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Preface
In 2003, when the World Wide Web Consortium was working toward the ratifi-

cation of the Recommendations for the Semantic Web languages RDF, RDFS, and

OWL, we realized that there was a need for an industrial-level introductory

course in these technologies. The standards were technically sound, but, as is

typically the case with standards documents, they were written with technical

completeness in mind rather than education. We realized that for this technol-
ogy to take off, people other than mathematicians and logicians would have

to learn the basics of semantic modeling.

Toward that end, we started a collaboration to create a series of trainings

aimed not at university students or technologists but at Web developers who

were practitioners in some other field. In short, we needed to get the Semantic

Web out of the hands of the logicians and Web technologists, whose job had

been to build a consistent and robust infrastructure, and into the hands of the

practitioners who were to build the Semantic Web. The Web didn’t grow to
the size it is today through the efforts of only HTML designers, nor would the

Semantic Web grow as a result of only logicians’ efforts.

After a year or so of offering training to a variety of audiences, we delivered a

training course at the National Agriculture Library of the U.S. Department of

Agriculture. Present for this training were a wide variety of practitioners in

many fields, including health care, finance, engineering, national intelligence,

and enterprise architecture. The unique synergy of these varied practitioners

resulted in a dynamic four days of investigation into the power and subtlety of
semantic modeling. Although the practitioners in the room were innovative

and intelligent, we found that even for these early adopters, some of the new

ways of thinking required for modeling in a World Wide Web context were

too subtle to master after just a one-week course. One participant had registered

for the course multiple times, insisting that something else “clicked” each time

she went through the exercises.

This is when we realized that although the course was doing a good job of

disseminating the information and skills for the Semantic Web, another, more
archival resource was needed. We had to create something that students could

work with on their own and could consult when they had questions. This

was the point at which the idea of a book on modeling in the Semantic Web

was conceived. We realized that the readership needed to include a wide variety

of people from a number of fields, not just programmers or Web application

developers but all the people from different fields who were struggling to

understand how to use the new Web languages.

It was tempting at first to design this book to be the definitive statement on
the Semantic Web vision, or “everything you ever wanted to know about OWL,” xiii



including comparisons to program modeling languages such as UML, knowledge

modeling languages, theories of inferencing and logic, details of the Web infra-

structure (URIs and URLs), and the exact current status of all the developing

standards (including SPARQL, GRDDL, RDFa, and the new OWL 1.1 effort).

We realized, however, that not only would such a book be a superhuman under-

taking, but it would also fail to serve our primary purpose of putting the tools of

the Semantic Web into the hands of a generation of intelligent practitioners who

could build real applications. For this reason, we concentrated on a particular
essential skill for constructing the Semantic Web: building useful and reusable

models in the World Wide Web setting.

Even within the realm of modeling, our early hope was to have something

like a cookbook that would provide examples of just about any modeling situa-

tion one might encounter when getting started in the Semantic Web. Although

we think we have, to some extent, achieved this goal, it became clear from the

outset that in many cases the best modeling solution can be the topic of consid-

erable detailed debate. As a case in point, the W3C Best Practices and Dissemi-
nation Working Group has developed a small number of advanced “design

patterns” for Semantic Web modeling.

Many of these patterns entail several variants, each embodying a different phi-

losophy or approach to modeling. For advanced cases such as these, we realized

that we couldn’t hope to provide a single, definitive answer to how these things

should be modeled. So instead, our goal is to educate domain practitioners so that

they can read and understand design patterns of this sort and have the intellectual

tools to make considered decisions about which ones to use and how to adapt
them. We wanted to focus on those trying to use RDF, RDFS, and OWL to accom-

plish specific tasks and model their own data and domains, rather than write a

generic book on ontology development. Thus, we have focused on the “working

ontologist” who was trying to create a domain model on the Semantic Web.

The design patterns we use in this book tend to be much simpler. Often a

pattern consists of only a single statement but one that is especially helpful

when used in a particular context. The value of the pattern isn’t so much in

the complexity of its realization but in the awareness of the sort of situation
in which it can be used.

This “make it useful” philosophy also motivated the choice of the examples

we use to illustrate these patterns in this book. There are a number of competing

criteria for good example domains in a book of this sort. The examples must be

understandable to a wide variety of audiences, fairly compelling, yet complex

enough to reflect real modeling situations. The actual examples we have encoun-

tered in our customer modeling situations satisfy the last condition but either are

too specialized—for example, modeling complex molecular biological data; or, in
some cases, they are too business-sensitive—for example, modeling particular

investment policies—to publish for a general audience.

We also had to struggle with a tension between the coherence of the exam-

ples. We had to decide between using the same example throughout the book
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versus having stylistic variation and different examples, both so the prose didn’t

get too heavy with one topic, but also so the book didn’t become one about

how to model—for example, the life and works of William Shakespeare for

the Semantic Web.

We addressed these competing constraints by introducing a fairly small num-

ber of example domains: William Shakespeare is used to illustrate some of the

most basic capabilities of the Semantic Web. The tabular information about pro-

ducts and the manufacturing locations was inspired by the sample data provided
with a popular database management package. Other examples come from

domains we’ve worked with in the past or where there had been particular

interest among our students. We hope the examples based on the roles of peo-

ple in a workplace will be familiar to just about anyone who has worked in an

office with more than one person, and that they highlight the capabilities of

Semantic Web modeling when it comes to the different ways entities can be

related to one another.

Some of the more involved examples are based on actual modeling challenges
from fairly involved customer applications. For example, the ice cream example in

Chapter 7 is based, believe it or not, on aworkflow analysis example from a NASA

application. The questionnaire is based on a number of customer examples for

controlled data gathering, including sensitive intelligence gathering for a military

application. In these cases, the domain has been changed to make the examples

more entertaining and accessible to a general audience.

Finally, we have included a number of extended examples of Semantic Web

modeling “in the wild,” where we have found publicly available and accessible
modeling projects for which there is no need to sanitize the models. These

examples can include any number of anomalies or idiosyncrasies, which would

be confusing as an introduction to modeling but as illustrations give a better pic-

ture about how these systems are being used on the World Wide Web. In accor-

dance with the tenet that this book does not include everything we know about

the Semantic Web, these examples are limited to the modeling issues that arise

around the problem of distributing structured knowledge over the Web. Thus,

the treatment focuses on how information is modeled for reuse and robustness
in a distributed environment.

By combining these different example sources, we hope we have struck

a happy balance among all the competing constraints and managed to include a

fairly entertaining but comprehensive set of examples that can guide the reader

through the various capabilities of the Semantic Web modeling languages.

This book provides many technical terms that we introduce in a somewhat

informal way. Although there have been many volumes written that debate

the formal meaning of words like inference, representation, and even meaning,

we have chosen to stick to a relatively informal and operational use of the terms.

We feel this is more appropriate to the needs of the ontology designer or
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application developer for whom this book was written. We apologize to those

philosophers and formalists who may be offended by our casual use of such

important concepts.

We often find that when people hear we are writing a new Semantic Web

modeling book, their first question is, “Will it have examples?” For this book,

the answer is an emphatic “Yes!” Even with a wide variety of examples,

however, it is easy to keep thinking “inside the box” and to focus too heavily

on the details of the examples themselves. We hope you will use the examples
as they were intended: for illustration and education. But you should also con-

sider how the examples could be changed, adapted, or retargeted to model

something in your personal domain. In the Semantic Web, Anyone can say

Anything about Any topic. Explore the freedom.
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CHAPTER

1What Is the Semantic
Web?

This book is about something we call the Semantic Web. From the name, you

can probably guess that it is related somehow to the famous World Wide Web

(WWW) and that it has something to do with semantics. Semantics, in turn,

has to do with understanding the nature of meaning, but even the word seman-

tics has a number of meanings. In what sense are we using the word semantics?

And how can it be applied to the Web?

This book is also about a working ontologist. That is, the aim of this book is

not to motivate or pitch the Semantic Web but to provide the tools necessary for
working with it. Or, perhaps more accurately, the World Wide Web Consortium

(W3C) has provided these tools in the forms of standard Semantic Web lan-

guages, complete with abstract syntax, model-based semantics, reference imple-

mentations, test cases, and so forth. But these are like a craftsman’s tools: In the

hands of a novice, they can produce clumsy, ugly, barely functional output, but

in the hands of a skilled craftsman, they can produce works of utility, beauty,

and durability. It is our aim in this book to describe the craft of building Seman-

tic Web systems. We go beyond coverage of the fundamental tools to show
how they can be used together to create semantic models, sometimes called

ontologies, that are understandable, useful, durable, and perhaps even beautiful.

WHAT IS A WEB?

The idea of a web of information was once a technical idea accessible only to

highly trained, elite information professionals: IT administrators, librarians, infor-

mation architects, and the like. Since the widespread adoption of the WWW, it is

now common to expect just about anyone to be familiar with the idea of a web
of information that is shared around the world. Contributions to this web come

from every source, and every topic you can think of is covered.

Essential to the notion of the Web is the idea of an open community: Anyone

can contribute their ideas to the whole, for anyone to see. It is this openness

that has resulted in the astonishing comprehensiveness of topics covered by 1



the Web. An information “web” is an organic entity that grows from the inter-

ests and energy of the community that supports it. As such, it is a hodgepodge

of different analyses, presentations, and summaries of any topic that suits the

fancy of anyone with the energy to publish a webpage. Even as a hodgepodge,

the Web is pretty useful. Anyone with the patience and savvy to dig through

it can find support for just about any inquiry that interests them. But the Web

often feels like it is “a mile wide but an inch deep.” How can we build a more

integrated, consistent, deep Web experience?

SMART WEB, DUMB WEB

Suppose you consult a Webpage, looking for a major national park, and you find

a list of hotels that have branches in the vicinity of the park. In that list you see

that Mongotel, one of the well-known hotel chains, has a branch there. Since

you have a Mongotel rewards card, you decide to book your room there. So

you click on the Mongotel website and search for the hotel’s location. To your

surprise, you can’t find a Mongotel branch at the national park. What is going

on here? “That’s so dumb,” you tell your browsing friends. “If they list Mongotel
on the national park website, shouldn’t they list the national park on Mongotel’s

website?”

Suppose you are planning to attend a conference in a far-off city. The confer-

ence website lists the venue where the sessions will take place. You go to the

website of your preferred hotel chain and find a few hotels in the same vicinity.

“Which hotel in my chain is nearest to the conference?” you wonder. “And just

how far off is it?” There is no shortage of websites that can compute these dis-

tances once you give them the addresses of the venue and your own hotel.
So you spend some time copying and pasting the addresses from one page

to the next and noting the distances. You think to yourself, “Why should I be

the one to copy this information from one page to another? Why do I have to

be the one to copy and paste all this information into a single map?

Suppose you are investigating our solar system, and you find a comprehen-

sive website about objects in the solar system: Stars (well, there’s just one of

those), planets, moons, asteroids, and comets are all described there. Each

object has its own webpage, with photos and essential information (mass,
albedo, distance from the sun, shape, size, what object it revolves around,

period of rotation, period of revolution, etc.). At the head of the page is the

object category: planet, moon, asteroid, comet. Another page includes interest-

ing lists of objects: the moons of Jupiter, the named objects in the asteroid belt,

the planets that revolve around the sun. This last page has the nine familiar

planets, each linked to its own data page.

One day, you read in the newspaper that the International Astronomical

Union (IAU) has decided that Pluto, which up until 2006 was considered a
planet, should be considered a member of a new category called a “dwarf

2 CHAPTER 1 What Is the Semantic Web?



planet”! You rush to the Pluto page, and see that indeed, the update has been

made: Pluto is listed as a dwarf planet! But when you go back to the “Solar Pla-

nets” page, you still see nine planets listed under the heading “Planet.” Pluto is

still there! “That’s dumb.” Then you say to yourself, “Why didn’t they update the

webpages consistently?”

What do these examples have in common? Each of them has an apparent

representation of data, whose presentation to the end user (the person

operating the Web browser) seems “dumb.” What do we mean by “dumb”?
In this case, “dumb” means inconsistent, out of synch, and disconnected. What

would it take to make the Web experience seem smarter? Do we need smarter

applications or a smarter Web infrastructure?

Smart Web Applications

The Web is full of intelligent applications, with new innovations coming every

day. Ideas that once seemed futuristic are now commonplace; search engines
make matches that seem deep and intuitive; commerce sites make smart recom-

mendations personalized in uncanny ways to your own purchasing patterns;

mapping sites include detailed information about world geography, and they

can plan routes and measure distances. The sky is the limit for the technologies

a website can draw on. Every information technology under the sun can be used

in a website, and many of them are. New sites with new capabilities come on

the scene on a regular basis.

But what is the role of the Web infrastructure in making these applications
“smart”? It is tempting to make the infrastructure of the Web smart enough to

encompass all of these technologies and more. The smarter the infrastructure,

the smarter the Web’s performance, right? But it isn’t practical, or even possible,

for the Web infrastructure to provide specific support for all, or even any, of the

technologies that we might want to use on the Web. Smart behavior in the Web

comes from smart applications on the Web, not from the infrastructure.

So what role does the infrastructure play in making the Web smart? Is there a

role at all? We have smart applications on the Web, so why are we even talking
about enhancing the Web infrastructure to make a smarter Web if the smarts

aren’t in the infrastructure?

The reason we are improving the Web infrastructure is to allow smart appli-

cations to perform to their potential. Even the most insightful and intelligent

application is only as smart as the data that is available to it. Inconsistent or con-

tradictory input will still result in confusing, disconnected, “dumb” results, even

from very smart applications. The challenge for the design of the Semantic Web

is not to make a web infrastructure that is as smart as possible; it is to make an
infrastructure that is most appropriate to the job of integrating information on

the Web.

The Semantic Web doesn’t make data smart because smart data isn’t what

the Semantic Web needs. The Semantic Web just needs to get the right data

Smart Web, Dumb Web 3



to the right place so the smart applications can do their work. So the question to

ask is not “How can we make the Web infrastructure smarter?” but “What can

the Web infrastructure provide to improve the consistency and availability of

Web data?”

A Connected Web Is a Smarter Web

Even in the face of intelligent applications, disconnected data result in dumb
behavior. But the Web data don’t have to be smart; that’s the job of the appli-

cations. So what can we realistically and productively expect from the data in

our Web applications? In a nutshell, we want data that don’t surprise us with

inconsistencies that make us want to say, “This doesn’t make sense!” We don’t

need a smart Web infrastructure, but we need a Web infrastructure that lets us

connect data to smart Web applications so that the whole Web experience is

enhanced. The Web seems smarter because smart applications can get the data

they need.
In the example of the hotels in the national park, we’d like there to be coor-

dination between the two webpages so that an update to the location of hotels

would be reflected in the list of hotels at any particular location. We’d like the

two sources to stay synchronized, then we won’t be surprised at confusing

and inconsistent conclusions drawn from information taken from different

pages of the same site.

In the mapping example, we’d like the data from the conference website

and the data from the hotels website to be automatically understandable to
the mapping website. It shouldn’t take interpretation by a human user to move

information from one site to the other. The mapping website already has

the smarts it needs to find shortest routes (taking into account details like toll

roads and one-way streets) and to estimate the time required to make the trip,

but it can only do that if it knows the correct starting and end points.

We’d like the astronomy website to update consistently. If we state that Pluto

is no longer a planet, the list of planets should reflect that fact as well. This is

the sort of behavior that gives a reader confidence that what they are reading
reflects the state of knowledge reported in the website, regardless of how they

read it.

None of these things is beyond the reach of current information technology.

In fact, it is not uncommon for programmers and system architects, when they

first learn of the Semantic Web, to exclaim proudly, “I implemented something

very like that for a project I did a few years back. We used. . . .” Then they go on

to explain how they used some conventional, established technology such as

relational databases, XML stores, or object stores to make their data more
connected and consistent. But what is it that these developers are building?

What is it about managing data this way that made it worth their while to

create a whole subsystem on top of their base technology to deal with it? And

where are these projects two or more years later? When those same developers
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are asked whether they would rather have built a flexible, distributed,

connected data model support system themselves or to have used a standard

one that someone else optimized and supported, they unanimously chose the

latter. Infrastructure is something that one would rather buy than build.

