistics on the
data such as the mean and standard deviation of each feature. In addition, several simple
visual tools can be used, such as box plots, scatter plots, and parallel plots. These tools are
available as part of several public-domain software packages mentioned later in this section.
In addition, simple plotting packages, such as Gnuplot [224], can also be used to plot the
necessary information.

12.1.1 Box plots

The box plot was originally proposed by Spear [560] as a “range bar” and later by Tukey
as the box-and-whisker plot [594]. There are several variants of the box plot, the simplest
of which provides a five-number summary of an array of numbers. This summary includes
the median, the upper and lower quartiles, and the minimum and maximum values. The
box plot can be drawn vertically, as shown in Figure 12.1 or horizontally. The two ends of
the box represent the lower and upper quartiles (B and D in the figure), respectively, with
the sample median (C) represented by a line in the box. From the box edges representing
the upper and lower quartiles, lines are drawn to the maximum and minimum values (E and
A) in the sample. These form the “whiskers” in the box-and-whisker plot. The width of the
box does not signify anything.

The length of the box gives an indication of the sample variability. The position of
the box in its whiskers as well as the location of the median in the box are indicative of the
skewness of the data. A centered box and a centered median are indicative of a symmetric
distribution. Whiskers which are long relative to the size of the box indicate a long tailed
distribution. For a normal distribution, that is, the bell-shaped curve, the whiskers are about
the same length as the box.

The box plot is frequently used for comparing multiple variables by placing the plots
for each side by side with a uniform scale along the y-axis to enable the comparison. This
can be particularly useful in the context of feature selection for classification. For example,
we can separate a training set into subsets, one for each class, and then for each feature,
create the box plots of the distributions of the feature for the different classes. If there is a
substantial overlap between the values of a feature for different class labels, the feature is
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Figure 12.1. A box plot summarizing the statistics for an array for numbers. A
and E are the minimum and maximum values, respectively. B and D are the lower and upper
quartiles, respectively, and C is the sample median.

Sepal Length Sepal Width Petal Length Petal Width Class
5.1 3.5 1.4 0.2 1
4.9 3.0 1.4 0.2 1
4.7 3.2 1.3 0.2 1
7.0 3.2 4.7 1.4 2
6.4 3.2 4.5 1.5 2
6.9 3.1 4.9 1.5 2
6.3 3.3 6.0 2.5 3
5.8 2.7 5.1 1.9 3
7.1 3.0 5.9 2.1 3

Figure 12.2. A table showing a few sample items from the Iris data set from the
UCI repository [272]. Class 1 is Iris setosa, class 2 is Iris versicolor, and class 3 is Iris
virginica. All values are in centimeters.

unlikely to be a good feature for use in classification [200]. Similar information can also
be obtained using parallel plots, as described later in this chapter.

12.1.2 Scatter plots

Another simple visual tool is the scatter plot. Consider the Iris data set [193] from the UCI
repository [272], a few items of which are shown in Figure 12.2. This is a data set with
150 items, each of which is a set of observations of the sepal length, sepal width, petal
length, and petal width of the flowers from three species of irises— setosa, versicolor, and
virginica. There are 50 items for each species. All values are in centimeters.
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Figure 12.3. A scatter plot showing the values of the variables petal length and
petal width for the items of the three different classes in the Iris data set.

A scatter plot essentially plots one variable against another, where each item is rep-
resented as a dot at the values of the variables for that item. These variables could be
either two features or one feature and the class variable. To increase the content of the plot,
the two axes could correspond to two features and instead of a dot for all items, we could
use different symbols or colors for items from different classes. For example, Figure 12.3
shows that either the petal length or the petal width alone is sufficient to separate the items
of class 1 from the other two classes. However, neither of these two features can distinguish
between classes 2 and 3 as there is no clear demarcation between the items of the two in the
scatter plot.

Figure 12.4 shows another scatter plot for the Iris data set where the derived variables
petal area and sepal area are shown for each item in the three classes. As before, the items
of class 1 are clearly separated from the other two classes. However, classes 2 and 3 are
now better separated than before, with only three misclassifications, indicating the potential
benefits of considering derived quantities as well as the effective use of scatter plots in
exploratory data analysis.

12.1.3 Parallel plots

For high-dimensional data, where there are several features describing each data item, scatter
plots are somewhat limiting as they reduce us to looking at three or four (if we consider
three-dimensional plots) variables at a time. For such problems, parallel plots or parallel
coordinates can be very helpful. These were first described by Inselberg [293, 292] and
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Figure 12.4. A scatter plot showing the values of the variables petal area and
sepal area for the items of the three different classes in the Iris data set. The area has been
approximated as the product of the length and the width.

have since been incorporated into several tools such as XmdvTool [610], GGobi [216], and
the software developed at RoSuDa [516] .

Parallel plots provide a conceptually simple way of representing high-dimensional
data. Each feature or dimension is represented along a vertical line on the x-axis. There are
as many lines as there are features. Each item, with an associated value for each feature, is
represented by line segments connecting the values of the features. Figure 12.5 shows the
parallel plot for the Iris data. There are four features and the class represented along the
x-axis. As there are three classes, the vertical line representing the class has three values, one
for each class. The polyline representing an item must pass through one of these three values.
This figure clearly shows that items in class 1 can be differentiated from the other two classes
solely on the basis of the values of either the petal length or the petal width. This is because
there is no overlap in the values of these features for items of class 1 with the values of these
features for items of classes 2 and 3. The figure also indicates that it is not possible to differen-
tiate between classes 2 and 3 using a single variable. This is because if we consider the values
along any vertical line representing a feature, the values for items in classes 2 and 3 overlap.

The exploratory nature of the parallel plot can shed insight into the distribution of
feature values in a data set. It can also help to identify outliers in the data, and through the
judicious use of color, it is possible to identify patterns as well. For example, the parallel plot
was used to check the quality of a manually created training set by considering the overlap
between items from different classes [323]. It was also used to identify relevant features
and outliers in our work on the classification of bent-double galaxies [200]. However, if
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Figure 12.5. A parallel plot for the Iris data set using the original four features.

there are too many data items or too many features, the resulting parallel plot can be difficult
to interpret.

12.2 Visualizing image and mesh data
There are several tools which are available for visualizing both image and mesh data. Some
of these are quite general, while others have been developed by a specific community and
are tailored to the needs of that community. However, tools developed in the context of one
application area can be used in another area if it has similar needs.

In the case of mesh data, the scientific visualization community, in conjunction with
the computational science and computer graphics communities, has developed software
which can be used for viewing different types of meshes such as the ones described in
Section 3.1.3. Some of these tools are in the public domain, such as VisIt [605] and
GMV [223], and many can handle not only the smaller, two-dimensional data but also the
more massive, terabyte-sized, three-dimensional data composed of several variables at a
grid point. These tools provide support for several commonly used tasks such as plotting
isocontours or isosurfaces, volume visualization, and the display of subsets of the data. A
complete description of techniques used in scientific visualization is beyond the scope of this
book; the interested reader is referred to overview texts such as the ones edited by Nielson,
Hagen, and Mueller [453], Hansen and Johnson [254], and Bonneau, Ertl, and Nielson [50].

In the case of image data, there are several public domain tools which provide the
basic functionality necessary to view different types of images. The more commonly used
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ones are ImageMagick [289] and GIMP [221]. They support different file formats and
can perform several image processing tasks as well. While these tools are invaluable in
scientific data mining for tasks such as conversion between file formats, visual display of
images, or animation of a sequence of images, it is important to note that they typically
process 8-bit data. Data which are 16-bit, or floating point, are scaled for display so the
values are in the range [0, 255]. While this is not a major issue in viewing the data, it can
have consequences in saving and processing the data as important information is lost in the
conversion to 8-bits. Further, one cannot view the actual values of a floating-point image
using these tools, which can be an impediment in identifying an image processing algorithm
or selecting a set of appropriate parameters for an algorithm.

One tool which addresses this problem is the public-domain Fv software [208] for
viewing files in the Fits format which is used in astronomy [194]. This format allows images
in both two and three dimensions to be stored using floating-point values. An easy-to-use
interface allows one to view an image, zoom in and out, view variation in values along a
line, obtain a histogram, and create a contour plot. Various options are provided to display
the intensities of the pixels in the image using different color schemes.

From a data analysis viewpoint, the most useful feature in Fv is the ability to view
the floating-point value at any pixel location. This can be done in two ways—either by
moving the mouse pointer over a pixel in the image or by viewing the table information
which displays the values at each location of the image. For example, Figure 12.6 shows a
sample image from the FIRST survey [174] using Fv. A thumbnail of the image is shown in
the top right corner, indicating the zoomed-in part which is then displayed in the main pane
of the window. In this example, the zoom factor is 1.0. The values at the top left are the
pixel intensities at the location indicated. Note that this value is a floating-point value as
the data are stored in single precision. Figure 12.7 shows the metadata corresponding to the
image in Figure 12.6. While this is usually of interest to the domain scientist as it provides
information on the conditions under which the image was taken, it can also provide details
such as the format of the data (single precision), the size of the data (256 × 256), and the
coordinates of the central pixel in the sky. Figure 12.8 is the tabular view of the image in
Figure 12.6, where the values are displayed in floating point instead of as a scaled, 8-bit
value. This table can be useful in understanding the performance of an algorithm as it shows
the actual values being processed.

Fv is an example of a tool developed in a specific domain, such as astronomy, which
can be used in other domains as well.

12.3 Validation of results
An important aspect of scientific data mining is the validation of the output from the different
steps in the process. It essentially involves displaying the results from a particular step and
evaluating them to check whether they meet our requirements. These requirements could
be algorithmic, where we want to ensure that our choice of algorithms and parameters for
a task perform as expected, or they could be driven by the domain scientists who want to
ensure that the results are scientifically meaningful. If the results from a step match our
expectations, the process of validation gives us the assurance that the analysis is proceeding
correctly; if not, validation can be used to obtain feedback on ways in which the analysis
can be improved to meet our requirements better.
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Figure 12.6. An astronomy image from the FIRST survey [174] displayed using
the Fv tool. The full image is shown in the top right corner, while the zoomed-in version is
shown in the main pane. The intensity at a particular (i,j) location in the image is shown
in the top left corner.
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Figure 12.7. The metadata in Fv corresponding to the image in Figure 12.6. This
describes the instrument setting used, the units of the variable being displayed, as well as
the type of data.

Figure 12.8. A part of the Fv table corresponding to the image in Figure 12.6. This
describes the intensity values in floating point in tabular form. By scrolling the horizontal
and vertical bars, it is possible to find the values for different parts of the image.
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Validation can be a challenging task for several reasons. To validate our choice of
algorithms and parameters, we may want to ensure that the results do not change substantially
when we perturb the parameter values or use another algorithm which performs the same task
using a different approach. Such sensitivity analysis can be tedious and time consuming;
however, it gives us confidence that our results reflect the data and are not an artifact
of our choice of algorithms and parameters. This can be critical in problems where the
science is poorly understood and the goal of the analysis is to gain insight into the scientific
phenomenon being observed or simulated.

However, when the variation in the data set is large, it can be difficult to find a single
algorithm and set of parameters which can accomplish the required task. The problem is
exacerbated when the size of the data set is large as well, as it may not be possible to evaluate
the results on the entire data set. There is unfortunately no easy solution to this problem;
the topic of robust algorithms, which are relatively insensitive to small changes in the data,
is an area of active research.

Validation of the results of scientific data mining by the domain scientists can be
difficult as well, especially when the interpretation of the results is subjective or the scientific
phenomenon is poorly understood. For example, in our work on classification of bent-
double galaxies [315], we found that we needed to increase the size of our training set as the
manually generated one was relatively small. Our approach was to use an iterative process,
wherein we would have the astronomers validate the results from the decision tree built using
the small training set, which was then enhanced using the validated examples. To do this,
we created a simple tool which would show the astronomers images of the galaxies which
they would classify as bent-doubles or non-bent-doubles [191]. Though the tool was very
useful in capturing the feedback from the domain experts, we also found that the labeling
of the examples was not very consistent. This was especially true in the hard-to-classify
cases, where it was not clear whether the galaxy was a bent-double or not. Oftentimes, two
astronomers would assign different class labels to such galaxies. In fact, if we presented
the same image twice at different times during a labeling session, there was no guarantee
that an astronomer would assign it the same label both times. Since these examples were
also the ones where the decision tree had problems with classification, validating the results
turned out to be more difficult than we first expected. This problem of “noisy” training data
has also been encountered by others, for example in the JARTool effort [71], where the task
was to recognize volcanoes on Venus.

However, when it is possible to obtain reliable user feedback, we can use the validated
results to refine the analysis. In information retrieval tasks, we can incorporate relevance
feedback to tailor the results to specific individuals as we have done in our similarity-
based object retrieval system which was used to retrieve similar regions in simulation data
sets [314].

12.4 Summary
In this chapter, I have described how visual techniques can be used for exploratory analysis
as well as the validation of the results of each step of the analysis. Several visual tools,
whether for images or feature data, are available in the public domain and can provide useful
insights into both the raw data and the intermediate results generated during the analysis. In
the case of image data, one must be aware that many tools do not preserve the floating-point
format of scientific data; the conversion to 8-bit data for display can result in a significant
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loss of information. Therefore, appropriate tools must be used for visualization of such
data sets.

12.5 Suggestions for further reading
In this chapter, I have described some simple tools, such as parallel plots, scatter plots, and
Fv, which are useful in both exploratory data analysis and the validation of the results from
the steps in data mining. These tools are typically used to explore and understand data sets
which are small to moderate in size. As data set sizes have reached terabytes, the new field
of information visualization has focused on how we can display these massive data sets,
especially when the data being displayed are rather complex, such as networks or graphs,
or dynamic, with the data being updated asynchronously over time.

The field of information visualization is presented in detail in several texts such as the
ones by Ware [611], Chen [107], and the one by Unwin, Theus, and Hofmann [598], which
focuses on very large data sets. The insights provided by Tufte in his books [591, 592, 593]
are also relevant in determining better ways to present information. Finally, the work of
Tukey [594] remains a classic in exploratory data analysis.





Chapter 13

Scientific Data Mining Systems

One of the basic rules of life, I have found, is that you never learn anything
unless you confess your ignorance.