SEMANTIC DATA

In the Mongotel example, there is a list of hotels at the national park and

another list of locations for hotels. The fact that these lists are intended to

represent the presence of a hotel at a certain location is not explicit anywhere;
this makes it difficult to maintain consistency between the two representa-

tions. In the example of the conference venue, the address appears only as

text typeset on a page so that human beings can interpret it as an address.

There is no explicit representation of the notion of an address or the parts

that make up an address. In the case of the astronomy webpage, there is no

explicit representation of the status of an object as a planet. In all of these

cases, the data describe the presentation of information rather than describe

the entities in the world.
Could it be some other way? Can an application organize its data so that they

provide an integrated description of objects in the world and their relationships

rather than their presentation? The answer is “yes,” and indeed it is common

good practice in website design to work this way. There are a number of well-

known approaches.

One common way to make Web applications more integrated is to back

them up with a relational database and generate the webpages from queries

run against that database. Updates to the site are made by updating the contents
of the database. All webpages that require information about a particular data

record will change when that record changes, without any further action

required by the Web maintainer. The database holds information about the

entities themselves, while the relationship between one page and another

(presentation) is encoded in the different queries.

Consider the case of the national parks and hotel. If these pages were backed

by the same database, the national park page could be built on the query “Find

all hotels with location ¼ national park,” and the hotel page could be built on
the query “Find all hotels from chain ¼ Mongotel.” If Mongotel has a location

at the national park, it will appear on both pages; otherwise, it won’t appear

at all. Both pages will be consistent. The difficulty in the example given is that

it is organizationally very unlikely that there could be a single database driving

both of these pages, since one of them is published and maintained by the

National Park Service and the other is managed by the Mongotel chain.

The astronomy case is very similar to the hotel case, in that the same infor-

mation (about the classification of various astronomical bodies) is accessed from
two different places, ensuring consistency of information even in the face of
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diverse presentation. It differs in that it is more likely that an astronomy club or

university department might maintain a database with all the currently known

information about the solar system.

In these cases, the Web applications can behave more robustly by adding an

organizing query into the Web application to mediate between a single view

of the data and the presentation. The data aren’t any less dumb than before,

but at least what’s there is centralized, and the application or the webpages

can be made to organize the data in a way that is more consistent for the user
to view. It is the webpage or application that behaves smarter, not the data.

While this approach is useful for supporting data consistency, it doesn’t help

much with the conference mapping example.

Another approach to making Web applications a bit smarter is to write pro-

gram code in a general-purpose language (e.g., C, Perl, Java, Lisp, Python, or

XSLT) that keeps data from different places up to date. In the hotel example,

such a program would update the National Park webpage whenever a change

is made to a corresponding hotel page. A similar solution would allow the
planet example to be more consistent. Code for this purpose is often organized

in a relational database application in the form of stored procedures; in XML

applications, it can be affected using a transformational language like XSLT.

These solutions are more cumbersome to implement, since they require spe-

cial-purpose code to be written for each linkage of data, but they have the

advantage over a centralized database that they do not require all the publishers

of the data to agree on and share a single data source. Furthermore, such

approaches could provide a solution to the conference mapping problem by
transforming data from one source to another. Just as in the query/presentation

solution, this solution does not make the data any smarter; it just puts an

informed infrastructure around the data, whose job it is to keep the various data

sources consistent.

The common trend in these solutions is to move away from having the pre-

sentation of the data (for human eyes) be the primary representation of the data;

that is, they move from having a website be a collection of pages to having a

website be a collection of data, from which the webpage presentations are
generated. The application focuses not on the presentation but on the subjects

of the presentation. It is in this sense that these applications are semantic appli-

cations; they explicitly represent the relationships that underlie the application

and generate presentations as needed.

A Distributed Web of Data

The Semantic Web takes this idea one step further, applying it to the Web as
a whole. The current Web infrastructure supports a distributed network of

webpages that can refer to one another with global links called Uniform Resource

Locators (URLs). As we have seen, sophisticated websites replace this structure

locally with a database or XML backend that ensures consistency within that page.
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The main idea of the Semantic Web is to support a distributed Web at the

level of the data rather than at the level of the presentation. Instead of hav-

ing one webpage point to another, one data item can point to another, using

global references called Uniform Resource Identifiers (URIs). The Web infra-

structure provides a data model whereby information about a single entity

can be distributed over the Web. This distribution allows the Mongotel exam-

ple and the conference hotel example to work like the astronomy example,

even though the information is distributed over websites controlled by more
than one organization. The single, coherent data model for the application is

not held inside one application but rather is part of the Web infrastructure.

When Mongotel publishes information about its hotels and their locations,

it doesn’t just publish a human-readable presentation of this information but

instead a distributable, machine-readable description of the data. The data

model that the Semantic Web infrastructure uses to represent this distributed

web of data is called the Resource Description Framework (RDF) and is

the topic of Chapter 3.
This single, distributed model of information is the contribution that the

Semantic Web infrastructure brings to a smarter web. Just as is the case with

data-backed Web applications, the Semantic Web infrastructure allows the data

to drive the presentation so that various webpages (presentations) can provide

views into a consistent body of information. In this way, the Semantic Web helps

data not be so dumb.

Features of a Semantic Web

The World Wide Web was the result of a radical new way of thinking about shar-

ing information. These ideas seem familiar now, as the Web itself has become

pervasive. But this radical new way of thinking has even more profound ramifi-

cations when it is applied to a web of data like the Semantic Web. These

ramifications have driven many of the design decisions for the Semantic Web

Standards and have a strong influence on the craft of producing quality Semantic

Web applications.

Give Me a Voice . . .

On the World Wide Web, publication is by and large in the hands of the content

producer. People can build their own webpage and say whatever they want on

it. A wide range of opinions on any topic can be found; it is up to the reader to

come to a conclusion about what to believe. The Web is the ultimate example of
the warning caveat emptor (“Let the buyer beware”). This feature of the Web is

so instrumental in its character that we give it a name: the AAA Slogan: “Anyone
can say Anything about Any topic.”

In a web of documents, the AAA slogan means that anyone can write a page

saying whatever they please, and publish it to the Web infrastructure. In the

case of the Semantic Web, it means that our data infrastructure has to allow
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any individual to express a piece of data about some entity in a way that can be

combined with information from other sources. This requirement sets some of

the foundation for the design of RDF.

It also means that information is not managed as usual for a large, corporate

data center, where one database administrator rules with an iron hand over any

addition or modification to the database. A distributed web of data, in contrast,

is an organic system, with contributions coming from all sources. It was this

freedom of expression on the document Web that allowed it to take off as a
bottom-up, grassroots phenomenon.

. . . So I May Speak!

In the early days of the document Web, it was common for skeptics, hearing for

the first time about the possibilities of a worldwide distributed web full of

hyperlinked pages on every topic, to ask, “But who is going to create all that
content? Someone has to write those webpages!”

To the surprise of those skeptics, and even of many proponents of the Web,

the answer to this question was that everyone would provide the content. Once

the Web infrastructure was in place (so that Anyone could say Anything about

Any topic), people came out of the woodwork to do just that. Soon every topic

under the sun had a webpage, either official or unofficial. It turns out that a lot

of people had something to say, and they were willing to put some work into

saying it.
The document Web grew because of a virtuous cycle that is called the

network effect. In a network of contributors like theWeb, the infrastructure made

it possible for anyone to publish, but what made it desirable for them to do so?

At one point in the Web, whenWeb browsers were a novelty, there was not much

incentive to put a page on this new thing called “the Web”; after all, who was

going to read it? Why do I want to communicate to them? Just as it isn’t very use-

ful to be the first kid on the block to have a fax machine (whom do you exchange

faxes with?), it wasn’t very interesting to be the first kid with a Web server.
But because a few people did have Web servers, and a few more got Web

browsers, it became more attractive to have both webpages and Web browsers.

Content providers found a larger audience for their work; content consumers

found more content to browse. As this trend continued, it became more and

more attractive, and more people joined in, on both sides. This is the basis of

the network effect: The more people who are playing now, the more attractive

it is for new people to start playing.

A good deal of the information that will populate the Semantic Web is already
available on the Web, typically in the form of tables, spreadsheets, or databases.

Who will do the work of converting this data to RDF for distributed access?

In the earliest days of the Semantic Web, there was little incentive to do so.

As more and more data is available in RDF form, it becomes more useful to write

applications that utilize this distributed data. The Semantic Web has been

designed to benefit from the same network effect that drove the document Web.
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What about the Round-Worlders?

The network effect has already proven to be an effective and empowering way

to muster the effort needed to create a massive information network like the

World Wide Web; in fact, it is the only method that has actually succeeded in

creating such a structure. The AAA slogan enables the network effect that made

the rapid growth of the Web possible. But what are some of the ramifications of

such an open system? What does the AAA slogan imply for the content of an

organically grown web?
For the network effect to take hold, we have to be prepared to cope with

a wide range of variance in the information on the Web. Sometimes the differ-

ences will be minor details in an otherwise agreed-on area; at other times,

differences may be essential disagreements that drive political and cultural

discourse in our society. This phenomenon is apparent in the document web

today; for just about any topic, it is possible to find webpages that express

widely differing opinions about that topic. The ability to disagree, and at various

levels, is an essential part of human discourse and a key aspect of the Web that
makes it successful. Some people might want to put forth a very odd opinion on

any topic; someone might even want to postulate that the world is round, while

others insist that it is flat. The infrastructure of the Web must allow both of

these (contradictory) opinions to have equal availability and access.

There are a number of ways in which two speakers on the Web may dis-

agree. We will illustrate each of them with the example of the status of Pluto

as a planet:

They may fundamentally disagree on some topic. While the IAU has changed

its definition of planet in such a way that Pluto is no longer included, it

is not necessarily the case that every astronomy club or even national body

agrees with this categorization. Many astrologers, in particular, who have
a vested interest in considering Pluto to be a planet, have decided to

continue to consider Pluto as a planet. In such cases, different sources will

simply disagree.

Someone might want to intentionally deceive. Someone who markets posters,
models, or other works that depict nine planets has a good reason to delay

reporting the result from the IAU and even to spreading uncertainty about

the state of affairs.

Someone might simply be mistaken. Websites are built and maintained by

human beings, and thus they are subject to human error. Some website

might erroneously list Pluto as a planet or, indeed, might even erroneously

fail to list one of the eight “nondwarf” planets as a planet.

Some information may be out of date. There are a number of displays around

the world of scale models of the solar system, in which the status of the

planets is literally carved in stone; these will continue to list Pluto as a
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planet until such time as there is funding to carve a new description for

the ninth object. Websites are not carved in stone, but it does take effort

to update them; not everyone will rush to accomplish this.

While some of the reasons for disagreement might be, well, disagreeable

(wouldn’t it be nice if we could stop people from lying?), in practice there isn’t

any way to tell them apart. The infrastructure of the Web has to be able to cope

with the fact that information on the Web will disagree from time to time and

that this is not a temporary condition. It is in the very nature of the Web that
there be variations and disagreement.

To Each Their Own

How can the Web infrastructure support this sort of variation of opinion? That
is, how can two people say different things, about the same topic? There are

two approaches to this issue. First, we have to talk a bit about how one can

make any statement at all in a web context.

The IAU can make a statement in plain English about Pluto, such as “Pluto is

a dwarf planet,” but such a statement is fraught with all the ambiguities and con-

textual dependencies inherent in natural language. We think we know what

“Pluto” refers to, but how about “dwarf planet”? Is there any possibility that

someone might disagree on what a “dwarf planet” is? How can we even discuss
such things?

The first requirement for making statements on a global web is to have a

global way of identifying the entities we are talking about. We need to be able

to refer to “the notion of Pluto as used by the IAU” and “the notion of Pluto

as used by the American Federation of Astrologers” if we even want to be able

to discuss whether the two organizations are referring to the same thing by

these names.

In addition to Pluto, another object was also classified as a “dwarf planet.”
This object is sometimes known as UB313 and sometimes known by the

name Xena. How can we say that the object known to the IAU as UB313 is

the same object that its discoverer Michael Brown calls “Xena”?

One way to do this would be to have a global arbiter of names decide how to

refer to the object. Then Brown and the IAU can both refer to that “official”

name and say that they use a private “nickname” for it. Of course, the IAU itself

is a good candidate for such a body, but the process to name the object has

already taken over two years. Coming up with good, agreed-on global names
is not always easy business.

In the absence of such an agreement, different Web authors will select

different URIs for the same real-world resource. Brown’s Xena is IAU’s UB313.

When information from these different sources is brought together in the

distributed network of data, the Web infrastructure has no way of knowing that

these need to be treated as the same entity. The flip side of this is that we
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cannot assume that just because two URIs are distinct, they refer to distinct

resources. This feature of the Semantic Web is called the Nonunique Naming

Assumption; that is, we have to assume (until told otherwise) that some Web

resource might be referred to using different names by different people.

There’s Always One More

In a distributed network of information, as a rule we cannot assume at any time
that we have seen all the information in the network, or even that we know

everything that has been asserted about one single topic. This is evident in

the history of Pluto and UB313. For many years, it was sufficient to say that a

planet was defined as “any object orbiting the sun of a particular size.” Given

the information available during that time, it was easy to say that there were

nine planets around the sun. But the new information about UB313 changed

that; if a planet is defined to be any body that orbits the sun of a particular size,

then UB313 had to be considered a planet, too. Careful speakers in the late
twentieth century, of course, spoke of the “known” planets, since they were

aware that another planet was not only possible but even suspected (the so-

called “Planet X,” which stood in for the unknown but suspected planet for

many years).

The same situation holds for the Semantic Web. Not only might new informa-

tion be discovered at any time (as is the case in solar system astronomy), but,

because of the networked nature of the Web, at any one time a particular server

that holds some unique information might be unavailable. For this reason, on
the Semantic Web we can rarely conclude things like “there are nine planets,”

since we don’t know what new information might come to light.

In general, this aspect of a Web has a subtle but profound impact on how we

draw conclusions from the information we have. It forces us to consider the

Web as an Open World and to treat it using the Open World Assumption.

An open world in this sense is one in which we must assume at any time that

new information could come to light, and we may draw no conclusions that rely

on assuming that the information available at any one point is all the information
available.

For many applications, the open world assumption makes no difference; if

we draw a map of all the Mongotel hotels in Boston, we get a map of all the ones

we know of at the time. The fact that Mongotel might have more hotels in

Boston (or might open a new one) does not invalidate the fact that it has the

ones it already lists. In fact, for a great deal of Semantic Web applications, we

can ignore the open world assumption and simply understand that a semantic

application, like any other webpage, is simply reporting on the information it
was able to access at one time.

The openness of the Web only becomes an issue when we want to draw con-

clusions based on distributed data. If we want to place Boston in the list of cities

that are not served by Mongotel (e.g., as part of a market study of new places to

Semantic Data 11



target Mongotels), then we cannot assume that just because we haven’t found a

Mongotel listing in Boston, no such hotel exists.

As we shall see in the following chapters, the Semantic Web includes fea-

tures that correspond to all the ways of working with open worlds that we have

seen in the real world. We can draw conclusions about missing Mongotels if we

say that some list is a comprehensive list of all Mongotels. We can have an anon-

ymous “Planet X” stand in for an unknown but anticipated entity. These techni-

ques allow us to cope with the open world assumption in the Semantic Web,
just as they do in the open world of human knowledge.

SUMMARY

The aspects of the Web we have outlined here—the AAA slogan, the network

effect, nonunique naming and the open world assumption—already hold for

the document Web. As a result, the Web today is something of an unruly place,

with a wide variety of different sources, organizations, and styles of information.

Effective and creative use of search engines is something of a craft; efforts to

make order from this include community efforts like social bookmarking and
community encyclopedias to automated methods like statistical correlations

and fuzzy similarity matches.

For the Semantic Web, which operates at the finer level of individual state-

ments about data, the situation is even wilder. With a human in the loop,

contradictions and inconsistencies in the document Web can be dealt with

by the process of human observation and application of common sense. With

a machine combining information, how do we bring any order to the chaos?

How can one have any confidence in the information we merge from multiple
sources? If the document Web is unruly, then surely the Semantic Web is a

jungle—a rich mass of interconnected information, without any roadmap,

index, or guidance.

How can such a mess become something useful? That is the challenge

that faces the working ontologist. Their medium is the distributed web of

data; their tools are the Semantic Web languages RDF, RDFS, and OWL. Their

craft is to make sensible, usable, and durable information resources from

this medium. We call that craft modeling, and it is the centerpiece of this
book.

The cover of this book shows a system of channels with water coursing

through them. If we think of the water as the data that are on the Web, the

channels are the model. If not for the model, the water would not flow in any

systematic way; there would simply be a vast, undistinguished expanse of water.

Without the water, the channels would have no dynamism; they have no moving

parts in and of themselves. Put the two together, and we have a dynamic system.

The water flows in an orderly fashion, defined by the structure of the channels.
This is the role that a model plays in the Semantic Web.
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Without the model, there is an undifferentiated mass of data; there is no way

to tell which data can or should interact with other data. The model itself has no

significance without data to describe it. Put the two together, however, and you

have a dynamic web of information, where data flow from one point to another

in a principled, systematic fashion. This is the vision of the Semantic Web—an

organized worldwide system where information flows from one place to

another in a smooth but orderly way.

Fundamental Concepts

The following fundamental concepts were introduced in this chapter.

The AAA slogan—Anyone can say Anything about Any topic. One of the basic

tenets of the Web in general and the Semantic Web in particular.

Open world/closed world—A consequence of the AAA slogan is that there

could always be something new that someone will say; this means that
we must assume that there is always more information that could be

known.

Nonunique naming—Since the speakers on the Web won’t necessarily coordi-
nate their naming efforts, the same entity could be known by more than

one name.

The network effect—The property of a web that makes it grow organically.

The value of joining in increases with the number of people who have
joined, resulting in a virtuous cycle of participation.

Summary 13



This page intentionally left blank



CHAPTER

2Semantic Modeling

What would you call a world in which any number of people can speak, when

you never know who has something useful to say, and when someone new

might come along at any time and make a valuable but unexpected contribu-

tion? What if just about everyone had the same goal of advancing the collabora-

tive state of knowledge of the group, but there was little agreement (at first,

anyway) about how to achieve it?

If your answer is “That sounds like the Semantic Web!” you are right (and

you must have read Chapter 1). If your answer is “It sounds like any large group
trying to understand a complex phenomenon,” you are even more right. The

jungle that is the Semantic Web is not a new thing; this sort of chaos has existed

since people first tried to make sense of the world around them.

What intellectual tools have been successful in helping people sort through

this sort of tangle? Any number of analytical tools has been developed over the

years, but they all have one thing in common: They help people understand

their world by forming an abstract description that hides certain details while

illuminating others. These abstractions are called models, and they can take
many forms.

How do models help people assemble their knowledge? Models assist in

three essential ways:

1. Models help people communicate. A model describes the situation in a
particular way that other people can understand.

2. Models explain and make predictions. A model relates primitive phe-

nomena to one another and to more complex phenomena, providing
explanations and predictions about the world.

3. Models mediate among multiple viewpoints. No two people agree

completely onwhat they want to know about a phenomenon; models repre-

sent their commonalities while allowing them to explore their differences.

The Semantic Web standards have been created not only as a medium in which

people can collaborate by sharing information but also as a medium in which 15



people can collaborate on models. Models that they can use to organize the

information that they share. Models that they can use to advance the common

collection of knowledge.

How can a model help us find our way through the mess that is the Web?

How do these three features help? The first feature, human communication,

allows people to collaborate on their understanding. If someone else has faced

the same challenge that you face today, perhaps you can learn from their expe-

rience and apply it to yours. There are a number of examples of this in the Web
today, of newsgroups, mailing lists, and wikis where people can ask questions

and get answers. In the case in which the information needs are fairly uniform,

it is not uncommon for a community or a company to assemble a set of “Fre-

quently Asked Questions,” or FAQs, that gather the appropriate knowledge as

answers to these questions. As the number of questions becomes unmanage-

able, it is not uncommon to group them by topic, by task, by affected subsys-

tem, and so forth. This sort of activity, by which information is organized for

the purpose of sharing, is the simplest and most common kind of modeling,
with the sole aim of helping a group of people collaborate in their effort to sort

through a complex set of knowledge.

The second feature, explanation and prediction, helps individuals make their

own judgments based on information they receive. FAQs are useful when there

is a single authority that can give clear answers to a question, as is the case for

technical assistance for using some appliance or service. But in more interpre-

tive situations, someone might want or need to draw a conclusion for them-

selves. In such a situation, a simple answer as given in a FAQ is not sufficient.
Politics is a common example from everyday life. Politicians in debate do not tell

people how to vote, but they try to convince them to vote in one way or

another. Part of that convincing is done by explaining their position and allow-

ing the individual to evaluate whether that explanation holds true to their own

beliefs about the world. They also typically make predictions: If we follow this

course of action, then a particular outcome will follow. Of course, a lot more

goes into political persuasion than the argument, but explanation and predic-

tion are key elements of a persuasive argument.
Finally, the third feature, mediation of multiple viewpoints, is essential to fos-

tering understanding in a web environment. As the web of opinions and facts

grows, many people will say things that disagree slightly or even outright contra-

dict what others are saying. Anyone who wants to make their way through this

will have to be able to sort out different opinions, representing what they have

in common as well as the ways in which they differ. This is one of the most

essential organizing principles of a large, heterogeneous knowledge set, and it

is one of the major contributions that modeling makes to helping people orga-
nize what they know.

Astrologers and the IAU agree on the planethood of Mercury, Venus, Earth,

Mars, Jupiter, Saturn, Uranus, and Neptune. The IAU also agrees with astrologers

that Pluto is a planet, but it disagrees by calling it a dwarf planet. Astrologers (or
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classical astronomers) do not accept the concept of dwarf planets, so they are not in

agreementwith the IAU,which categorizes UB313 andCeres as such. Amodel for the

Semantic Web must be able to organize this sort of variation, and much more, in a

meaningful and manageable way.

MODELING FOR HUMAN COMMUNICATION

Models used for human communication have a great advantage over models that
are intended for use by computers; they can take advantage of the human capac-

ity to interpret signs to give them meaning. This means that communication

models can be written in a wide variety of forms, including plain language or

ad hoc images. A model can be explained by one person, amended by another,

interpreted by a third person, and so on. Models written in natural language

have been used in all manner of intellectual life, including science, religion,

government, and mathematics.

But this advantage is a double-edged sword; when we leave it to humans to
interpret the meaning of a model, we open the door for all manner of abuse,

both intentional and unintentional. Legislation provides a good example of this.

A governing body like a parliament or a legislature enacts laws that are intended

to mediate rights and responsibilities between various parties. Legislation typi-

cally sets up some sort of model of a situation, perhaps involving money (e.g.,

interest caps, taxes); access rights (who can view what information, how can

information be legally protected); personal freedom (how freely can one travel

across borders, when does the government have the right to restrict a person’s
movements); or even the structure of government itself (who can vote and how

are those votes counted, how can government officials be removed from office).

These models are painstakingly written in natural language and agreed on

through an elaborate process (which is also typically modeled in natural

language).

It is well known to anyone with even a passing interest in politics that good

legislation is not an easy task and that crafting the words carefully for a law or

statute is very important. The same flexibility of interpretation that makes natu-
ral language models so flexible also makes it difficult to control how the laws

will be interpreted in the future. When someone else reads the text, they will

have their own background and their own interests that will influence how they

interpret any particular model. This phenomenon is so widespread that most

government systems include a process (usually involving a court magistrate

and possibly a committee of citizens) whereby disputes over the interpretation

of a law or its applicability can be resolved.

When a model relies on particulars of the context of its reader for interpre-
tation of its meaning, as is the case in legislation, we say that a model is infor-

mal. That is, the model lacks a formalism whereby the meaning of terms in

the model can be uniquely defined.
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In the document web today, there are informal models that help people com-

municate about the organization of the information. It is common for commerce

websites to organize their wares in catalogs with category names like “web-

cams,” “Oxford shirts,” and “Granola.” In such cases, the communication is pri-

marily one-way; the catalogue designer wants to communicate to the buyers

the information that will help them find what they want to buy. The interpreta-

tion of these words is up to the buyers. The effectiveness of such a model is

measured by the degree to which this is successful. If enough people interpret
the categories in a way similar enough to the intent of the cataloguer, then they

will find what they want to buy. There will be the occasional discrepancy like

“Why wasn’t that item listed as a webcam?” or “That’s not granola, that’s just

plain cereal!” But as long as the interpretation is close enough, the model is

successful.

A more collaborative style of document modeling comes in the form of com-

munity tagging. A number of websites have been successful by allowing users to

provide meaningful symbolic descriptions of their content in the form of tags.
A tag in this sense is simply a single word or short phrase that describes

some aspect of the content. Examples of tagging systems include Flickr for

photos and del.icio.us for Web bookmarks. The idea of community tagging is

that each individual who provides content will describe it using tags of their

own choosing. If any two people use the same tag, this becomes a common

organizing entity; anyone who is browsing for content can access information

from both contributors under that tag. The tagging infrastructure shows which

tags have been used by many people. Not only does this help browsers deter-
mine what tags to use in a search, but it also helps content providers to find

commonly used tags that they might want to use to describe new content. Thus,

a tagging system will have a certain self-organizing character, whereby popular

tags become more popular and unpopular tags remain unpopular—something

like evolution by artificial selection of tags.

Tagging systems of this sort provide an informal organization to a large body

of heterogeneous information. The organization is informal in the sense that the

interpretation of the tags requires human processing in the context of the con-
sumer. Just because a tag is popular doesn’t mean that everyone is using it in the

same way. In fact, the community selection process actually selects tags that are

used in several different ways, whether they are compatible or not. As more and

more people provide content, the popular tags saturate with a wide variety of

content, making them less and less useful as discriminators for people browsing

for content. This sort of problem is inherent in information modeling systems;

since there isn’t an objective description of the meaning of a symbol outside

the context of the provider and consumer of the symbol, the communication
power of that symbol degrades as it is used in more and more contexts.

Formality of a model isn’t a black-and-white judgment; there can be degrees

of formality. This is clear in legal systems, where it is common to have several

layers of legislation, each one giving objective context for the next. A contract
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between two parties is usually governed by some regional law that provides stan-

dard definitions for terms in the contract. Regional laws are governed by national

laws, which provide constraints and definitions for their terms. National laws have

their own structure, inwhich a constitution or a body of case lawprovides a frame-

work for new decisions and legislation. Even though all these models are

expressed in natural language and fall back on human interpretation in the long

run, they can be more formal than private agreements that rely almost entirely

on the interpretation of the agreeing parties.
This layering of informal models sometimes results in a modeling style that is

reminiscent of Talmudic scholarship. The content of the Talmud includes not

only the original scripture but also interpretative comments on the scripture

by authoritative sources (classical rabbis). Their comments have gained such

respect that they are traditionally published along with the original scripture

for comment by later rabbis, whose comments in turn have become part of

the intellectual tradition. The original scripture, along with all the authoritative

comments, is collectively called the Talmud, and it is the basis of a classical
Jewish education to this day.

A similar effect happens with informal models. The original model is appro-

priate in some context, but as its use expands beyond that context, further

models are required to provide common context to explicate the shared

meaning. But if this further exposition is also informal, then there is the risk that

its meaning will not be clear, so further modeling must be done to clarify that.

This results in heavily layered models, in which the meaning of the terms is

always subject to further interpretation. It is the inherent ambiguity of natural
language at each level that makes the next layer of commentary necessary

until the degree of ambiguity is “good enough” that no more levels are needed.

When it is possible to choose words that are evocative and have considerable

agreement, this process converges much more quickly.

Human communication, as a goal for modeling, allows it to play a role in the

ongoing collection of human knowledge. The levels of communication can be

quite sophisticated, including the collection of information used to interpret

other information. In this sense, human communication is the fundamental
requirement for building a Semantic Web. It allows people to contribute to a

growing body of knowledge and then draw from it. But communication is not

enough; to empower a web of human knowledge, the information in a model

needs to be organized in such a way that it can be useful to a wide range of

consumers.

EXPLANATION AND PREDICTION

Models are used to organize human thought in the form of explanations. When

we understand how a phenomenon results from other basic principles, we gain

a number of advantages. Not least is the feeling of confidence that we have
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actually understood it; people often claim to “have a grasp on” or “have their

head around” an idea when they finally understand it. Explanation plays a major

role in this sort of understanding. Explanation also assists in memory; it is easier

to remember that putting a lid on a flaming pot can quench the flame if

one knows the explanation that fire requires air to burn. Most important for

the context of the Semantic Web, explanation makes it easier to reuse a model

in whole or in part; an explanation relates a conclusion to more basic prin-

ciples. Understanding how a pot lid quenches a fire can help one understand
how a candle snuffer works. Explanation is the key to understanding when a

model is applicable and when it is not.

Closely related to this aspect of a model is the idea of prediction. When a

model provides an adequate explanation of a phenomenon, it can also be used

to make predictions. This aspect of models is what makes their use central to

the scientific method, where falsification of predictions made by models forms

the basis of the methodology of inquiry.

Explanation and prediction typically require models with a good deal more
formality than is usually required for human communication. An explanation

relates a phenomenon to “first principles”; these principles, and the rules by

which they are related, do not depend on interpretation by the consumer but

instead are in some objective form that stands outside the communication. Such

an objective form, and the rules that govern how it works, is called a formalism.

Formal models are the bread and butter of mathematical modeling, in which

very specific rules for calculation and symbol manipulation govern the structure

of a mathematical model and the valid ways in which one item can refer to
another. Explanations come in the form of proofs, in which steps from premises

(stated in some formalism) to conclusions are made according to strict rules of

transformation for the formalism. Formal models are used in many human intel-

lectual endeavors, wherever precision and objectivity are required.

Formalisms can also be used for predictions. Given a description of a situa-

tion in some formalism, the same rules that govern transformations in proofs

can be used to make predictions. We can explain the trajectory of an object

thrown out of a window with a formal model of force, gravity, speed, and mass,
but given the initial conditions of the object thrown, we can also compute, and

thus predict, its trajectory.

Formal prediction and explanation allow us to evaluate when a model is

applicable. Furthermore, the formalism allows that evaluation to be indepen-

dent of the listener. One can dispute the result that 2 þ 2 ¼ 4 by questioning

just what the terms “2,” “4,” “þ,” and “¼” mean, but once people agree on what

they mean, they cannot (reasonably) dispute that this formula is correct.

Formal modeling therefore has a very different social dynamic than infor-
mal modeling; because there is an objective reference to the model (the for-

malism), there is no need for the layers of interpretation that result in

Talmudic modeling. Instead of layers and layers of interpretation, the buck

stops at the formalism.
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As we shall see, the Semantic Web standards include a small variety of

modeling formalisms. Because they are formalisms, modeling in the Semantic

Web need not become a process of layering interpretation on interpretation.

Also, because they are formalisms, it is possible to couch explanations in the

Semantic Web in the form of proofs and to use that proof mechanism to make

predictions. This aspect of Semantic Web models goes by the name inference,

and it will be discussed in detail in Chapter 5.

Mediating Variability

In any Web setting, variability is to be expected and even embraced. The dynam-

ics of the network effect require the ability to represent a variety of opinions.

A good model organizes those opinions so that the things that are common can

be represented together, while the things that are distinct can be represented

as well.

Let’s take the case of Pluto as an example. From 1930 until 2006, it was con-
sidered to be a planet by astronomers and astrologers alike. After the redefinition

of planet by the IAU in 2006, Pluto was no longer considered to be a planet but

more specifically a dwarf planet by the IAU and by astronomers who accept the

IAU as an authority. Astrologers, however, chose not to adopt the IAU convention,

and they continued to consider Pluto a planet. Some amateur astronomers, mostly

for nostalgic reasons, also continued to consider Pluto a planet. How can we

accommodate all of these variations of opinion on the Web?

One way to accommodate them would be to make a decision as to which
one is “preferred” and to control the Web so that only that position is sup-

ported. This is the solution that is most commonly used in corporate data cen-

ters, where a small group or even a single person acts as the database

administrator and decides what data are allowed to live in the corporate data-

base. This solution is not appropriate for the Web because it does not allow

for the AAA slogan (see Chapter 1) that leads to the network effect.