—Gerald Durrell [165, p. 13]

In the previous chapters, I have described the different steps in the process of scientific
data mining. These steps are iterative—the validation of the results from any one step may
suggest a refinement of one or more of the previous steps. The process is also very interactive,
with the domain scientists closely involved in providing input and validating the results of
each step. In addition, depending on the problem and the application domain, not all steps
may be used in the analysis, or different algorithms may be used in a step by applying
them in a cascade to get the desired results. Often, we may need to try several different
algorithms and parameters before we select one that is appropriate for the task at hand. If,
in addition, we are involved in the analysis of several different data sets at any one time,
it seems worthwhile to identify the common threads across these problems, so that we can
reuse software as appropriate.

In this chapter, I focus on the software aspect of the analysis, namely, the design
and development of scientific data mining systems. There have been several scientific data
mining projects where the goal was not just to solve a specific problem, but to develop
software which could be used in solving other similar problems. In developing software, I
have often found it helpful to understand the approaches taken by others. It enables one to
anticipate unforeseen ways in which the software might be used and also provides possible
solutions to common problems. This can lead to a better design of the software system
architecture and the software modules, not only resulting in greater software reuse, but
also enabling more time to be spent on the analysis of data, rather than the development,
maintenance, and rewriting of software.

This chapter is organized as follows. In Section 13.1, I first briefly describe public
domain software which is available for performing specific tasks in the data mining pro-
cess. Then, in Section 13.2, I describe three projects which have taken a systems-level
approach to the problem. Though the original motivation for these three projects was very
different, the approaches they have chosen are very similar. I then summarize the chapter in
Section 13.3.
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13.1 Software for specific tasks in scientific data mining
There are several public-domain software packages which provide the functionality nec-
essary for the tasks in the scientific data mining process. They are written in different
programming languages, including Fortran, C, C++, and Java. Several have been around
for many years and are relatively bug free, while others are newer, with an active community
developing and maintaining the software. I divide the publicly available software into four
categories—visualization and exploratory data analysis; image processing and analysis;
dimension reduction; and pattern recognition.

In Chapter 12, I discussed various software tools available for visualizing data includ-
ing Gnuplot [224] for simple plotting; ImageMagick [289] and GIMP [221] for visualizing
8- and 16-bit image data; Fv [208] for visualizing two- and three-dimensional floating-point
data; and VisIt [605] and GMV [223] for mesh data from computer simulations. In addition,
it is also possible to create tools more geared towards a specific problem using software
packages such as Qt [488] which can be used for developing graphical user interfaces,
OpenGL [461] for computer graphics, and Tcl/Tk [575] for development and graphical user
interfaces.

The area of image processing and computer vision also has several software pack-
ages which provide useful functionality, especially for 8- and 16-bit data. In addition to
ImageMagick and GIMP mentioned earlier, other public-domain packages include CVIP
tools [129] for the processing of digital images, Image [287], which is a tool from the Na-
tional Institute for Health for image processing and analysis, and the OpenCV package [460],
which is an open-source software library for computer vision applications.

In the area of dimension reduction, the LAPACK [5] and ScaLAPACK [43] libraries
provide high-performance implementations of several versions of the singular value de-
composition (SVD) for dense matrices. The implementation for sparse matrices is available
through SVDPACK [36] and ARPACK [370]. It is difficult to improve on these software
packages, as they include extensive testing and error handling, and incorporate the latest
developments in numerical analysis.

One of the better known public-domain software for pattern recognition is the WEKA
toolbench [621] for machine learning and data mining. For statistical tasks, the R-project
[495] provides a language and environment for statistical computing and graphics. In
addition to the more general software packages such as R and WEKA, software for specific
tasks such as neural networks, support-vector machines (SVMs), or clustering can also be
found on the Web. Though some of these software packages are unsupported, many are
supported by their developers and have an active user community.

13.2 Software systems for scientific data mining
The public-domain software libraries mentioned earlier, as well as others which are available
via the Web, are often very useful in addressing specific tasks in the scientific data mining
process. In some cases, it may be possible to find in the public domain all the tools one needs
for analyzing a particular data set. However, in other cases, it may make sense to develop
new tools, perhaps using public-domain software where appropriate. This is especially the
case when publicly available software does not meet the analysis requirements. There may
be several reasons for this. For example, many of the software tools operate on small- to
moderate-sized data sets. If the size of the data to be analyzed is massive, one may need to
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develop new approaches for the analysis, or implement a parallel version of an algorithm
for use on multiple processors. Alternatively, one could modify an existing algorithm so
that it can be applied to the data in parallel and the results pieced back together to provide a
solution. In addition, in some problems, it is possible to exploit specific characteristics of
the data to simplify the task of analysis instead of using a traditional solution approach [318].
In other cases, the data may have unusual characteristics, such as noise in an image in the
form of vertical streaks [321], which may require specialized algorithms. Sometimes, a
problem-specific approach to handling missing values may need to be implemented, or a
specific part of an algorithm, say the splitting criterion used in the induction of a decision
tree, may need to be modified to be more suitable to the data being analyzed. Or, the problem
may require something unique to scientific data, such as the need to quantify the uncertainty
in the results.

All these requirements indicate that one may need to consider developing software
specifically tuned to the characteristics of the data set being analyzed. If, in addition, we
need to solve several analysis problems involving very different data sets, it may make sense
to consider the development of a set of tools, or a software system. I next describe three
scientific data mining projects where a systems approach has been taken in the development
of the software. These are for illustrative purposes to indicate the approaches we can take
to develop toolkits for the analysis of scientific data.

13.2.1 Diamond Eye

The early projects at NASA’s Jet Propulsion Laboratory, such as SKICAT [184] and JAR-
Tool [71], focused on the solution of specific problems, namely, the analysis of sky objects
in the Second Palomar Observatory Sky Survey and the identification of volcanoes on
Venus, respectively. While both these projects were instrumental in drawing the attention
of data miners to the challenges faced by scientists in the analysis of their data, it was the
Diamond Eye project [72, 73] that took a more systems view to solve a broader class of
problems.

The Diamond Eye project was the second generation of image mining tools from the
Jet Propulsion Laboratory and incorporated many of the lessons learned from JARTool. Its
goal was to mine useful information in large image collections, such as those resulting from
various spacecraft missions. To support this more general goal, Diamond Eye not only
incorporated several image mining algorithms, it also considered system architecture issues
in its design and implementation.

From the viewpoint of image mining algorithms, the developers of Diamond Eye
realized that a key challenge was to determine what mathematical processing should be
applied to the low-level image data, in the form of pixels, to identify the spatial objects
of interest. They chose to support several different algorithms, categorized based on how
much prior knowledge in the form of a training set was required by each technique. For
example, the category of recognition algorithms used a large number of examples to build
a precise statistical model, while discovery algorithms used no examples, but relied on
generic assumptions to look for interesting objects without a specific target. In the middle
were query algorithms which used one or a few examples, or even a sketch. This focus
on retrieving similar objects made Diamond Eye similar to other content-based retrieval
projects, with the main difference being the focus on objects in the image, rather than the
whole image.
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From a system architecture viewpoint, Diamond Eye was designed to let users in-
teract with the system. It used a Java-based client-server architecture to provide platform-
independent access to the mining services. The core mining algorithms were written in a
higher-level language (C or C++) for computational efficiency. A middleware interface tied
these algorithms to the client-server system. A server program was colocated with a large
image repository to enable mining of the data in place. The servers were coupled with an
object-oriented database and a computational engine, such as a network of workstations.
The database provided persistent storage while the computational engine enabled the parallel
execution of the more compute-intensive parts of the image mining task, such as the image
processing and the object recognition. The Diamond Eye infrastructure was application
independent, easily allowing domain-specific algorithms to be incorporated.