Another way to accommodate these different viewpoints would be to simply

allow each one to be represented separately, with no reference to one another
at all. It would be the responsibility of the information consumer to understand

how these things relate to one another and to make any connections as appro-

priate. This is the basis of an informal approach, and it indeed describes the

state of the document web as it is today. A Web search for Pluto will turn up a

wide array of articles, in which some call it a planet (e.g., astrological ones or

astronomical ones that have not been updated), some call it a dwarf planet

(IAU official websites), and some that are still debating the issue. The only

way a reader can come to understand what is common among these things—
the notion of a planet, of the solar system, or even of Pluto itself—is through

reader interpretation.

How can a model help sort this out? How can a model describe what is

common about the astrological notion of a planet, the twentieth-century
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astronomical notion of a planet, and the post-2006 notion of a planet? The

model must also allow for each of these differing viewpoints to be expressed.

Variation and Classes

This problem is not a new one; it is a well-known problem in software engi-

neering. When a software component is designed, it has to provide certain

functionality, determined by information given to it at runtime. There is a
trade-off in such a design; the component can be made to operate in a wide

variety of circumstances, but it will require a complex input to describe just

how it should behave at any one time. Or the system could be designed to

work with very simple input but be useful in only a small number of very spe-

cific situations. The design of a software component inherently involves a

model of the commonality and variability in the environment in which it is

expected to be deployed. In response to this challenge, software methodology

has developed the art of object modeling (in the context of Object-Oriented
Programming, or OOP) as a means of organizing commonality and variability

in software components.

One of the primary organizing tools in OOP is the notion of a hierarchy of

classes and subclasses. Classes high up in the hierarchy represent functionality

that is common to a large number of components; classes farther down in a

hierarchy represent more specific functionality. Commonality and variability in

the functionality of a set of software components is represented in a class

hierarchy.
The Semantic Web standards also use this idea of class hierarchy for repre-

senting commonality and variability. Since the Semantic Web, unlike OOP, is

not focused on software representation, classes are not defined in terms of

behaviors of functions. But the notion of classes and subclasses remains, and

it plays much the same role. High-level classes represent commonality among

a large variety of entities, whereas lower-level classes represent commonality

among a small, specific set of things.

Let’s take Pluto as an example. The 2006 IAU definition of planet is quite
specific in requiring these three criteria for a celestial body to be considered a

planet:

1. It is in orbit around the sun.
2. It has sufficient mass to be nearly round.

3. It has cleared the neighborhood around its orbit.

The IAU goes further to state that a dwarf planet is a body that satisfies condi-

tions 1 and 2 (and not 3); a body that satisfies only condition 1 is a small solar

system body (SSSB). These definitions make a number of things clear: The clas-

ses SSSB, dwarf planet, and planet are all mutually exclusive; no body is a mem-

ber of any two classes. However, there is something that all of them have in

common: They all are in orbit around the sun.
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Twentieth-century astronomy and astrology are not quite as organized as

this; they don’t have such rigorous definitions of the word planet. So how can

we relate these notions to the twenty-first-century notion of planet?

The first thing we need is a way to talk about the various uses of the word

planet: the IAU use, the astrological use, and the twentieth-century astronomical

use. This seems like a simple requirement, but until it is met, we can’t even talk
about the relationship among these terms. We will see details of the Semantic

Web solution to this issue in Chapter 3, but for now, we will simply prefix each

term with a short abbreviation of its source—for example, use IAU:Planet for

the IAU use of the word, horo:Planet for the astrological use, and astro:Planet

for the twentieth-century astronomical use.

The solution begins by noticing what it is that all three notions of planet

have in common; in this case, it is that the body orbits the sun. Thus, we can

define a class of the things that orbit the sun, which we may as well call solar
system body, or SSB for short. All three notions are subclasses of this notion.

This can be depicted graphically as in Figure 2-1.

We can go further in this modeling when we observe that there are only

eight IAU:Planets, and each one is also a horo:Planet and an astro:Planet.

Thus, we can say that IAU:Planet is a subclass of both horo:Planet and

astro:Planet, as shown in Figure 2-2. We can continue in this way, describing

the relationships among all the concepts we have mentioned so far: IAU:dwarf

planet and IAU:SSSB. As we go down the tree, each class refers to a more restric-
tive set of entities. In this way, we can model the commonality among entities

(at the high level) while respecting their variation (at a low level).

Variation and Layers

Classes and subclasses are a fine way to organize variation when there is a sim-

ple, known relationship between the modeled entities and it is possible to deter-

mine a clear ordering of classes that describes these relationships. In a Web
setting, however, this usually is not the case. Each contributor can have some-

thing new to say that may fit in with previous statements in a wide variety of

ways. How can we accommodate variation of sources if we can’t structure the

entities they are describing into a class model?

SSB

astro:Planet horo:Planet IAU:Planet

FIGURE 2-1

Subclass diagram for different notions of planet.
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The Semantic Web provides an elegant solution to this problem. The basic

idea is that any model can be built up from contributions from multiple sources.
One way of thinking about this is to consider a model to be described in layers.

Each layer comes from a different source. The entire model is the combination

of all the layers, viewed as a single, unified whole.

Let’s have a look at how this could work in the case of Pluto. Figure 2-3 illus-

trates how different communities could assert varying information about Pluto.

In part (a) of the figure, we see some information about Pluto that is common

among astrologers—namely, that Pluto signifies rebirth and regeneration and

that the preferred symbol for referring to Pluto is the glyph indicated. Part (b)
shows some information that is of concern to astronomers, including the com-

position of the body Pluto and their preferred symbol. How can this variation

be accommodated in a web of information? The simplest way is to simply merge

the two models into a single one that includes all the information from each

model, as shown in part (c).

Merging models in this way is a conceptually simple thing to do, but how

does it cope with variability? In the first place, it copes in the simplest way

possible: It allows the astrologers and the astronomers to both have their say
about Pluto (remember the AAA slogan!). For any party that is interested in

both of these things (perhaps someone looking for a spiritual significance for

elements?), the information can be viewed as a single, unified whole.

But merging models in this way has a drawback as well. In Figure 2-3(c),

there are two distinct glyphs, each claiming to be the “preferred” symbol for

Pluto. This brings up issues of consistency of viewpoints. On the face of it, this

appears to be an inconsistency because, from its name, we might expect that

there can be exactly one preferred symbol (prefSymbol) for any body. But
how can a machine know that? For a machine, the name prefSymbol can’t be

treated any differently from any other label—for instance, madeOf or signifies.

In such a context, how can we even tell that this is an inconsistency? After all,

SSB

astro:Planethoro:Planet

IAU:Planet

FIGURE 2-2

More detailed relationships between various notions of planet.
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NitrogenprefSymbol

prefSymbol
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Pluto

signifies
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madeOf
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Regeneration

Rebirth Methane

Nitrogen

(a)

(b)

(C)

FIGURE 2-3

Layers of modeled information about Pluto.
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we don’t think it is an inconsistency that Pluto can be composed of more than

one chemical compound or that it can signify more than one spiritual theme.

Do we have to describe this in a natural language commentary on the model?

Detailed answers to questions like these are exactly the reason why we

need to publish models on the Semantic Web. When two (or more!) view-

points come together in a web of knowledge, there will typically be overlap,

disagreement, and confusion before there is synergy, cooperation, and col-

laboration. If the infrastructure of the Web is to help us to find our way
through the wild stage of information sharing, an informal notion of how

things fit together, or should fit together, will not suffice. It is easy enough

to say that we have an intuition that states there is something special about

prefSymbol that makes it different from madeOf or signifies. If we can inform

our infrastructure about this distinction in a sufficiently formal way, then it

can, for instance, detect discrepancies of this sort and, in some cases, even

resolve them.

This is the essence of modeling in the Semantic Web: providing an infrastruc-
ture where not only can anyone say anything about any topic but the infrastruc-

ture can help a community work through the resulting chaos. A model can

provide a framework (like classes and subclasses) for representing and organiz-

ing commonality and variability of viewpoints when they are known. But in

advance of such an organization, a model can provide a framework for describ-

ing what sorts of things we can say about something. We might not agree on the

symbol for Pluto, but we can agree that it should have just one preferred

symbol.

Expressivity in Modeling

There is a trade-off when we model, and although anyone can say anything

about any topic, not everyone will want to say certain things. There are those

who are interested in saying details about individual entities, like the preferred

symbol for Pluto or the themes in life that it signifies. Others (like that IAU) are

interested in talking about categories, what belongs in a category, and how you
can tell the difference. Still others (like lexicographers, information architects,

and librarians) want to talk about the rules for specifying information, such as

whether there can be more than one preferred label for any entity. All of these

people have contributions to make to the web of knowledge, but the kinds of

contributions they make are very different, and they need different tools. This

difference is one of level of expressivity.

The idea of different levels of expressivity is as well known in the history of

collaborative human knowledge as modeling itself. Take as an example the
development of models of a water molecule, as shown in Figure 2-4. In part

(a), we see a model of the water molecule in terms of the elements that make

up the molecule and how many of each is present—namely, two hydrogen

atoms and one oxygen atom. This model expresses important information about
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the molecule, it and can be used to answer a number of basic questions about

water, such as calculating the mass of the molecule (given the masses of its com-

ponent atoms) and what components would have to be present to be able to

construct water from constituent parts.

In Figure 2-4(b), we see a model with more expressivity. Not only does this

model identify the components of water and their proportions, but it also shows

how they are connected in the chemical structure of the molecule. The oxygen
molecule is connected to each of the hydrogen molecules, which are not

(directly) connected to one another at all. This model is somewhat more expres-

sive than the model in part (a); it can answer further questions about the mole-

cule. From (b), it is clear that when the water molecule breaks down into

smaller molecules, it can break into single hydrogen atoms (H) or into oxygen-

hydrogen ions (OH) but not into double-hydrogen atoms (H2) without some

recombination of components after the initial decomposition.

Finally, the model shown in Figure 2-4(c) is more expressive still in that it
shows not only the chemical structure of the molecule but also the physical

structure. The fact that the oxygen atom is somewhat larger than the hydrogen

atoms is shown in this model. Even the angle between the two hydrogen atoms

as bound to the oxygen atom is shown. This information is useful for working

out the geometry of combinations of water molecules, as is the case, for

instance, in the crystalline structure of ice.

Just because one model is more expressive than another does not make it

superior; different expressive modeling frameworks are different tools for differ-
ent purposes. The chemical formula for water is simpler to determine than the

more expressive, but more complex, models, and it is useful for resolving a wide

variety of questions about chemistry. In fact, most chemistry textbooks go for

quite a while working only from the chemical formulas without having to resort

to more structural models until the course covers advanced topics.

The Semantic Web provides a number of modeling languages that differ in

their level of expressivity; that is, they constitute different tools that allow differ-

ent people to express different sorts of information. In the rest of this book, we
will cover these modeling languages in detail. The Semantic Web standards are

organized so that each language level builds on the one before so the languages

themselves are layered. The following are the languages of the Semantic Web

from least expressive to most expressive.

H2O OH
(a) (b)

(c)

H
H H

O

FIGURE 2-4

Different expressivity of models of a water molecule.
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RDF—The Resource Description Framework. This is the basic framework that

the rest of the Semantic Web is based on. RDF provides a mechanism for

allowing anyone to make a basic statement about anything and layering

these statements into a single model. Figure 2-3 shows the basic capability

of merging models in RDF. RDF has been a recommendation from the W3C
since 2003.

RDFS—The RDF Schema language. RDFS is a language with the expressivity to

describe the basic notions of commonality and variability familiar from
object languages and other class systems—namely classes, subclasses,

and properties. Figures 2-1and 2-2 illustrated the capabilities of RDFS.

RDFS has been a W3C recommendation since 2003.

RDFS-Plus. RDFS-Plus is a subset of OWL that is more expressive than RDFS but
without the complexity of OWL. There is no standard in progress for

RDFS-Plus, but there is a growing awareness that something between

RDFS and OWL could be industrially relevant. We have selected a particular

subset of OWL functionality to present the capabilities of OWL incremen-

tally. RDFS-Plus includes enough expressivity to describe how certain prop-

erties can be used and how they relate to one another. RDFS-Plus is

expressive enough to show the utility of certain constructs beyond RDFS,

but it lacks the complexity that makes OWL daunting to many beginning
modelers. The issue of uniqueness of the preferred symbol is an example

of the expressivity of RDFS-Plus.

OWL. OWL brings the expressivity of logic to the Semantic Web. It allows mode-
lers to express detailed constraints between classes, entities, and properties.

OWL was adopted as a recommendation by the W3C in 2003.

SUMMARY

The Semantic Web, just like the document web that preceded it, is based on some

radical notions of information sharing. These ideas—the AAA slogan, the open
world assumption, and nonunique naming—provide for an environment in which

information sharing can thrive and a network effect of knowledge synergy is pos-

sible. But this style of information gathering creates a chaotic landscape rife with

confusion, disagreement and conflict. How can the infrastructure of theWeb sup-

port the development from this chaotic state to one characterized by information

sharing, cooperation and collaboration?

The answer to this question lies in modeling. Modeling is the process of

organizing information for community use. Modeling supports this in three ways:
It provides a framework for human communication, it provides a means for

explaining conclusions, and it provides a structure for managing varying view-

points. In the context of the Semantic Web, modeling is an ongoing process.
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At any point in time, some knowledgewill bewell structured and understood, and

these structures can be represented in the Semantic Web modeling language. At

the same time, other knowledge will still be in the chaotic, discordant stage,

where everyone is expressing himself differently. And typically, as different people

provide their own opinions about any topic under the sun, the Web will simulta-

neously contain organized and unorganized knowledge about the very same topic.

Themodeling activity is the activity of distilling communal knowledge out of a cha-

otic mess of information.
The next several chapters of the book introduce each of the modeling lan-

guages of the Semantic Web and illustrate how they approach the challenges

of modeling in a Semantic Web context. For each modeling language—RDF,

RDFS and OWL—we will describe the technical details of how the language

works, with specific examples “in the wild” of the standard in use.

Fundamental Concepts

The following fundamental concepts were introduced in this chapter.

Modeling—Making sense of unorganized information.

Formality/Informality—The degree to which the meaning of a modeling lan-

guage is given independent of the particular speaker or audience.

Commonality and Variability—A fundamental aspect of the Semantic Web

that a model can represent.

Expressivity—The ability of a modeling language to describe certain aspects

of the world. More expressive modeling language can express a wider vari-

ety of statements about the model. Modeling languages of the Semantic

Web—RDF, RDFS, and OWL—differ in their levels of expressivity.
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CHAPTER

3RDF—The Basis of the
Semantic Web

When we speak of the “semantics” of a programming language, we usually refer

to the mapping from the language syntax to some formalism that expresses the

“meaning” of that language. For programming languages, this could be an

abstract machine or a specification in some operational calculus. When we

speak of “semantics” of natural language, we often refer to something about

what it means to understand the utterance—how to go from the structured let-

ters or sounds in a language to some kind of meaning behind them.

Perhaps the most primitive part of this notion of semantics is a repres-
entation of the linkage of a term in a statement to the entity in the world that

the term refers to. This primitive notion of semantics—as referential seman-

tics—is the one that motivates the Semantic Web. While the study of symbols

or “signs” and their relationship to the world they represent has been studied

extensively as the field of semiotics, this book (and the Semantic Web) is about

modeling as a craft, rather than a semiotic exploration of the nature of model-

ing. That is, given that symbols can refer to things in the world, how can we

build models from those symbols that help us to capture, understand, and
communicate what we know about relationships between those things?

The Web that we are accustomed to is made up of documents that are linked

to one another. Any connection between a document and the thing(s) in the

world it describes is made only by the person who reads the document. There

could be a link from a document about Shakespeare to a document about Strat-

ford-on-Avon, but there is no notion of an entity that is Shakespeare or linking it

to the thing that is Stratford.