The architecture of Diamond Eye resulted in several benefits, including a design
which allowed trial evaluation of advanced data mining and machine learning techniques
by potential new users, the reuse of a software infrastructure that was common across a
range of science mining applications, and a system that facilitated closer collaborations
between algorithm developers and domain experts.

13.2.2 Algorithm Development and Mining System

Another system which has been developed for the analysis of many different data sets is
the Algorithm Development and Mining System (ADaM) developed by the Information
Technology and Systems Center at the University of Alabama in Huntsville [1, 500]. The
main application domain for ADaM is remotely sensed data, especially problems in earth
sciences, though its modules can be used in the context of other scientific data sets as well.

ADaM consists of several modules, primarily in the area of data mining and im-
age processing. For data mining operations, it provides several algorithms for clustering,
classification, association rules, and feature selection. The image processing algorithms
supported are mainly for analysis of satellite imagery and include various filters, texture
features, boundary detection, polygon circumscription, as well as simple image processing
functions such as cropping, rotation, and sampling.

A key differentiating characteristic of ADaM is its system architecture. By using
autonomous components in a distributed architecture, it supports the easy integration of
third-party algorithms. Each component is provided with a C, C++, or other application
programming interface; an executable in support of generic scripting tools, such as Perl,
Python, or shell scripts; and eventually web service interfaces to support web and grid
applications. This is especially useful in the context of earth systems applications as the
community has embraced the use of computational grid technologies [35]. Since ADaM
components can be accessed via multiple external interfaces, it is easy to use them in different
applications. They can be used either by themselves or combined with other specialized
software modules. For example, general-purpose image analysis modules were combined
with problem-specific modules to detect tropical cyclones and estimate their maximum
sustained winds.

13.2.3 Sapphire

The Sapphire scientific data mining software was developed as part of the Sapphire project at
the Lawrence Livermore National Laboratory [524]. The system architecture was designed
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from the beginning to meet the diverse requirements that arose in the analysis of scientific
data from observations, experiments, and simulations. In particular, some of the main
considerations which determined the architecture, and our approach to accommodating
these considerations, were the following:

• Instead of having a single monolithic code for each problem, the tasks common to
several problems were identified and implemented as separate modules, enabling us
to reuse the software. Thus, there was a separate module for denoising image data,
one for decision trees, another for neural networks, and so on. A data set was then
analyzed by combining appropriate functions from several modules.

• As no single algorithm for a task, such as denoising, was likely to be appropriate
for all problems, we supported several algorithms for each task. A uniform interface
across these algorithms enabled us to easily swap one algorithm for another. It also
enabled new algorithms to be added easily as necessary.

• As an algorithm often needs to be fine tuned to a data set and problem, we provided
easy access to the parameters that are used in an algorithm. These parameters could
be set by the user, or the default values used as a first guess.

• To make the data flow more streamlined, each module was designed so that the
output from one phase of data mining could be input into the next appropriate phase.
Thus, if the image segmentation algorithm produced a mask image with each object
identified by a unique identifier, the follow-on step of feature extraction would take
as input the mask image, along with an object identifier, and extract features for the
corresponding object. This minimized any transformations necessary to convert from
one data format to another between the steps in the scientific data mining process.

• It was clear that some tasks, such as those of pattern recognition, were domain in-
dependent, that is, a decision tree could be applied to problems in remote sensing,
astronomy, computer simulations, and so on. Other tasks, such as denoising and
feature extraction, could be problem dependent. For example, the noise character-
istics could depend on the type of sensor used to collect the data, while the features
extracted could depend on the problem being addressed with a data set. By clearly
identifying and separating the domain-dependent and domain-independent tasks, we
were able to maximize the re-use of our software as we moved from one application
to another.

• As scientific data mining is essentially an iterative process, and we sometimes had
to work with data as they were being collected, we provided the option to store the
results of the processing at each stage. Thus, when the new data arrived, we did not
need to reprocess the old data.

Figure 13.1 shows the system architecture of the Sapphire software system. Note that
it closely resembles the data flow diagram in Figure 4.1. The modules in the white boxes at
the beginning and end were for the reading, writing, and display of the data. To the extent
possible, we leveraged existing domain software, writing additional code only to convert
between the domain data format and our internal data format. By having a single internal
format for, say, image data, we were able to support different input image format, such as
Fits, pnm, BSQ, by first converting them to our internal format.
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Figure 13.1. The Sapphire system architecture.

The module in dark grey in the middle was a data store to store the data items by
features matrix. We used a public-domain software package called RDB [276], written
in Perl, for this data store. This is a simple tool which stores the data in a table format
and enables querying based on the row and column locations. It is very similar to the
comma-separated format for storing a table, with some additional header information for
the metadata as well as format information for printing the table.

The modules in lighter grey are the compute-intensive parts of the scientific data
mining process and were the main focus of the Sapphire project. The entire software was
written in C++, using object-oriented design principles. We used inheritance to support
a single interface for different algorithms for a task and templating on the data type to
write a single code for single- and double-precision data. As appropriate, we used a driver
code in C++ or a Python interface to the software to create a solution for an analysis
problem.

We also collected similar tasks and packaged them as a single library. For example,
there was a library for basic image processing algorithms, one for wavelets and wavelet
denoising, one for more complex algorithms for segmentation and feature extraction, and
another for video processing. Similarly, there was a library each for decision trees, neural
networks, regression, and so on. A toolkit library provided basic functions for sampling,
histograms, and random number generators, while another library provided the functions to
read and write files in various image formats as well as the RDB format. This breakup of
the functions into separate libraries allowed us to link only to those parts of Sapphire which
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were necessary for analysis. If required by a problem, we would also write additional code,
which was added into Sapphire if it was found to be broadly applicable.

Sapphire software was used to solve a broad range of problems in different scientific
domains, including:

• classification of bent-double galaxies in observational astronomy data [316];

• separating signals, such as El Niño and volcano signals, from surface temperature
data obtained from climate simulations [199];

• similarity-based object retrieval in two- and three-dimensional simulation data [314];

• detection of human settlements in satellite images [323];

• identification of key features associated with edge-harmonic oscillations in sensor
data from a tokamak [83];

• detection and tracking of moving objects in video sequences [112, 320];

• estimating missing features in multimedia information retrieval [15];

• comparing simulation and experimental data for code validation [321];

• characterizing and tracking bubbles and spikes in three-dimensional simulations of
the Rayleigh–Taylor instability [318, 215];

• classification of orbits in Poincaré plots [14]; and

• detection of blobs in experimental images from fusion plasma [392].

Our approach to the design and implementation of Sapphire software showed that it
was possible to build a toolkit which could be used to address many different problems in
scientific data mining.

13.3 Summary
In this chapter, I discussed the topic of software architectures for scientific data mining
from a systems viewpoint. Using three examples, I showed that it is possible to build a
software infrastructure which can support the many different needs of analysis problems in
science and engineering domains. There are several common themes across these projects,
including the use of modularity to group similar tasks and enabling flexibility through the
easy incorporation of third-party or domain-specific software. In addition, I also mentioned
various public-domain software packages which can be used in various tasks in the scientific
data mining process.

In the next chapter, which is the last chapter in the book, I discuss the challenges and
the opportunities that await a practitioner of scientific data mining. Having described the
various tasks in the end-to-end process of scientific data analysis, I start the next chapter by
returning to the beginning of the process and provide some guidelines on how one might
proceed when given a data set and a problem to solve.





Chapter 14

Lessons Learned, Challenges,
and Opportunities

The same thrill, the same awe and mystery, come again and again when we
look at any problem deeply enough. With more knowledge comes deeper,
more wonderful mystery, luring one on to penetrate deeper still. Never
concerned that the answer may prove disappointing, but with pleasure and
confidence we turn over each new stone to find unimagined strangeness
leading on to more wonderful questions and mysteries—certainly a grand
adventure!

—R. P. Feynmann [190, p. 144]

The purpose of this book was to bring together, in one place, many of the different
techniques used in the analysis of science and engineering data sets arising from simulations,
experiments, and observations. The early chapters described the many ways in which data
analysis techniques are being used in various scientific domains, followed by an identifica-
tion of the common tasks, which, in turn, were used to motivate an end-to-end process of
scientific data mining. A large part of the book was devoted to the detailed description of
the algorithms used in these tasks, which enabled us to process the raw data to find the use-
ful information in them. Then, in the previous chapter, I described various public-domain
software packages available for these tasks, as well as three projects which have taken a
systems-level approach, building software infrastructures which can be used to analyze data
from several different problems in different domains.

In this, the final chapter of the book, I start by going back to the beginning. Based
on my experiences with mining data from several scientific disciplines, I first provide some
guidelines for getting started with the analysis of a data set. This is followed in Section 14.2
by looking forward to the many open research problems which remain to be addressed,
and the challenges which await data mining practitioners as they analyze data from new
domains, with new characteristics, and new algorithmic requirements. Finally, I conclude
the chapter, and the book, with a few thoughts on the rewards of embarking on a scientific
data mining endeavor.
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14.1 Guidelines for getting started
Getting started on the analysis of a scientific data set can oftentimes be rather daunting.
This is especially true if the science behind the phenomena being analyzed is poorly un-
derstood, leading to a poorly defined analysis problem and the domain scientists having
few preconceived notions of what they are looking for in the data. If, in addition, the data
set is very large, perhaps terabytes in size, the sheer size of the data themselves can be
overwhelming. Under these circumstances, it can be a challenge just to determine a place
to start the analysis.

Based on my experiences in mining science and engineering data sets in different
domains, I have found that no one solution approach works for all problems. However,
there are some general guidelines which are helpful in getting started.

The first step is to understand the analysis goals of the scientist. These goals may be
somewhat poorly defined at the beginning, in which case, it is helpful to spend more time
doing exploratory analysis to understand the data better and gain some insights into what
the scientists hope to achieve through the analysis. This is also true when the data set is
very large and it is unlikely that anyone has ever looked at all the data. In many cases,
the scientist may start with one goal in mind, and then, as the analysis progresses, may
want to investigate further any interesting issues uncovered during the analysis. Of course,
depending on what is learned during the analysis, the goals of the analysis may change over
time.

It is often helpful to start the initial exploratory analysis of the data by viewing the
data. This is easy if the data are small enough and in a commonly used format. Otherwise,
we may have to write code to read in the data or extract a small sample of it. If the structure
of the data is uncommon, for example, graphs or particles in three-dimensional space, we
may also need to write new tools to view the data. If, however, the data are in the form of
mesh data or images, existing tools may suffice.

However, a word of caution may be appropriate regarding the task of viewing, or
looking at, the data, especially if one of the many scientific visualization or image analysis
software packages available in the public domain are used. These packages usually process
the data first to make them suitable for display; this processing may alter the data so that
what is visualized is not exactly what is in the data. For example, images are often scaled to
between 0 and 255 for display. If the original range of the data is much smaller, the scaling
may amplify minor differences. Or, the process of interpolation and smoothing which is
done in scientific visualization may hide important details. Thus, any visual tools must be
used with care during exploratory analysis, and the focus must be on the actual floating-point
or integer values in the data as these are the values which will be processed during analysis.

If the data set is very large and we want to work with a small sample, it is obvious to ask
what is the best way to sample the data. Domain scientists can be very helpful as they may
already have smaller samples they work with on a regular basis. Or, they may have examples
of data which they use to discuss their analysis goals. If the data are from simulations, we
can extract a smaller sample by considering a few time steps sampled uniformly. If the
simulation was run on a multiprocessor, and the output from each time step is available in
separate files, it might also make sense to select a sample of the files instead of all the files at
a time step. If the data and the analysis do not have a time aspect, the sampling can be done
either randomly or based on suggestions from the domain scientist. Of course, the sample
size must be large enough to capture all the variation in the data so that we can select an
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analysis algorithm which can handle the variation. However, it may be unclear if all the
variations present in the data are also present in the subsample. One solution approach is
to start small and keep increasing the size of the subsample as the analysis proceeds. If the
new data added have characteristics very different from the earlier samples, the analysis
algorithms may no longer work. This may require changing the parameters used in the
algorithms or selecting a different algorithm which is more suitable to the characteristics of
the full data.

It is also helpful, especially at the beginning, when one is looking at the data, to
identify any possible issues with the quality of the data. If the data have not been looked
at extensively, it is possible that there are outliers in the data or variables with scientifically
meaningless values. These could be indicative of bugs in the code which generated the
data, a sensor malfunction, or a simulation being run at, or beyond, the limits of what it can
simulate.

For each task in the scientific data mining process, the choice of an analysis algorithm
can be difficult. Obviously, we want an algorithm which, when used with appropriate
parameter settings, will transform the data as expected. We must also ensure that the data
satisfy any assumptions required by the algorithm. It is often very useful to start by applying
the simplest algorithm which is suitable for the data. Even if the algorithm does not work, it
can provide further insights into the data and also indicate possible approaches which might
work. In my experience, the simpler algorithms often work surprisingly well and may be
preferable to complex algorithms as they are often faster or have fewer parameters which
require tuning. If an algorithm is simple, it is easy to understand why it not working on a
particular subsample of the data. Simpler algorithms are also preferable as they are easier
to explain to the domain scientists, which is very helpful when the scientist has to validate
the results at each step of the analysis.

If the simpler algorithms do not work, we may need to look into why they are not
working and see if there is a way to address the problem. It may be that the simpler
algorithm is not working because the data are not normalized or there are outliers which
must be removed. If, however, the simple algorithm is not working as it is not appropriate
for the data, we may need to try out progressively more complex algorithms until we find
one that works. Alternatively, we can try combinations of simple algorithms and use them
in the analysis by cascading them.

If the variation in the data is large, for example in the case of a simulation with small-
scale structures at early time and large-scale structures at late time, we may need to use
more than one algorithm for some tasks in the analysis. In such cases, care must be taken to
ensure that the effects of using different algorithms do not influence any conclusions drawn
from the analysis. This is also true even if the same algorithm is used for all the data, but
with different parameters to account for different characteristics of different subsamples of
the data.