In the Semantic Web we refer to the things in the world as resources; a resource
can be anything that someone might want to talk about. Shakespeare, Stratford, “the

value of X,” and “all the cows in Texas” are all examples of things someonemight talk

about and that can be resources in the Semantic Web. This is admittedly a pretty odd

use of the word resource, but alternatives like entity or thing,which might be more

accurate, have their own issues. In any case, resource is thewordused in the Semantic

Web standards. In fact, the name of the base technology in the Semantic Web (RDF)

uses this word in an essential way. RDF stands for Resource Description Framework. 31



In a web of information, anyone can contribute to our knowledge about a

resource. It was this aspect of the current Web that allowed it to grow at such

an unprecedented rate. To implement the Semantic Web, we need a model of

data that allows information to be distributed over the Web.

DISTRIBUTING DATA ACROSS THE WEB

Data are most often represented in tabular form, in which each row represents
some item we are describing and each column represents some property of

those items. The cells in the table are the particular values for those properties.

Table 3-1 shows a sample of some data about works completed around the time

of Shakespeare.

Let’s consider a few different strategies for how this data could be

distributed over the Web. In all of these strategies, some part of the data will

be represented on one computer, while other parts will be represented on

another. Figure 3-1 shows one strategy for distributing information over many
machines. Each networked machine is responsible for maintaining the informa-

tion about one or more complete rows from the table. Any query about an

entity can be answered by the machine that stores its corresponding row. One

machine is responsible for information about “Sonnet 78” and Edward II,

whereas another is responsible for information about As You Like It.

This distribution solution provides considerable flexibility, since the

machines can share the load of representing information about several indivi-

duals. But because it is a distributed representation of data, it requires some
coordination between the servers. In particular, each server must share informa-

tion about the columns. Does the second column on one server correspond to

Table 3-1 Tabular Data about Elizabethan Literature and Music

ID Title Author Medium Year

1 As You Like It Shakespeare Play 1599

2 Hamlet Shakespeare Play 1604

3 Othello Shakespeare Play 1603

4 “Sonnet 78” Shakespeare Poem 1609

5 Astrophil and Stella Sir Phillip Sidney Poem 1590

6 Edward II Christopher Marlowe Play 1592

7 Hero and Leander Christopher Marlowe Poem 1593

8 Greensleeves Henry VIII Rex Song 1525
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the same information as the second column on another server? This is not an

insurmountable problem, and, in fact, it is a fundamental problem of data distri-

bution. There must be some agreed-on coordination between the servers. In this

example, the servers must be able to, in a global way, indicate which property

each column corresponds to.

Figure 3-2 shows another strategy, in which each server is responsible for
one or more complete columns from the original table. In this example, one

server is responsible for the publication dates and medium, and another server

is responsible for titles. This solution is flexible in a different way from the solu-

tion of Figure 3-1. The solution in Figure 3-2 allows each machine to be respon-

sible for one kind of information. If we are not interested in the dates of

publication, we needn’t consider information from that server. If we want to

specify something new about the entities (say, how many pages long the manu-

script is), we can add a new server with that information without disrupting the
others.

This solution is similar to the solution in Figure 3-1 in that it requires some

coordination between the servers. In this case, the coordination has to do with

the identities of the entities to be described. How do I know that row 3 on one

server refers to the same entity as row 3 on another server? This solution

requires a global identifier for the entities being described.

The strategy outlined in Figure 3-3 is a combination of the previous two stra-

tegies, in which information is neither distributed row by row nor column by
column but instead is distributed cell by cell. Each machine is responsible for

some number of cells in the table. This system combines the flexibility of both

1599PlayShakespeareAs You Like It1

Needs common schema—which
column is which?   

Edward II6 1592

1609

Play

Poem

Christopher Marlowe

ShakespeareSonnet 784

1603

1593
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Poem

Shakespeare

Christopher Marlowe

Othello

Hero and Leander

3

7

FIGURE 3-1

Distributing data across the Web, row by row.
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Distributing data across the Web, column by column.
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of the previous strategies. Two servers can share the description of a single

entity (in the figure, the year and title of Hamlet are stored separately), and they

can share the use of a particular property (in Figure 3-3, the Mediums of rows 6

and 7 are represented on different servers).

This flexibility is required if we want our data distribution system to really

support the AAA slogan that “Anyone can say Anything about Any topic.”

If we take the AAA slogan seriously, any server needs to be able to make a state-

ment about any entity (as is the case in Figure 3-2), but also any server needs to
be able to specify any property of an entity (as is the case in Figure 3-1). The

solution in Figure 3-3 has both of these benefits.

But this solution also combines the costs of the other two strategies. Not only

do we now need a global reference for the column headings, but we also need a

global reference for the rows. In fact, each cell has to be represented with three

values: a global reference for the row, a global reference for the column, and the

value in the cell itself. This third strategy is the strategy taken by RDF. We will

see how RDF resolves the issue of global reference later in this chapter, but for
now, we will focus on how a table cell is represented and managed in RDF.

Since a cell is represented with three values, the basic building block for RDF

is called the triple. The identifier for the row is called the subject of the triple

(following the notion from elementary grammar, since the subject is the thing

that a statement is about). The identifier for the column is called the predicate

of the triple (since columns specify properties of the entities in the rows). The

value in the cell is called the object of the triple. Table 3-2 shows the triples in

Figure 3-3 as subject, predicate, and object.
Triples becomemore interesting when more than one triple refers to the same

entity, such as in Table 3-3. When more than one triple refers to the same thing,

sometimes it is convenient to view the triples as a directed graph in which

each triple is an edge from its subject to its object, with the predicate as the label

on the edge, as shown in Figure 3-4. The graph visualization in Figure 3-4 expresses

the same information presented in Table 3-3, but everything we know about

Shakespeare (either as subject or object) is displayed at a single node.

Table 3-2 Sample Triples

Subject Predicate Object

Row 7 Medium Poem

Row 2 Title Hamlet

Row 2 Year 1604

Row 4 Author Shakespeare

Row 6 Medium Play
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MERGING DATA FROM MULTIPLE SOURCES

We started off describing RDF as a way to distribute data over several sources.

But when we want to use that data, we will need to merge those sources back

together again. One value of the triples representation is the ease with which

this kind of merger can be accomplished. Since information is represented sim-

ply as triples, merged information from two graphs is as simple as forming the
graph of all of the triples from each individual graph, taken together. Let’s see

how this is accomplished in RDF.

Suppose that we had another source of information that was relevant to our

example from Table 3-3—that is, a list of plays that Shakespeare wrote or a list of

parts of the United Kingdom. These would be represented as triples as in

Table 3-4. Each of these can also be shown as a graph, just as in the original

table, as shown in Figure 3-5.

Table 3-3 Sample Triples

Subject Predicate Object

Shakespeare Wrote King Lear

Shakespeare Wrote Macbeth

Anne Hathaway Married Shakespeare

Shakespeare Lived In Stratford

Stratford Is in England

Macbeth Set in Scotland

England Part of The UK

Scotland Part of The UK

AnneHathaway
wrote

wrote

KingLear

Macbeth

livedIn

isIn

setIn

Stratford England

Scotland

partOf

partOf

UK
married

Shakespeare

FIGURE 3-4

Graph display of triples from Table 3-3. Eight triples appear as eight labeled edges.
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What happens when we merge together the information from these three

sources? We simply get the graph of all the triples that show up in Figures 3-4

and 3-5. Merging graphs like those in Figure 3-4 and Figure 3-5 to create a com-

bined graph like the one shown in Figure 3-6 is a straightforward process—but

only when it is known which nodes in each of the source graphs match.

NAMESPACES, URIS, AND IDENTITY

The essence of the merge comes down to answering the question “When is a

node in one graph the same node as a node in another graph?” In RDF, this issue

is resolved through the use of Uniform Resource Identifiers (URIS).

In the figures so far, we have labeled the nodes and edges in the graphs with

simple names like Shakespeare or Wales. On the Semantic Web, this is not

sufficient information to determine whether two nodes are really the same.
Why not? Isn’t there just one thing in the universe that everyone agrees refers

to as Shakespeare? When referring to agreement on the Web, never say, “every-

one.” Somewhere, someone will refer not to the historical Shakespeare but to

the title character of the feature film Shakespeare in Love, which bears very

little resemblance to the historical figure. And “Shakespeare” is one of the more

stable concepts to appear on the Web; consider the range of referents for a

name like “Washington” or “Bordeaux.” To merge graphs in a Semantic Web

setting, we have to be more specific: In what sense do we mean the word
Shakespeare?

RDF borrows its solution to this problem from foundational Web technol-

ogy—in particular, the URI. The syntax and format of a URI is familiar even to

Table 3-4 Triples about Shakespeare’s Plays

Subject Predicate Object

Shakespeare Wrote As You Like It

Shakespeare Wrote Henry V

Shakespeare Wrote Love’s Labours Lost

Shakespeare Wrote Measure for Measure

Shakespeare Wrote Twelfth Night

Shakespeare Wrote The Winter’s Tale

Shakespeare Wrote Hamlet

Shakespeare Wrote Othello

etc.
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casual users of the Web today because of the special, but typical, case of the

URL—for example, http://www.WorkingOntologist.org/Examples/Chapter3/

Shakespeare.owl#Shakespeare. But the significance of the URI as a global iden-

tifier for a Web resource is often not appreciated. A URI provides a global

(a)

(b)
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FIGURE 3-5

Graphic representation of triples describing Shakespeare’s plays and parts of the United

Kingdom.
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identification for a resource that is common across the Web. If two agents on

the Web want to refer to the same resource, recommended practice on the

Web is for them to agree to a common URI for that resource. This is not a stipu-

lation that is particular to the Semantic Web but to the Web in general; global
naming leads to global network effects.

URIs and URLs look exactly the same, and in fact, a URL is just a special

case of the URI. Why does the Web have both of these ideas? Simplifying some-

what, the URI is an identifier with global (i.e., “World Wide” in the “World

Wide Web” sense) scope. Any two Web applications in the world can refer

to the same thing by referencing the same URI. But the syntax of the URI

makes it possible to “dereference” it—that is, to use all the information in
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Combined graph of all triples about Shakespeare and the United Kingdom.
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the URI (which specifies things like server name, protocol, port number, file

name, etc.) to locate a file (or a location in a file) on the Web.1 This dereferen-

cing succeeds if all these parts work; the protocol locates the specified ser-

ver running on the specified port and so on. When this is the case, we can

say that the URI is not just a URI, but it also is a URL. From the point of

view of modeling, the distinction is not important. But from the point of

view of having a model on the Semantic Web, the fact that a URI can poten-

tially be dereferenced allows the models to participate in a global Web
infrastructure.

RDF applies the notion of the URI to resolve the identity problem in graph

merging. The application is quite simple: A node from one graph is merged

with a node from another graph—exactly, if they have the same URI. On

the one hand, this may seem disingenuous, “solving” the problem of node

identity by relying on another standard to solve it. On the other hand, since

issues of identity appear in the Web in general and not just in the Semantic

Web, it would be foolish not to use the same strategy to resolve the issue in
both cases.

Expressing URIs in Print

URIs work very well for expressing identity on the World Wide Web, but they

are typically a bit of a pain to write out in detail when expressing models,

especially in print. So for the examples in this book, we use a simplified version

of a URI abbreviation scheme called qnames. In its simplest form, a URI

expressed as a qname has two parts: a namespace and an identifier, written with

a colon between. So the qname representation for the identifier England in the

namespace geo is simply geo:England. The RDF/XML standard includes
elaborate rules that allow programmers to map namespaces to other URI

representations (such as the familiar http://notation). For the examples in this

book, we will use the simple qname form for all URIs. It is important, however,

to note that qnames are not global identifiers on the Web, but only fully

qualified URIs (e.g., http://www.WorkingOntologist.org/Examples/Chapter3/

Shakespeare.owl#Shakespeare) are global Web names. Thus, any represen-

tation of a qname must, in principle, be accompanied by a declaration of the

namespace correspondence.
It is customary on the Web in general and part of the XML specification to

insist that URIs contain no embedded spaces. For example, an identifier “part

of” is typically not used in the web. Instead, we follow the InterCap convention

(sometimes called CamelCase), whereby names that are made up of multiple

1We are primarily discussing files here, but a URI can refer to other resources. The Wikipedia

article on URIs includes more than 50 different resource types that can be referenced by

URIs—see http://en.wikipedia.org/wiki/URI_scheme.

40 CHAPTER 3 RDF—The Basis of the Semantic Web



words are transformed into identifiers without spaces by capitalizing each word.

Thus, “part of” becomes partOf, “Great Britain” becomes GreatBritain, “Mea-

sure for Measure” becomes MeasureForMeasure, and so on.

There is no limitation on the use of multiple namespaces in a single

source of data, or even in a single triple. Selection of namespaces is entirely

unrestricted as far as the data model and standards are concerned. It is

common practice, however, to refer to related identifiers in a single name-

space. For instance, all of the literary or geographical information from
Table 3-4 or Table 3-5 would be placed into one namespace per table, with

a suggestive name—say, lit or geo—respectively. Strictly speaking, these

names correspond to fully qualified URIs—example, lit stands for http://

www.WorkingOntologist.com/Examples/Chapter3/Shakespeare.owl#, and

geo stands for http://www.WorkingOntologist.com/Examples/Chapter3/

geography.owl#.

For the purposes of explaining modeling on the Semantic Web, the detailed

URIs behind the qnames are not important, so for the most part, we will omit
these bindings from now on. In many examples, we will take this notion of abbre-

viation one step further; in the cases when we use a single namespace through-

out one example, we will assume there is a default namespace declaration that

allows us to refer to URIs simply with a symbolic name preceded by a colon (:),

such as :Shakespeare, :JamesDean, :Researcher.

Using qnames, our triple sets now look as shown in Tables 3-6. and 3-7.

Compare Table 3-6 with Table 3-4, and compare Table 3-7 with Table 3-5.

But it isn’t always that simple; some triples will have to use identifiers with
different namespaces, as in the example in Table 3-8, which was taken from

Table 3-3.

In Table 3-8, we introduced a new namespace, bio:, without specifying the

actual URI to which it corresponds. For this model to participate on the Web,

this information must be filled in. But from the point of view of modeling, this

Table 3-5 Triples about the Parts of the United
Kingdom

Subject Predicate Object

Scotland part Of The UK

England part Of The UK

Wales part Of The UK

Northern Ireland part Of The UK

Channel Islands part Of The UK

Isle of Man part Of The UK
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Table 3-6 Plays of Shakespeare with qnames

Subject Predicate Object

lit:Shakespeare lit:wrote lit:AsYouLikeIt

lit:Shakespeare lit:wrote lit:HenryV

lit:Shakespeare lit:wrote lit:LovesLaboursLost

lit:Shakespeare lit:wrote lit:MeasureForMeasure

lit:Shakespeare lit:wrote lit:TwelfthNight

lit:Shakespeare lit:wrote lit:WintersTale

lit:Shakespeare lit:wrote lit:Hamlet

lit:Shakespeare lit:wrote lit:Othello

etc.

Table 3-7 Geographical Information as qnames

Subject Predicate Object

geo:Scotland geo:partOf geo:UK

geo:England geo:partOf geo:UK

geo:Wales geo:partOf geo:UK

geo:NorthernIreland geo:partOf geo:UK

geo:ChannelIslands geo:partOf geo:UK

geo:IsleOfMan geo:partOf geo:UK

Table 3-8 TriplesReferring toURIswith a Variety ofNamespaces

Subject Predicate Object

lit:Shakespeare lit:wrote lit:KingLear

lit:Shakespeare lit:wrote lit:MacBeth

bio:AnneHathaway bio:married lit:Shakespeare

bio:AnneHathaway bio:livedWith lit:Shakespeare

lit:Shakespeare bio:livedIn geo:Stratford

geo:Stratford geo:isIn geo:England

geo:England geo:partOf geo:UK

geo:Scotland geo:partOf geo:UK
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detail is unimportant. For the rest of this book, we will assume that the prefixes

of all qnames are defined, even if that definition has not been specified explicitly

in print.

Standard Namespaces

Using the URI as a standard for global identifiers allows for a worldwide

reference for any symbol. This means that we can tell when any two people

anywhere in the world are referring to the same thing.