In problems where the task is to discover the science in the data, it often helps to
obtain similar results with different algorithms and to confirm that the results do not change
substantially with small changes in the parameters used in the algorithms. This provides a
sanity check to ensure that the conclusions drawn are driven by the data and not an artifact
of the algorithm or the parameters. Of course, the scientists are more likely to believe the
results if they have been verified using alternate approaches.

In addition to these guidelines, it is also worth revisiting Sections 3.2 and 3.3, which
describe the characteristics of the data and the analysis and discuss how they can influence
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the steps one should take to analyze the data. An overview of these steps is given in
Chapter 4.

14.2 Challenges and opportunities
As we have seen through the many examples in this book, mining scientific data can be
challenging—the data can be noisy, with missing values; extracting objects in mesh and
image data can be difficult; identifying relevant features to represent the objects is critical, but
nontrivial; the number of features describing an object can be very large, making the problem
high dimensional; and the training data for classification can be small and unbalanced.
These are but a few of the many problems we face in scientific data mining in the context
of current data sets and applications. As new application areas, such as materials science
and cheminformatics, start adopting data mining techniques for the analysis of their data,
the problems are bound to increase.

However, each challenge creates opportunities for new research and innovative solu-
tions. There are several factors which will drive these opportunities in the future, including:

• The size of scientific data sets: As data sizes reach terabytes and petabytes, we will
need to consider appropriate ways of analyzing these data sets, many of which are
moved to storage systems as soon as they are collected or generated. The analysis
techniques to handle massive data sets currently include traditional approaches such
as parallelization of existing algorithms; the development of new methods which
are computationally inexpensive, but robust and accurate enough for analysis; and
ingenious ways of analyzing data so that few passes are required over the full data
set, minimizing access to the data in storage. In addition, newer approaches are also
needed, such as innovative sampling techniques which use only a subset of the data
to draw accurate conclusions about the data; techniques for reducing the size of the
data generated by identifying and storing only the “interesting” parts; and, in the
context of simulations, building and using predictive models to reduce the number of
simulations necessary to understand a scientific phenomenon.

• The advent of new computer architectures: We will also need to develop algo-
rithms suitable for new types of computer architectures, such as multicore systems,
field programmable gate arrays, and graphical processing units. As new program-
ming models, such as cloud computing, gain broader acceptance, we will need to
incorporate them into the implementation of the analysis algorithms as well.

• The analysis of new types of data: As new application areas look towards data
mining techniques to solve their problems, new types of data are being analyzed. For
example, in some problem domains such as the analysis of the power grid, the Web,
the Internet, and cheminformatics, the data being analyzed are best represented as a
graph. In other domains, such as bio-informatics, a rich source of data is technical
documents consisting of text, images, tables, figures, and links to other documents, as
well as the information in these documents. The data structures used to represent such
heterogeneous data will be rather complex; we will need to develop new algorithms
to successfully mine these data.

• The need to analyze streaming data in real time: As sensors become ubiquitous,
they are being used to measure various quantities during scientific experiments and
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observations. The analysis of these data can be difficult for several reasons. In some
problems, the data may be sampled at different rates by different sensors, or the data
may be available only in an aggregated form. Missing data are also common if a
sensor is not working, or the quantity it was measuring is not recorded. In addition, a
key issue in streaming data is the real-time or near-real-time requirement for analysis.
This is especially true if the streaming data are from sensors monitoring equipment
to predict when it might fail, from telescopes observing the sky to detect unusual
events, or from sensors monitoring computer networks to detect intrusions. The
sheer volume of streaming data as well as the need to identify anomalous events with
few false positives make this an active research area.

• The analysis of geographically distributed data: Until recently, the term “dis-
tributed data” referred to data at a single geographic location, but distributed among
many files, for example, the output from a simulation run on multiple processors.
However, the data can also be geographically distributed, as would be the case for
a network of sensors, or astronomy surveys taken by different telescopes. New ap-
proaches have to be considered to avoid moving large volumes of data to one location
for analysis.

• The need to draw conclusions in the presence of uncertainty: As we have observed,
the quality of data can make scientific data mining rather difficult, whether it is due
to noise in image data, missing data values, or an unbalanced training data set in
classification. Arelated issue which is becoming increasingly important is uncertainty
quantification which can give us some idea of how much we can trust the results of our
analysis, given the uncertainty associated with the input data. Statistical and machine
learning techniques will play an important role in addressing this problem.

• Multiscale analysis: In multiscale phenomena, the data collected are also at mul-
tiple scales, posing new problems for analysis. The phenomena at finer scales may
influence the coarser scales, often nonlinearly, and coarse-scale behavior may feed
back into the finer scales. We therefore need new ways to represent this multiscale
information and new techniques to understand how the information at different scales
interact to determine the macroscale behavior.

While these new challenges offer new opportunities for data miners, many of the old
challenges still remain. For each step in the scientific data mining process, there continues
to be a need for reliable, accurate algorithms which are robust to the parameters used in
the algorithm. The interpretability of the algorithms is also important, even if it means a
slightly less accurate algorithm; scientists are unlikely to accept the analysis results if they
cannot understand how an algorithm processed the data to arrive at the results. And finally,
algorithms which are computationally inexpensive, and have few parameters, are preferred
as they allow easy experimentation and provide a fast turnaround of results.

14.3 Concluding remarks
In this book, I have described how techniques from a variety of domains including signal
and image processing, pattern recognition, machine learning, statistics, high-performance
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computing, and data mining can be used to analyze data from scientific simulations, ex-
periments, and observations. Though challenging, the field of scientific data mining, and
the application of these techniques, can be a rewarding experience for both the scientists
and the data miners. The scientists no longer have to be concerned that the sheer size and
complexity of their data are resulting in a loss of serendipitous discoveries which are vital
to progress in their fields. The data miners not only get an opportunity to work with a rich
source of data, which is replete with new and interesting problems, they also share in the
thrill of scientific discovery. For both, it is indeed a grand adventure!
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χ2 distance, 144

active contours, see edge detection
active learning, 70, 197
adaptive mesh refinement, 70, 136
agglomerative algorithms, see clustering
ambiguity in problem definition, 55
angles, see features, problem-specific
angular radial transform, see features, shape
anomaly detection, see pattern recognition
aperture problem, 132, 156
association rules, 201–202
axis-parallel trees, 186

background subtraction, see moving ob-
ject detection

backpropagation algorithm, 192
backward elimination, see wrappers, fea-

ture selection
bagging, 194
bilateral filter, see filters, image

processing
bipartite graph matching, 203
blessings of dimensionality, 175
blind deconvolution, see image contrast

enhancement
blind source separation, 166
block-matching techniques, see moving

object detection
boosting, 195
box plots, see visualization

Canny edge detector, see edge detection
CART-LC method, 187
chord distribution, see features, shape
city-block distance, see distance metrics
class separability filter, see filters, feature

selection

classification, 184–199
accuracy, 196
cross validation, 196
decision trees, 186
ensembles, 194
evaluation data, 196
in region detection, 127
k-nearest neighbor, 185
model interpretability, 184
naïve Bayes, 185
neural networks, 189
SVMs (support vector machines),