This property of the URI provides a simple way for a standards organization

(like the W3C) to specify the meaning of certain terms in the standard. As we

will see in coming chapters, the W3C standards provide definitions for terms

such as type, subClassOf, Class, inverseOf, and so forth. But these standards
are intended to apply globally across the Semantic Web, so the standards refer

to these reserved words in the same way as they refer to any other resource

on the Semantic Web, as URIs.

The W3C has defined a number of standard namespaces for use with

Web technologies, including xsd: for XML schema definition; xmlns: for

XML namespaces; and so on. The Semantic Web is handled in exactly the

same way, with namespace definitions for the major layers of the Seman-

tic Web. Following standard practice with the W3C, we will use qnames
to refer to these terms, using the following definitions for the standard

namespaces.

rdf : Indicates identifiers used in RDF. The set of identifiers defined in the stan-

dard is quite small and is used to define types and properties in RDF. The

global URI for the rdf namespace is http://www.w3.org/1999/02/22-rdf-

syntax-ns#.

rdfs: Indicates identifiers used for the RDF Schema language, RDFS. The scope

and semantics of the symbols in this namespace are the topics of future

chapters. The global URI for the rdfs namespace is http://www.w3.org/

2000/01/rdf-schema#.

owl: Indicates identifiers used for the Web Ontology Language, OWL. The scope

and semantics of the symbols in this namespace are the topics of future
chapters. The global URI for the owl namespace is http://www.w3.org/

2002/07/owl#.

These URIs provide a good example of the interaction between a

URI and a URL. For modeling purposes, any URI in one of these
namespaces (e.g., http://www.w3.org/2000/01/rdf-schema#subClassOf, or
rdfs:subClassOf for short) refers to a particular term that the W3C makes

some statements about in the RDFS standard. But the term can also be derefer-

enced—that is, if we look at the server www.w3.org, there is a page at the
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location 2000/01/rdf-schema with an entry about subClassOf, giving supple-

mental information about this resource. From the point of view of model-

ing, it is not necessary that it be possible to dereference this URI, but

from the point of view of Web integration, it is critical that it is.

IDENTIFIERS IN THE RDF NAMESPACE

The RDF data model specifies the notion of triples and the idea of merging sets

of triples as just shown. With the introduction of namespaces, RDF uses the
infrastructure of the Web to represent agreements on how to refer to a particu-

lar entity. The RDF standard itself takes advantage of the namespace infrastruc-

ture to define a small number of standard identifiers in a namespace defined

in the standard, a namespace called rdf.

rdf:type is a property that provides an elementary typing system in RDF.

For example, we can express the relationship between several playwrights

using type information, as shown in Table 3-9. The subject of rdf:type in these

triples can be any identifier, and the object is understood to be a type. There is
no restriction on the usage of rdf:type with types; types can have types ad

infinitum, as shown in Table 3-10.

Table 3-9 Using rdf:type to Describe Playwrights

Subject Predicate Object

lit:Shakespeare rdf:type lit:Playwright

lit:Ibsen rdf:type lit:Playwright

lit:Simon rdf:type lit:Playwright

lit:Miller rdf:type lit:Playwright

lit:Marlowe rdf:type lit:Playwright

lit:Wilder rdf:type lit:Playwright

Table 3-10 Defining Types of Names

Subject Predicate Object

lit:Playwright rdf:type bus:Profession

bus:Profession rdf:type hr:Compensation
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When we read a triple out loud (or just to ourselves), it is under-

standably tempting to read it (in English, anyway) in subject/predicate/

object order so that the first triple in Table 3-9 would read, “Shakespeare

type Playwright.” Unfortunately, this is pretty fractured syntax no

matter how you inflect it. It would be better to have something like

“Shakespeare has type Playwright” or maybe “The type of Shakespeare is
Playwright.”

This issue really has to do with the choice of name for the rdf:type

resource; if it had been called rdf:isInstanceOf instead, it would have been

much easier to read out loud in English. But since we never have control over

how other entities (in this case, the W3C) chose their names, we don’t have

the luxury of changing these names. When we read out loud, we just have to

take some liberties in adding in connecting words. So this triple can be pro-

nounced, “Shakespeare [has] type Playwright,” adding in the “has”
(or sometimes, the word “is” works better) to make the sentence into somewhat

correct English.

rdf:Property is an identifier that is used as a type in RDF to indicate when

another identifier is to be used as a predicate rather than as a subject or an

object. We can declare all the identifiers we have used as predicates so far in this

chapter as shown in Table 3-11.

CHALLENGE: RDF AND TABULAR DATA

We began this chapter by motivating RDF as a way to distribute data over the

Web—in particular, tabular data. Now that we have all of the detailed mechan-

isms of RDF (including namespaces and triples) in place, we can revisit tabular

data and show how to represent it consistently in RDF.

Table 3-11 rdf:Property Assertions for Tables 3-5 to 3-8

Subject Predicate Object

lit:wrote rdf:type rdf:Property

geo:partOf rdf:type rdf:Property

bio:married rdf:type rdf:Property

bio:livedIn rdf:type rdf:Property

bio:livedWith rdf:type rdf:Property

geo:isIn rdf:type rdf:Property
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Challenge 1 Given a table from a relational database, describing products, suppliers,

and stocking information about the products (see Table 3-12), produce an
RDF graph that reflects the content of Table 3-12 in such a way that the

information intent is preserved but the data are now amenable for RDF

operations like merging and RDF query.

SOLUTION

Each row in the table describes a single entity, all of the same type. That

type is given by the name of the table itself, Product. We know certain

information about each of these items, based on the columns in the table
itself, such as the model number, the division, and so on. We want to

represent this data in RDF.

Since each row represents a distinct entity, each row will have a distinct

URI. Fortunately, the need for unique identifiers is just as present in the

database as it is in the Semantic Web, so there is a (locally) unique identifier

Table 3-12 Sample Tabular Data for Triples

Product

ID
Model
Number Division

Product
Line

Manufacture
Location SKU Available

1 ZX-3 Manufacturing

support

Paper

machine

Sacramento FB3524 23

2 ZX-3P Manufacturing

support

Paper

machine

Sacramento KD5243 4

3 ZX-3S Manufacturing

support

Paper

machine

Sacramento IL4028 34

4 B-1430 Control

Engineering

Feedback

line

Elizabeth KS4520 23

5 B-1430X Control

Engineering

Feedback

line

Elizabeth CL5934 14

6 B-1431 Control

Engineering

Active

sensor

Seoul KK3945 0

7 DBB-12 Accessories Monitor Hong Kong ND5520 100

8 SP-1234 Safety Safety valve Cleveland HI4554 4

9 SPX-1234 Safety Safety valve Cleveland OP5333 14
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available—namely, the primary table key, in this case the column called ID.

For the Semantic Web, we need a globally unique identifier. The simplest way

to form such an identifier is by having a single URI for the database itself

(perhaps even a URL if the database is on the Web). Use that URI as the

namespace for all the identifiers in the database. Since this is a database for

a manufacturing company, let’s call that namespace mfg:.

Then we can create an identifier for each line by concatenating the

table name “Product” with the unique key and expressing this identifier in
the mfg: namespace, resulting in identifiers mfg:Product1, mfg:Product2,

and so on.

Each row in the table says several things about that item—namely, its model

number, its division, and so on. To represent this in RDF, each of these will be a

property that will describe the Products. But just as is the case for the unique

identifiers for the rows, we need to have global unique identifiers for these

properties. We can use the same namespace as we did for the individuals, but

since two tables could have the same column name (but they aren’t the same
properties!), we need to combine the table name and the column name.

This results in properties like mfg:Product_ModelNo, mfg:Product_Division,

and so on.

With these conventions in place, we can now express all the information

in the table as triples. There will be one triple per cell in the table—that is,

for n rows and c columns, there will be n � c triples. The data shown in

Table 3-12 has 7 columns and 9 rows, so there are 63 triples, as shown

in Table 3-13.
The triples in the table are a bit different from the triples we have seen so far.

Although the subject and predicate of these triples are RDF resources (complete

with qname namespaces!), the objects are not resources but literal data—that is,

strings, integers, and so forth. This should come as no surprise, since, after all,

RDF is a data representation system. RDF borrows from XML all the literal data

types as possible values for the object of a triple; in this case, the types of all

data are strings

or integers.
The usual interpretation of a table is that each row in the table corresponds

to one individual and that the type of these individuals corresponds to the name

of the table. In Table 3-12, each row corresponds to a Product. We can represent

this in RDF by adding one triple per row that specifies the type of the individual

described by each row, as shown in Table 3-14.

The full complement of triples from the translation of the information

in Table 3-12 is shown in Figure 3-7. The types (i.e., where the predicate

is rdf:type, and the object is the class mfg:Product) are shown as links in
the graph; triples in which the object is a literal datum are shown (for

sake of compactness in the figure) within a box labeled by their

common subject.
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Table 3-14 Triples Representing Type of Information
from Table 3-12

Subject Predicate Object

mfg:Product1 rdf:type mfg:Product

mfg:Product2 rdf:type mfg:Product

mfg:Product3 rdf:type mfg:Product

mfg:Product4 rdf:type mfg:Product

mfg:Product5 rdf:type mfg:Product

mfg:Product6 rdf:type mfg:Product

mfg:Product7 rdf:type mfg:Product

mfg:Product8 rdf:type mfg:Product

mfg:Product9 rdf:type mfg:Product

Table 3-13 Triples Representing Some of the Data in Table 3-12

Subject Predicate Object

mfg:Product1 mfg:Product_ID 1

mfg:Product1 mfg:Product_ModelNo ZX-3

mfg:Product1 mfg:Product_Division Manufacturing support

mfg:Product1 mfg:Product_Product_Line Paper machine

mfg:Product1 mfg:Product_Manufacture_Location Sacramento

mfg:Product1 mfg:Product_SKU FB3524

mfg:Product1 mfg:Proudct_Available 23

mfg:Product2 mfg:Product_ID 2

mfg:Product2 mfg:Product_ModelNo ZX-3P

mfg:Product2 mfg:Product_Division Manufacturing support

mfg:Product2 mfg:Product_Product_Line Paper machine

mfg:Product2 mfg:Product_Manufacture_Location Sacramento

mfg:Product2 mfg:Product_SKU KD5243

mfg:Product2 mfg:Product_Available 4. . .
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HIGHER-ORDER RELATIONSHIPS

It is not unusual for someone who is building a model in RDF for the first

time to feel a bit limited by the simple subject/predicate/object form of

the RDF triple. They don’t want to just say that Shakespeare wrote Hamlet,

but they want to qualify this statement and say that Shakespeare wrote

Hamlet in 1604 or that Wikipedia states that Shakespeare wrote Hamlet

in 1604. In general, these are cases in which it is, or at least seems, desirable

to make a statement about another statement. This process is called

reification.

Product3

Product6

Product9

Product8

Product2

Product1
Available = 23
Division = Manufacturing suppor...
ManufactureLocation = Sacramento
ModelNo = ZX-3
ProductLine = Paper machine
SKU = FB3524

Available = 34
Division = Manufacturing suppor...
ManufactureLocation = Sacramento
ModelNo = ZX-3S
ProductLine = Paper machine
SKU = IL4028

Available = 4
Division = Manufacturing suppor...
ManufactureLocation = Sacramento
ModelNo = ZX-3P
ProductLine = Paper machine
SKU = KD5243

Available = 4
Division = Safety
ManufactureLocation =
Cleveland
ModelNo = SP-1234
ProductLine = Safety Valve
SKU = HI4554

Available = 14
Division = Safety
ManufactureLocation = Cleveland
ModelNo = SPX-1234
ProductLine = Safety Valve
SKU = OP5333

Available = 100
Division = Accessories
ManufactureLocation = Hong Kong
ModelNo = DBB-12
ProductLine = Monitor
SKU = ND5520

Available = 23
Division = Control Engineering
ManufactureLocation = Elizabeth
ModelNo = B-1430
ProductLine = Feedback Line
SKU = KS4520

Available = 14
Division = Control Engineering
ManufactureLocation = Elizabeth
ModelNo = B-1430X
ProductLine = Feedback Line
SKU = CL5934

Available = 0
Division = Control
Engineering
ManufactureLocation = Seoul
ModelNo = B-1431
ProductLine = Active Sensor
SKU = KK3945

Product4

Product7

Product5

Product

FIGURE 3-7

Graphical version of the tabular data from Table 3-12.
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Reification is not a problem specific to Semantic Web modeling; the same

issue arises in other data modeling contexts like relational databases and

object systems. In fact, one approach to reification in the Semantic Web is

to simply borrow the standard solution that is commonly used in relational

database schemas, using the conventional mapping from relational tables

to RDF given in the preceding challenge. In a relational database table, it is

possible to simply create a table with more columns to add additional

information about a triple. So the statement Shakespeare wrote Hamlet is

expressed (as in Table 3-1) in a single row of a table, where there is a column

for the author of a work and another column for its title. Any further informa-

tion about this event is done with another column (again, just as in Table 3-1).

When this is converted to RDF according to the example in the Challenge,

the row is represented by a number of triples, one triple per column in the

database. The subject of all of these triples is the same: a single resource that

corresponds to the row in the table.

An example of this can be seen in Table 3-13, where several triples

have the same subject and one triple apiece for each column in the table.

This approach to reification has a strong pedigree in relational modeling,

and it has worked well for a wide range of modeling applications. It can

be applied in RDF even when the data have not been imported from

tabular form. That is, the statement Shakespeare wrote Hamlet in 1601

(disagreeing with the statement in Table 3-2) can be expressed with these

three triples:

bio: n1 bio:author lit:Shakespeare;
bio:title "Hamlet";
bio:publicationDate 1601.

This approach works well for examples like Shakespeare wrote Hamlet in

1601, in which we want to express more information about some event or

statement. It doesn’t work so well in cases like Wikipedia says Shakespeare

wrote Hamlet, in which we are expressing information about the statement

itself, Shakespeare wrote Hamlet. This kind of metadata about statements often

takes the form of provenance (information about the source of a statement, as in

this example), likelihood (expressed in some quantitative form like probability,
such as It is 90 percent probable that Shakespeare wrote Hamlet), context (spe-

cific information about a project setting in which a statement holds, such as

Kenneth Branagh played Hamlet in the movie), or time frame (Hamlet plays

on Broadway January 11 through March 12). In such cases, it is useful to

explicitly make a statement about a statement. This process, called explicit

reification, is supported by the W3C RDF standard with three resources called

rdf:subject, rdf:predicate, and rdf:object.

Let’s take the example of Wikipedia says Shakespeare wrote Hamlet. Using
the RDF standard, we can refer to a triple as follows:
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q:n1 rdf:subject lit:Shakespeare ;
rdf:predicate lit:wrote ;
rdf:object lit:Hamlet .

Then we can express the relation of Wikipedia to this statement as follows:

web:Wikipedia m:says q:n1 .

Notice that just because we have asserted the reification triples about q:n1, it is

not necessarily the case that we have also asserted the triple itself:

lit:Shakespeare lit:wrote lit:Hamlet .

This is as it should be; after all, if an application does not trust information

from Wikipedia, then it should not behave as though that triple has been
asserted. An application that does trust Wikipedia will want to behave as though

it had.

ALTERNATIVES FOR SERIALIZATION

So far, we have expressed RDF triples in subject/predicate/object tabular form
or as graphs of boxes and arrows. Although these are simple and apparent forms

to display triples, they aren’t always the most compact forms, or even the most

human-friendly form, to see the relations between entities.

The issue of representing RDF in text doesn’t only arise in books and docu-

ments about RDF; it also arises when we want to publish data in RDF on the

Web. In response to this need, there are multiple ways of expressing RDF in

textual form.

N-Triples

The simplest form is call N-Triples and corresponds most directly to the raw

RDF triples. It refers to resources using their fully unabbreviated URIs. Each
URI is written between angle brackets (< and >). Three resources are expressed

in subject/predicate/object order, followed by a period (.). For example, if the

namespace mfg corresponds to http://www.WorkingOntologist.org/

Examples/Chapter3Manufacture.rdf#, then the first triple from Table 3-14 is

written in ntriples as follows:

<http://www.WorkingOntologist.org/Examples/Chapter3Manufacture.rdf#Product1>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.WorkingOntologist.org/Examples/Chapter3Manufacture.rdf#Product>
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It is fortunate that the ntriples serialization allows new lines between resources;

only the period at the end indicates the end of a triple. Otherwise, it would

often be difficult to fit a triple onto a single line!