193
test data, 184
training data, 184

closing, see mathematical morphology
clustering, 178–184

agglomerative algorithms, 180
choice of cluster centers, 183
cluster validity, 183
clustering criterion, 179
clustering tendency, 183
complete linkage, 180
divisive algorithms, 180
graph algorithms, 181
in region detection, 127
k-means, 179
k-mediods, 180
number of clusters, 183
similarity metric, 179
single linkage, 180

code emulators, see code surrogates
code surrogates, 29, 199
coherent structures, 25, 28
competitive learning algorithms, 168
complete linkage, see clustering
compressed sensing, 167
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computer simulations, 25
clustering, 181
mesh data, 43, 136

concept drift, 199
concept indexing, see dimension reduc-

tion
confidence of a rule, 202
conjugate gradient, see mathematical

optimization
connected component labeling, 136
contour shape descriptor, see features, shape
contrast stretching, see image contrast

enhancement
corner density, see features, problem-specific
corner detector

Harris, 129
Moravec, 129
USAN (Univalue Segment Assimi-

lating Nucleus), 129
correlation filter, see filters, feature

selection
cosine distance, see distance metrics
cross validation, see classification
curse of dimensionality, 62, 81, 91, 162

data fusion, 79–92
catastrophic fusion, 81
decision level, 82, 91–92
feature level, 82, 90–91
JDL(Joint Directors of Laboratories)

model, 81
sensor level, 81, 83–89

data mining, see scientific data mining
deblurring, see image contrast

enhancement
decision trees, see classification
Dempster–Shafer theory, 92
descriptors, see features
design of experiments, 29, 70
diffusion equation, 102
dilation, see mathematical morphology
dimension

definition, 161
dimension reduction

concept indexing, 173
domain-specific methods, 172–174
feature selection methods, 168–172

feature transformation methods,
164–168

incremental methods, 173
dimension reduction, feature selection

filters, 169
regression, 172
wrappers, 171

dimension reduction, feature transforms
EOFs (empirical orthogonal

functions), 164
FastMap, 167
Hotelling transform, 164
independent component analysis,

166
Karhunen-Loève transform, 164
kernel PCA (principal component

analysis), 166
latent semantic indexing, 164
locally linear embedding, 166
multidimensional scaling, 167
POD (proper orthogonal decompo-

sition), 164
PCA(principal component analysis),

164
principal curves, 166
projection pursuit, 166
random projections, 166
self-organizing maps, 168
SVD (singular value decomposition),

164
distance metrics, 205

city-block distance, 205
cosine distance, 205
Euclidean distance, 205
Minkowski distance, 205
Tanimoto distance, 205

divisive algorithms, see clustering
domain decomposition, 181

earth-mover’s distance, 144
edge density, see features,

problem-specific
edge detection, 114–123

active contours, 117
Canny edge detector, 117
Marr–Hildreth technique, 115
Prewitt operator, 114
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Roberts’ operator, 114
salient edges, 138
Sobel operator, 114
USAN (Univalue Segment

Assimilating Nucleus) approach,
123

edge relaxation, 138
Eikonal equation, 121
ensemble learning, 91
ensembles, see classification
EOFs (Empirical Orthogonal Functions),

see dimension reduction, fea-
ture transforms

erosion, see mathematical morphology
Euclidean distance, see distance metrics
evaluation data, see classification
evolutionary algorithms, see mathemati-

cal optimization
exhaustive search, see wrappers, feature

selection
expectation maximization, 180

FastMap, see dimension reduction, fea-
ture transforms

feature selection methods, see dimension
reduction

features
definition, 51, 141
postprocessing, 157–159
problem-specific, 153–157
requirements, 142
shape, 146–149
simple, 144–146
texture, 149–153

features, postprocessing
derived features, 159
missing features, 158
normalization, 158
outlier identification, 158
units, 159

features, problem-specific, 153–157
angles, 153
edge-corner density, 155
graph-based, 154
SIFT(Scale-Invariant FeatureTrans-

form) features, 155
velocity determination, 156

features, shape, 146–149
ART (Angular Radial Transform),

147
chord distribution, 147
contour shape descriptor, 148
Fourier descriptors, 146
shape distribution, 147
shapelets, 148
skeleton, 147

features, simple, 144–146
geometric moments, 145
histograms, 144
location of centroid, 145
scalar descriptors, 145
simple statistics, 144

features, texture, 149–153
Gabor filter, 152
grey-level cooccurrence matrix, 150
power spectrum, 151
wavelets, 152

filters, feature selection
class separability filter, 169
correlation filter, 170
PCA(principal component analysis)

filter, 170
Relief, 170, 172
stump filter, 170

filters, image processing
bilateral filter, 98
discrete convolution, 95
Gaussian filter, 96
gradient inverse weighted filter, 98
homomorphic filtering, 106
low-pass filter, 96
mean filter, 95
median filter, 99
MMSE (minimum mean-squared

error) filter, 96
Prewitt operator, 114
Roberts’ operator, 114
sharpening, 108
Sobel operator, 114
USAN (Univalue Segment Assimi-

lating Nucleus) filter, 98
Weiner filter, 109

forward selection, see wrappers, feature
selection
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Fourier descriptors, see features, shape
frame differencing, 132

Gabor filter, see features, texture
Gaussian filter, see filters, image

processing
Gaussian mixture models, 133
Gini split criterion, 188
GIS (Graphic Information Systems), 17
gradient descent, see mathematical

optimization
gradient inverse weighted filter, see

filters, image processing
granulometry, 110
graph Laplacian, 182
graph partitioning

in clustering, 182
in segmentation, 127

graph-based features, see features,
problem-specific

grey-level cooccurrence matrix, see fea-
tures, texture

Hilditch’s thinning algorithm, 147
histogram equalization, see image con-

trast enhancement
histograms, 144

comparison of, 144, 169
hit-or-miss transform, see mathematical

morphology
homomorphic filtering, 106
Hotelling Transform, see dimension re-

duction, feature transforms
Hu moments, 7, 145
hypergraph, 182
hysteresis thresholding, 117

image contrast enhancement, 107–109
blind deconvolution, 109
contrast stretching, 107
deblurring, 109
histogram equalization, 108
multiscale contrast enhancement,

108
sharpening, 108

image denoising, 95–107
filter-based approaches, 95–99
morphological methods, 110–111

multiplicative noise, 105–106
PDE (partial differential equation)–

based approaches, 102–105
problem-specific approaches, 106–

107
wavelet-based approaches, 99–102

image noise
Gaussian, 95
multiplicative, 95, 105
salt-and-pepper, 95

image processing software
CVIPtools, 222
Fv, 215
GIMP, 214, 222
Image, 222
ImageMagick, 214, 222
OpenCV, 222

image registration, 82, 83, 85–89, 128
image segmentation

cleanup, 138
domain-specific techniques,

135–136
edge-based techniques, 114–123
moving object detection, 132–135
object identification, 136–138
object representation, 138
region-based techniques, 123–128
salient regions, 128–132

incremental algorithms, 199
incremental learning, 91
independent component analysis, see

dimension reduction, feature
transforms

indexing, 163, 174, 185
information gain ratio split criterion, 188
information gain split criterion, 188
information retrieval, 27, 34, 90, 163
information visualization, 38, 163
Isomap, 167
itemset, 202