Notation 3 RDF (N3)

In this book, we use a more compact serialization of RDF called Notation 3 RDF

(or N3 for short), developed by Tim Berners-Lee. N3 combines the apparent dis-

play of triples from ntriples with the terseness of qnames. We will introduce N3

in this section and describe just the subset required for the current examples.

We will describe more of the language as needed for later examples. For a full
description of N3, see Chapter 2.

Since N3 uses qnames, there must be a binding between the (local) qnames

and the (global) URIs. Hence, N3 begins with a preamble in which these

bindings are defined; for example, we can define the qnames needed in the

Challenge example with the following preamble:

@prefix mfg:
<http://www.WorkingOntologist.com/Examples/Chapter3/

Manufacturing.rdf#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Once the local qnames have been defined, N3 provides a very simple

way to express a triple by listing three resources, using qname abbrevia-

tions, in subject/predicate/object order, followed by a period, such as the

following:

mfg:Product1 rdf:type mfg:Product .

It is quite common (especially after importing tabular data) to have several
triples that share a common subject. N3 provides for a compact representation

of such data. It begins with the first triple in subject/predicate/object order, as

before; but instead of terminating with a period, it uses a semicolon (;) to indi-

cate that another triple with the same subject follows. For that triple, only

the predicate and object need to be specified (since it is the same subject

from before). The information in Tables 3-13 and 3-14 about Product1 and

Product2 appears in N3 as follows:

mfg:Product1 rdf:type mfg:Product;
mfg:Product_Division "Manufacturing support";
mfg:Product_ID "1";
mfg:Product_Manufacture_Location "Sacramento";
mfg:Product_ModelNo "ZX-3";
mfg:Product_Product_Line "Paper Machine";
mfg:Product_SKU "FB3524";
mfg:Product_Available "23."
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mfg:Product2 rdf:type mfg:Product;
mfg:Product_Division "Manufacturing support";
mfg:Product_ID "2";
mfg:Product_Manufacture_Location "Sacramento";
mfg:Product_ModelNo "ZX-3P";
mfg:Product_Product_Line "Paper Machine";
mfg:Product_SKU "KD5243";
mfg:Product_Available "4."

When there are several triples that share both subject and predicate, N3 pro-

vides a compact way to express this as well so that neither the subject nor

the predicate needs to be repeated. N3 uses a comma (,) to separate the objects.

So the fact that Shakespeare had three children named Susanna, Judith and

Hamnet can be expressed as follows:

lit:Shakespeare b:hasChild b:Susanna , b:Judith , b:Hamnet .

There are actually three triples represented here—namely:

lit:Shakespeare b:hasChild b:Susanna .
lit:Shakespeare b:hasChild b:Judith .
lit:Shakespeare b:hasChild b:Hamnet .

N3 provides some abbreviations to improve terseness and readability; in this book,

we use just a few of these. One of most widely used abbreviation is to use the word

a to mean “rdf:type.” The motivation for this is that in common speech, we are

likely to say, “Product1 is a Product” or “Shakespeare is a playwright” for the triples,

mfg:Product1 rdf:type mfg:Product .
lit:Shakespeare rdf:type lit:Playwright .

respectively. Thus we will usually write instead:

mfg:Product1 a mfg:Product .
lit:Shakespeare a lit:Playwright.

RDF/XML

While N3 is convenient for human consumption and is more compact for the

printed page, many Web infrastructures are accustomed to representing infor-

mation in HTML or, more generally, XML. For this reason, the W3C has recom-

mended the use of an XML serialization of RDF called RDF/XML. The
information about Product1 and Product2 just shown looks as follows in RDF/

XML. In this example, the subjects (Product1 and Product2) are referenced

using the XML attribute rdf:about; the triples with each of these as subjects

appear as subelements within these definitions. The complete details of the

RDF/XML syntax are beyond the scope of this discussion and can be found in

http://www.w3.org/TR/rdf-syntax-grammar/.
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<rdf:RDF

xmlns:mfg¼"http://www.WorkingOntologist.com/Examples/Chap-
ter3/Manufacturing.rdf#"

xmlns:rdf¼"http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<mfg:Product

rdf:about¼"http://www.WorkingOntologist.com/Examples/Chap-
ter3/Manufacturing.rdf#Product1">

<mfg:Available>23</mfg:Available>
<mfg:Division>Manufacturing support</mfg:Division>
<mfg:ProductLine>Paper machine</mfg:ProductLine>
<mfg:SKU>FB3524</mfg:SKU>
<mfg:ModelNo>ZX-3</mfg:ModelNo>
<mfg:ManufactureLocation>Sacramento</mfg:Manufacture
Location>
</mfg:Product>
<mfg:Product

rdf:about¼"http://www.WorkingOntologist.com/Examples/Chap-
ter3/Manufacturing.rdf#Product2">

<mfg:SKU>KD5243</mfg:SKU>
<mfg:Division>Manufacturing support</mfg:Division>
<mfg:ManufactureLocation>Sacramento</mfg:Manufacture
Location>
<mfg:Available>4</mfg:Available>
<mfg:ModelNo>ZX-3P</mfg:ModelNo>
<mfg:ProductLine>Paper machine</mfg:ProductLine>
</mfg:Product>

</rdf:RDF>

The same information is contained in the RDF/XML form as in the N3,

including the declarations of the qnames for mfg: and rdf:. RDF/XML includes

a number of rules for determining the fully qualified URI of a resource men-

tioned in an RDF/XML document. These details are quite involved and will
not be used for the examples in this book.

BLANK NODES

So far, we have described how RDF can represent sets of triples, in which each sub-

ject, predicate, andobject is either a resource or (in the case of the object of a triple) a

literal data value. Each resource is given an identity according to theWeb standard for

identity, the URI. RDF also allows for resources that do not have any Web identity at

all. But whywouldwewant to represent a resource that has no identity on theWeb?

Sometimes we know that something exists, and we even know some things

about it, but we don’t know its identity. For instance, suppose we want to
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represent the fact that Shakespeare had a mistress, whose identity remains

unknown. But we know a few things about her; she was a woman, she lived

in England, and she was the inspiration for “Sonnet 78.”

It is simple enough to express these statements in RDF, but we need an iden-

tifier for the mistress. In N3, we could express them as follows:

lit:Mistress1 rdf:type bio:Woman;
bio:LivedIn geo:England .

lit:Sonnet78 lit:hasInspiration lit:Mistress1 .

But if we don’t want to have an identifier for the mistress, how can we proceed?

RDF allows for a “blank node,” or bnode for short, for such a situation. If we

were to indicate a bnode with a ?, the triples would look as follows:

? rdf:type bio:Woman;
bio:livedIn geo:England .

lit:Sonnet78 lit:hasInspiration ? .

The use of the bnode in RDF can essentially be interpreted as a logical state-

ment, “there exists.” That is, in these statements we assert “there exists a

woman, who lived in England, who was the inspiration for ‘Sonnet78.’”

But this notation (which does not constitute a valid N3 expression) has

a problem: If there is more than one blank node, how do we know which “?”
references which node? For this reason, N3 instead includes a compact and

unambiguous notation for describing blank nodes. A blank node is indicated

by putting all the triples of which it is a subject between square brackets

([ and ]) so:

[ rdf:type bio:Woman;
bio:livedIn England ]

It is customary, though not required, to leave blank space after the opening

bracket to indicate that we are acting as if there were a subject for these triples,

even though none is specified.

We can refer to this blank node in other triples by including the entire brack-

eted sequence in place of the blank node. Furthermore, the abbreviation of “a”

for rdf:type is particularly useful in this context. Thus, our entire statement

about the mistress who inspired “Sonnet 78” looks as follows in N3:

lit:Sonnet78 lit:hasInspiration [ a :Woman;
bio:livedIn :England] .

This expression of RDF can be read almost directly as plain English: that is,

“Sonnet78 has [as] inspiration a Woman [who] lived in England.” The identity

of the woman is indeterminate. The use of the bracket notation for blank

nodes will become particularly important when we come to describe

OWL, the Web Ontology Language, since it makes very particular use of
bnodes.
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Ordered Information in RDF

The children of Shakespeare appear in a certain order on the printed page, but

from the point of viewof RDF, they are in no order at all; there are just three triples,

one describing the relationship between Shakespeare and each of his children.

What if we did want to specify an ordering. How would we do it in RDF?

RDF provides a facility for ordering elements in a list format. An ordered list

can be expressed quite easily in N3 as follows:

lit:Shakespeare b:hasChild (b:Susanna b:Judith b:Hamnet) .

This translates into the following triples, where _:a, _:b, and _:c are bnodes:

lit:Shakespeare b:hasChild _:a .
_:a rdf:first b:Susanna .
_:a rdf:rest _:b .
_:b rdf:first b:Judith .
_:b rdf:rest _:c .
_:c rdf:rest rdf:nil .
_:c rdf:first b:Hamnet .

This rendition preserves the ordering of the objects but at a cost of considerable

complexity of representation. Fortunately, the N3 representation is quite com-

pact, so it is not usually necessary to remember the details of the RDF triples

behind it.

SUMMARY

RDF is, first and foremost, a system for modeling data. It gives up in compact-

ness what it gains in flexibility. Every relationship between any two data ele-

ments is explicitly represented, allowing for a very simple model of merging

data. There is no need to arrange the columns of tables so that they “match

up” or to worry about data “missing” from a particular column. A relationship
(expressed in a familiar form of subject/predicate/object) is either present or

it is not. Merging data is thus reduced to a simple matter of considering all such

statements from all sources, together in a single place.

The only challenge that remains in such a system is the challenge of identity.

How do we have a global notation for the identity of any entity? Fortunately, this

problem is not unique to the RDF data model. The infrastructure of the Web

itself has the same issue and has a standard solution: the URI. RDF borrows this

solution.
Since RDF is a Web language, a fundamental consideration is the distribution

of information from multiple sources, across the Web. On the Web, the AAA slo-

gan holds: Anyone can say Anything about Any topic. RDF supports this slogan

by allowing any data source to refer to resources in any namespace. Even a sin-

gle triple can refer to resources in multiple namespaces.
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As a data model, RDF provides a clear specification of what has to happen to

merge information from multiple sources. It does not provide algorithms or

technology to implement those processes. These technologies are the topic of

the next chapter.

Fundamental Concepts

The following fundamental concepts were introduced in this chapter.

RDF (Resource Description Framework)—This distributes data on the Web.

Triple—The fundamental data structure of RDF. A triple is made up of a subject,

predicate, and object.

Graph—A nodes-and-links structural view of RDF data.

Merging—The process of treating two graphs as if they were one.

URI (Uniform Resource Indicator)—A generalization of the URL (Uniform

Resource Locator), which is the global name on the Web.

namespace—A set of names that belongs to a single authority. Namespaces

allow different agents to use the same word in different ways.

qname—An abbreviated version of a URI, it is made up of a namespace identi-

fier and a name, separated by a colon.

rdf:type—The relationship between an instance and its type.

rdf:Property—The type of any property in RDF.

Reification—The practice of making a statement about another statement. It is

done in RDF using rdf:subject, rdf:predicate, and rdf:object.

N-triples, N3, RDF/XML—The serialization syntaxes for RDF.

Blank nodes—RDF nodes that have no URI and thus cannot be referenced

globally. They are used to stand in for anonymous entities.
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CHAPTER

4Semantic Web
Application Architecture

So far, we have seen how RDF can represent data in a distributed way across the

Web. As such, it forms the basis for the Semantic Web, a web of data in which

Anyone can say Anything about Any topic. The focus of this book is modeling

on the Semantic Web: describing and defining distributed data in such a way

that the data can be brought back together in a useful and meaningful way.

In a book about only modeling, one could say that there is no room for a dis-

cussion of system architecture—the components of a computer system that

can actually use these models in useful applications. But this book is for the
working ontologist who builds models so that they can be used. But used for

what? These models are used to build some application that takes advantage

of information distributed over the Web. In short, to put the Semantic Web to

work, we need to describe, at least at a high level, the structure of a Semantic

Web application—in particular, the components that comprise it, the kinds of

inputs it gets (and from where), how it takes advantage of RDF, and why this

is different from other application architectures.

Many of the components of a Semantic Web application are provided both as
supported products by companies specializing in Semantic Web technology or

by free software under a variety of licenses. New software is being developed

both by research groups as well as product companies on an ongoing basis.

We do not describe any particular tools in this chapter, but rather we discuss

the types of components that make up a Semantic Web deployment and how

they fit together.

RDF Parser/Serializer We have already seen a number of serializations of

RDF, including the W3C standard serialization in XML. An RDF parser

reads text in one (or more) of these formats and interprets it as triples

in the RDF data model. An RDF serializer does the reverse; it takes a

set of triples and creates a file that expresses that content in one of the

serialization forms.

RDF Store We have seen how RDF distributes data in the form of triples. An

RDF store (sometimes called a triple store) is a database that is tuned for 59



storing and retrieving data in the form of triples. In addition to the familiar

functions of any database, an RDF store has the additional ability to merge

information from multiple data sources, as defined by the RDF standard.

RDF Query Engine Closely related to the RDF store is the RDF Query engine.

The query engine provides the capability to retrieve information from an

RDF store according to structured queries.

Application An application has some work that it performs with the data it

processes: analysis, user interaction, archiving, and so forth. These capabil-

ities are accomplished using some programming language that accesses

the RDF store via queries (processed with the RDF query engine).

Most of these components have corresponding components in a familiar rela-

tional data-backed application. The relational database itself corresponds to

the RDF store in that it stores the data. The database includes a query language

that corresponds to the query engine for accessing this data. In both cases, the

application itself is written using a general-purpose programming language
that makes queries and processes their results. The parser/serializer has no

direct counterpart in a relational data-backed system, at least as far as stan-

dards go. There is no standard serialization of a relational database that will

allow it to be imported into a competing relational database system without

a change of semantics. (This is a key advantage of RDF stores over traditional

data stores.)

In the following sections, we examine each of these capabilities in detail.

Since new products in each of these categories are being developed on an ongo-
ing basis, we describe them generically and do not refer to specific products.

RDF PARSER/SERIALIZER

How does an RDF-based system get started? Where do the triples come from?

There are a number of possible answers for this, but the simplest one is to find

them directly on the web.
At the time of this writing, Google was able to find millions of files with the

extension .rdf. Any of these could be a source of data for an RDF application.

But these files are useless unless we have a program that can read them. That

program is an RDF parser. RDF parsers take as their input a file in some RDF for-

mat. Most parsers support the standard RDF/XML format, which is compatible

with the more widespread XML standard. An RDF parser takes such a file as

input and converts it into an internal representation of the triples that are

expressed in that file. At this point, the triples are stored in the triple store
and are available for all the operations of that store.

The triples at this point could also be serialized back out, either in the same

text form or in another text form. This is done using the reverse operation of
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the parser: the serializer. It is possible to take a “round-trip” with triples using a

parser and serializer; if you serialize a set of triples, then you parse the resulting

string with a corresponding parser (e.g., an N3 parser for an N3 serialization),

and the result is the same set of triples that the process began with. Notice that

this is not necessarily true if you start with a text file that represents some tri-

ples. Even in a single format, there can be many distinct files that represent

the same set of triples. Thus, it is not, in general, possible to read in an RDF file,

export it again, and be certain that the resulting file will be identical (character
by character) to the input file.

Other Data Sources—Converters and Scrapers

Parsers and serializers based on the standard representations of RDF are useful

for the systematic processing and archiving of data in RDF. While there is consid-

erable data available in these formats, even more data are not already available in

RDF. Fortunately, for many common data formats (e.g., tabular data), it is quite
easy to convert these formats into RDF triples.

We already saw how tabular data can be mapped into triples in a natural way.