Johnson–Lindenstrauss lemma, 166

k-means, see clustering
k-mediods, see clustering
k-nearest neighbor, see classification; see

regression
Kalman filter, 133, 204
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Karhunen–Loève transform, see dimen-
sion reduction, feature
transforms

KDD, see knowledge discovery in
databases

kernel PCA (principal component analy-
sis), see dimension reduction,
feature transforms

knowledge discovery in databases, 2
Kullback–Leibler divergence, 144, 169

Latent Semantic Indexing, see dimension
reduction, feature transforms

lazy learning, 185
Legendre moments, 146
levels sets, 119
Levenberg–Marquardt method, see math-

ematical optimization
linear discriminant function, 190
linear regression, see regression
locally linear embedding, see dimension

reduction, feature transforms
locally weighted regression,

see regression

Marr–Hildreth technique, see edge
detection

MARS (multivariate adaptive regression
splines), 200

matched filter method, 135
mathematical morphology, 110, 128,

138, 147
closing, 110
dilation, 110
erosion, 110
hit-or-miss transform, 110
opening, 110

mathematical optimization
conjugate gradient, 206
evolutionary algorithms, 88, 206
gradient descent, 88, 206
Levenberg–Marquardt method, 88,

206
simulated annealing, 88, 206

max minority split criterion, 189
mean filter, see filters, image processing
medial axis transform, 147
median absolute deviation, 98, 102

median filter, see filters, image
processing

metamodels, see code surrogates
MMSE (minimum mean-squared error)

filter, see filters, image
processing

Minkowski distance, see distance metrics
misclassification cost, 197
missing features, see features, postpro-

cessing
model trees, see regression
moments, see features, simple
Morse–Smale complex, 128
moving object detection, 132

background subtraction, 132
block-matching techniques, 133

multidimensional scaling, see dimension
reduction, feature transforms

multiresolution
contrast enhancement, 108
Gaussian pyramid, 72, 96, 134
Laplacian pyramid, 73, 90
wavelets, 73

naïve Bayes, see classification
neural networks, see classification
nonmaximal suppression, 117
normalization, see features, postprocess-

ing

oblique trees, 187
opening, see mathematical morphology
optical flow, 89, 156
outlier detection, see pattern recognition

parallel plots, see visualization
particle filter, 204
pasting, 195
pattern recognition

anomaly detection, 204
association rules, 201–202
classification, 184–199
clustering, 178–184
distance metrics, 205
mathematical optimization, 206
outlier detection, 204
regression, 199–201
tracking, 202–204



284 Index

pattern recognition software
R, 222
Weka, 222

PCA (principal component analysis), see
dimension reduction, feature
transforms

PCA filter, see filters, feature selection
PDE (partial differential equation)–based

techniques
denoising, 102
edge detection, 119

Pearson’s correlation coefficient, 170
perceptron, 190
pixel connectivity

4-connectivity, 136
6-connectivity, 136
8-connectivity, 136
26-connectivity, 136

POD (Proper Orthogonal Decomposition),
see dimension reduction, fea-
ture transforms

power spectrum, see features, texture
Prewitt operator, see edge detection
principal curves, see dimension reduction,

feature transforms
projection pursuit, see dimension reduc-

tion, feature transforms
projection pursuit regression, 193
projects

ADaM (Algorithm Development and
Mining System), 224

Diamond Eye, 9, 223
FOCAS (Faint Object Classification

and Analysis), 6
JARTool (JPL Adaptive Recognition

Tool), 9
Quakefinder, 14
Sapphire, 9, 224
SKICAT (Sky Imaging Cataloging

and Analysis Tool), 8
pruning, 189

random forests, 195
random projections, see dimension

reduction, feature
transforms

region detection, 123–132
classification, 127
clustering, 127
region merging, 124
region splitting, 124
region splitting and merging, 125
thresholding, 123
watershed algorithm, 128

region merging, see region detection
region splitting, see region detection
region splitting and merging, see region

detection
registration, see image registration
regression, 199–201

ensembles, 201
k-nearest neighbor, 200
linear regression, 200
locally weighted regression, 201
MARS (multivariate adaptive regres-

sion splines), 200
model trees, 201
neural networks, 201
regression trees, 201
SVMs (support vector machines),

201
regression trees, see regression
Relief, see filters, feature selection
reordering schemes, 182
response surface modeling, 29
Retinex method, 106
Roberts’ operator, see edge detection

salient regions
corners, 129
edges, see edge detection
scale saliency, 129
Scale-Invariant Feature Transform,

131
sampling

adaptive, 70
iterative, 69
random, 68
stratified, 69
systematic, 68

scale saliency, see salient regions
scale-space theory, 73, 96
scatter plots, see visualization
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scientific data, 4
scientific data mining

analysis characteristics, 53–55
applications, 6–39
data characteristics, 46–53
data types, 41–46
definition, 1, 65
end-to-end process, 57–66
projects, see projects

segmentation, see image segmentation
self-organizing maps, see dimension re-

duction, feature transforms
semisupervised learning, 197
shape distribution, see features, shape
shapelets, see features, shape
sharpening, see image contrast enhance-

ment
SIFT (scale-invariant transform theory),

see salient regions
SIFTfeatures, see features, problem-specific
sigmoidal unit, 192
simulated annealing, see mathematical op-

timization
single linkage, see clustering
SVD (SingularValue Decomposition), see

dimension reduction, feature
transforms

skeleton, see features, shape
sketch, 167
snakes, 118
Sobel operator, see edge detection
software

ARPACK, 166, 222
CLUTO, 184
CVIPtools, 222
GIMP, 222
GMV, 222
Gnuplot, 222
hMETIS, 182
Image, 222
ImageMagick, 222
LAPACK, 166, 222
METIS, 182
OpenCV, 222
OpenGL, 222
R, 222
SCALAPACK, 166, 222

SVDPACK, 166, 222
Tcl/Tk, 222
VisIt, 222
Weka, 222

spectral graph theory, 182
split criterion, 187
streaming data, 167
structural saliency, 138
stump filter, see filters, feature selection
sum minority split criterion, 189
support of a rule, 202
surrogate models, see code surrogates
SVMs (support vector machines),

see classification

Tanimoto distance, see distance metrics
tensor voting, 138
test data, see classification
thresholding, see region detection
tracking, 84, 202–204

multiple hypothesis algorithm, 84
probabilistic data association, 84

training data, see classification
twoing rule split criterion, 188

unbalanced training set, 198
uncertainty quantification, 54
USAN (Univalue Segment Assimilating

Nucleus) approach, see edge de-
tection

USAN filter, see filters, image processing

vector quantization, 180
velocity determination, see features,

problem-specific
virtual observatories, 12
visualization

box plots, 210
image data, 214
mesh data, 214
parallel plots, 212
scatter plots, 211

visualization software
GGobi, 213
GMV, 214, 222
Gnuplot, 210, 222
OpenGL, 222
RoSuDa, 213
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Tcl/Tk, 222
VisIt, 214, 222
XmdvTool, 213

Voronoi diagrams, 180, 185

watershed algorithm, see region detection
wavelets

data fusion, 90
decimated transform, 76, 100
denoising, 99

registration, 88
texture features, 152
undecimated transform, 76, 100

Weiner filter, 109, 133
wrappers, feature selection

backward elimination, 171
exhaustive search, 171
forward selection, 171

Zernike moments, 146
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