This approach can be applied to relational databases or spreadsheets. Tools to

perform a conversion based on this mapping, though not strictly speaking par-

sers, play the same role as a parser in a semantic solution: They connect the tri-

ple store with sources of information in the form of triples. Most RDF systems

include a table input converter of some sort. Some tools specifically target rela-

tional databases, including appropriate treatment of foreign key references,
whereas others work more directly with spreadsheet tables. Tools of this sort

are called converters, since they typically convert information from some form

into RDF and often into a standard form of RDF like RDF/XML. This allows them

to be used with any other tools that respect the RDF/XML standard.

Another rich source of data for the Semantic Web can be found in existing

webpages—that is, in HTML pages. Such pages often include structured infor-

mation, like contact information, descriptions of events, product descriptions,

publications, and so on. This information can be combined in novel ways on
the Semantic Web once it is available in RDF. There are two different approaches

to the problem of using HTML sources for RDF data. The first approach assumes

that the original author of the HTML document might have no interest in or

knowledge of RDF and the Semantic Web, and will create content accordingly.

This means that no annotations correspond to predicates and no special struc-

ture of the HTML makes it especially “RDF-ready.” The second approach assumes

that the content author is willing to put in a bit of effort to mark up the content

in such a way that in addition to its use for display as HTML, it can also include
information that allows the data to be interpreted also as RDF.

Not surprisingly, the first approach received the most attention, especially as

the Semantic Web began the bootstrapping process of gathering enough RDF

data to begin the network effect. Legacy data had been represented in HTML
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before anyone knew anything about RDF. How could that information be made

available to the Semantic Web as RDF triples?

The most “hands-off” approach to this problem is to use a program called a

scraper. A scraper is a program that reads a source that was intended for human

reading, typically an HTML page, and produces from it an RDF representation of

that data. The name scraper was inspired by the image of “scraping” useful

information from a complex display like a webpage.

Scraper technology is continuing to develop. We will illustrate the basics with
an early scraper system called Solvent, which has been developed as part of

the Simile project at MIT. Solvent provides a user interface for highlighting

selected parts of awebpage and translating the content into RDF. Figure 4-1 shows

FIGURE 4-1

Example of the Solvent interface working with the Los Angeles Metro webpage.

62 CHAPTER 4 Semantic Web Application Architecture



Solvent at work on a webpage from the Los Angeles Metro Rail site. Solvent

is implemented as a Firefox plug-in, and it appears as an extra panel at the bottom

of the Firefox window. Solvent provides the basic functions of a scraper. First, it

allows the user to select an item on thewebpage; in the figure, the user has selected

the name and address of one station. The scraper then highlights all the items

on the page that it determines to be “the same kind” of item; in this case, we see

that Solvent has highlighted all the addresses of stations on the page in yellow.

The scraper then provides a way for the user to describe the selected data; in
this example, the user specifies that “Allen Station” is the name of the first

item and that the next two lines “395 N. Allen Av., Pasadena 91106” is the

address of the item. The scraper extrapolates this information to find the name

and address of all the stations. The details of how the Solvent user interface does

this are not important; the fundamental idea is that a user specifies information

about a single item on a webpage, and the system uses that information to mark

up all the information on the page. The result is then expressed in RDF; in this

example, Solvent produces the following RDF triples:

metro:item0 rdf:type metro:Metro;
dc:title "Allen Station";
simile:address "395 N. Allen Av., Pasadena 91106".

metro:item1 rdf:type metro:Metro;
dc:title "Chinatown Station";
simile:address "901 N. Spring St., Los Angeles 90012-1862".

metro:item2 rdf:type metro:Metro;
dc:title "Del Mar Station";
simile:address "230 S. Raymond Av., Pasadena 91105-2014".
(etc.)

Scrapers differ in their user interfaces (for allowing users to specify items and

their descriptions) and the sophistication with which they determine “similar”

items on a page.
A new development in webpage deployment is a trend that goes by the

name of microformats. The idea of a microformat is that some webpage authors

might be willing to put some structured information into their webpage to

express its intended structure. To enable them to do this, a standard vocabulary

(usually embedded in HTML as special tag attributes that have no impact on

how a browser displays a page) is developed for commonly used items on a

webpage. Some of the first microformats were for business cards (including, in

the controlled vocabulary, names, positions, companies, and phone numbers)
and events (including location, start time, and end time). The growing popular-

ity of microformats indicates that at least some Web developers are willing to

put in some extra effort to encode structured information into their HTML.

The W3C has outlined a specification called GRDDL (Gleaning Resource

Descriptions from Dialects of Languages) that provides a standard way to

express a mapping from a microformat, or other structured markup, to RDF.
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GRDDL makes it possible to specify, within an HTML document, a recipe for

translating the HTML data into RDF resources. The transformations themselves

are typically written in the XML stylesheet transformation language XSLT. Exist-

ing XHTML documents can be made available to the Semantic Web simply by

marking up the preamble to the documents with a few simple references to

transformations.

The W3C is also pursuing an alternate approach for allowing HTML authors

to include semantic information in their webpages. One limitation of micro-
formats is the need to specify a controlled vocabulary and write an XSLT script

for GRDDL to use with that vocabulary. Wouldn’t it be better if, instead, some-

one (like the W3C) would simply specify a single syntax for marking up HTML

pages with RDF data? Then there would be a single processing script for all

microformats.

The W3C has proposed just such a format called RDFa. The idea behind

RDFa is quite simple: use the attribute tags in HTML to embed information that

can be parsed into RDF. Just like microformats, RDFa has no effect on how a
browser displays a page. Current versions of RDFa are somewhat difficult to

use, but better tools are being developed. It is unclear whether the microformat

approach or the RDFa approach to embedding RDF information into webpages

will dominate (or indeed, if either of them will; there really is no reason for the

webpage development industry to make a choice, and something else might

turn out to catch on better than either of them).

All of these methods that allow webpage developers to include structured

information in their webpages have two advantages over scrapers and conver-
ters. First, from the point of view of the system developer, it is easier to harvest

the RDF data from pages that were marked up with structure data extraction in

mind. But, more important, from the point of view of the content author, it

ensures that the interpretation of the information in the document, when ren-

dered as RDF, matches the intended meaning of the document. This really is

the spirit of the word semantic in the Semantic Web—that page authors be

given the capability of expressing what they mean in a webpage for a machine

to read and use.

RDF STORE

A database is a program that stores the data, making them available for future

use. An RDF data storage solution is no different; the RDF data are kept in a sys-

tem called an RDF store. It is typical for an RDF data store to be accompanied by

a parser and a serializer to populate the store and publish information from the

store, respectively. Just as is the case for conventional (e.g., relational) data

stores, an RDF store may also include a query engine, as described in the next

section. Conventional data stores are differentiated, based on a variety of perfor-
mance features, including the volume of data that can be stored, the speed with

64 CHAPTER 4 Semantic Web Application Architecture



which data can be accessed or updated, and the variety of query languages sup-

ported by the query engine. These features are equally relevant when applied to

an RDF store.

In contrast to a relational data store, an RDF store includes as a fundamental

capability the ability to merge two data sets together. Because of the flexible

nature of the RDF data model, the specification of such a merge operation is

clearly defined. Each data store represents a set of RDF triples; a merger of

two (or more) datasets is the single data set that includes all and only the triples
from the source data sets. Any resources with the same URI (regardless of the

originating data source) are considered to be equivalent in the merged data

set. Thus, in addition to the usual means of evaluating a data store, an RDF store

can be evaluated on the efficiency of the merge process.

RDF store implementations range from custom programmed database

solutions to fully supported off-the-shelf products from specialty vendors.

Conceptually, the simplest relational implementation of a triple store is as a

single table with three columns, one each for the subject, predicate, and object
of the triple. The information about the Los Angeles Metro given in Figure 4-1

would be stored as in Table 4-1.

This representation should look familiar, as it is exactly the representation

we used to introduce RDF triples in Chapter 3. Since this fits in a relational data-

base representation, it can be accessed using conventional relational database

tools such as SQL. An experienced SQL programmer would have no problem

writing a query to answer a question like “List the dc:title of every instance

of metro:Metro in the table.” As an implementation representation, it has a num-
ber of apparent problems, including the replication of information in the first

column and the difficulty of building indices around string values like URIs.

Table 4-1 Names and Addresses of Los Angeles Metro Stations

Subject Predicate Object

metro:item0 rdf:type metro:Metro

metro:item0 dc:title “Allen Station”

metro:item0 simile:address “395 N. Allen Av., Pasadena 91106

metro:item1 rdf:type metro:Metro

metro:item1 dc:title “Chinatown Station”

metro:item1 simile:address “901 N. Spring St., Los Angeles 90012–1862”

metro:item2 rdf:type metro:Metro

metro:item2 dc:title Del Mar Station

metro:item2 simile:address “230 S. Raymond Av., Pasadena 91105–2014”
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On the other hand, in situations in which SQL programming experience is plen-

tiful, this sort of representation has been used to create a custom solution in

short order.

It is not the purpose of this discussion to go into details of the possible opti-

mizations of the RDF store. These details are the topic of the particular (often

patented) solutions provided by a vendor of an off-the-shelf RDF store. In partic-

ular, the issue of building indices that work on URIs can be solved with a num-

ber of well-understood data organization algorithms. Serious providers of RDF
stores differentiate their offerings based on the scalability and efficiency of these

indexing solutions.

RDF Data Standards and Interoperability
of RDF Stores

RDF stores bear considerable similarity to relational stores, especially in terms

of how the quality of a store is evaluated. A notable distinction of RDF stores
results from the standardization of the RDF data model and RDF/XML serializa-

tion syntax. Several competing vendors of relational data stores dominate the

market today, and they have for several decades. While each of these products

is based on the same basic idea of the relational algebra for data representa-

tion, it is a difficult process to transfer a whole database from one system to

another. That is, there is no standard serialization language with which one

can completely describe a relational database in such a way that it can be auto-

matically imported into a competitor’s system. Such a task is possible, but it
typically requires a database programmer to track down the particulars of

the source database to ensure that they are represented faithfully in the target

system.

The standardization effort for RDF makes the situation very different when it

comes to RDF stores. Just as for relational stores, there are several competing

vendors and projects. In stark contrast to the situation for relational databases,

the underlying RDF data model is shared by all of these products, and, even

more specifically, all of them can import and export their data sets in the
RDF/XML format. This makes it a routine task to transfer an RDF data set—or

several RDF data sets—from one RDF store to another. This feature, which is

a result of an early and aggressive standardization process, makes it much easier

to begin with one RDF store, secure in the knowledge that the system can be

migrated to another as the need arises. It also simplifies the issue of federating

data that is housed in multiple RDF stores, possibly coming from different

vendor sources.

RDF Query Engines and SPARQL

An RDF store may be differentiated based on its performance, but it is typically

accessed using a query language. In this sense, an RDF store is similar to a
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relational database or an XML store. Not surprisingly, in the early days of RDF,

a number of different query languages were available, each supported by some

RDF-based product or open-source project. From the common features of these

query languages, the W3C has undertaken the process of standardizing an RDF

query language called SPARQL. We cover the highlights of the SPARQL query

language in this section.

While these highlights are typical of RDF query languages in general, each

query language has its own distinguishing features, some of which we expect
will be incorporated in due course into the W3C standard recommendation.

We will describe SPARQL by example, based on the following set of 19 triples,

shown here in N3 and in Figure 4-2 as a graph.
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FIGURE 4-2

Sample triples for SPARQL examples.
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lit:Shakespeare lit:wrote lit:AsYouLikeIt;
lit:wrote lit:TwelfthNight;
lit:wrote lit:KingLear;
lit:wrote lit:LovesLaboursLost;
lit:wrote lit:Hamlet;
lit:wrote lit:TheTempest;
lit:wrote lit:WintersTale;
lit:wrote lit:HenryV;
lit:wrote lit:MeasureForMeasure;
lit:wrote lit:Othello;
bio:livedIn geo:Stratford.

bio:AnneHathaway bio:married lit:Shakespeare.
geo:Stratford geo:isIn geo:England.
geo:Scotland geo:partOf geo:UK.
geo:England geo:partOf geo:UK.
geo:Wales geo:partOf geo:UK.
geo:NorthernIreland geo:partOf geo:UK.
geo:ChannelIslands geo:partOf geo:UK.
geo:IsleOfMan geo:partOf geo:UK.

The basic building block of a SPARQL query is the triple pattern. A triple pat-

tern looks just like a triple, but it can have variables in place of resources in any

of the three positions, subject, predicate, and object. Variables are indicated as

symbols preceded by the special ? character. The following are all valid triple

patterns:

?w lit:wrote lit:KingLear.
lit:Shakespeare ?r lit:KingLear.
lit:Shakespeare lit:wrote ?p.

The syntax for a triple pattern is intentionally very similar to the syntax for a tri-

ple in N3: a subject, predicate, object terminated by a period (.). Each of these

patterns can be interpreted as a question in a natural way, respectively:

n Who wrote King Lear?

n What relationship did Shakespeare have to King Lear?

n What did Shakespeare write?

A SPARQL query engine, given each of these queries and the sample graph

from Figure 4-2 as input, will determine the results shown in Table 4-2. Since a

set of RDF triples is viewed as a graph, a more interesting query is one in

which the query specifies a graph pattern. A graph pattern is specified as a

set of triple patterns, with the stipulation that any variable that appears in

two or more triple patterns must match the same resource in the graph.

In SPARQL syntax, graph patterns are given as a list of triple patterns enclosed

within braces ({ and }). The following are valid graph patterns in SPARQL:
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{?person bio:married?s.
?person lit:wrote lit:KingLear.}
{?person bio:livedIn ?place.
?place geo:isIn geo:England.
?person lit:wrote lit:KingLear.}

We can see these graph patterns as graphs in Figure 4-3. Each triple in a

graph pattern appears as an edge in the graph, just as in the case of RDF graphs.

Informally, these queries ask, “Find a person who married someone and who

also wrote King Lear” and “Find a person who lived in a place that is in England

and who also wrote King Lear.” The meaning of a graph pattern is that all the

?person ?s

lit:KingLear

lit:wrote

bio:married
?person ?place

geo:Englandlit:KingLear

bio:livedIn

geo:isInlit:wrote

(a) (b)

FIGURE 4-3

Graph patterns shown in graphical form.

Table 4-2 SPARQL Results of Various Triple Patterns

on the Sample Input

Triple Pattern SPARQL Result

?w lit:wrote lit:KingLear. ?w ¼ lit:Shakespeare

lit:Shakespeare ?r lit:KingLear. ?r ¼ lit:wrote

lit:Shakespeare lit:wrote ?p ?p ¼ lit:AsYouLikeIt

?p ¼ lit:TwelfthNight

?p ¼ lit:KingLear

?p ¼ lit:LovesLaboursLost

?p ¼ lit:Hamlet

?p ¼ lit:TheTempest

?p ¼ lit:WintersTale

?p ¼ lit:HenryV

?p ¼ lit:MeasureForMeasure

?p ¼ lit:Othello
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triple patterns must match, and every occurrence of a single variable must

match the same resource. Table 4-3 shows the results of a SPARQL query engine

for each of these graph patterns on the sample input.

The first result might seem a bit surprising; after all, Shakespeare wrote King

Lear, and he married Anne Hathaway, right? This may well be true in the history

books, but this information is not included in the sample graph. The sample

graph shows only that Anne Hathaway married Shakespeare; it has no knowl-

edge that marriage is a symmetric union and so Shakespeare must have married
Anne Hathaway. We will see how to handle this sort of situation when we study

the Web Ontology Language OWL in Chapter 7.

SPARQL also includes a facility for matching one triple OR another triple.

The syntax in SPARQL is to use the keyword UNION to specify alternative graph

patterns. We can use this facility to resolve the issue of who married whom in

the previous example.

{{{?spouse1 bio:married ?spouse2}
UNION {?spouse2 bio:married ?spouse1}}
{?spouse1 lit:wrote lit:KingLear}}

The syntax gets a bit involved, but this query searches for two spouses; one has
married the other (in either order), and the (arbitrarily determined) first spouse

happens to have written King Lear, as shown in Table 4-4.

Table 4-3 SPARQL Results of Various Graph Patterns on the

Sample Input

Graph Pattern SPARQL Result

{?person bio:married ?s .

?person lit:wrote ?lit:KingLear .}

no results

{?person bio:livedIn ?place .

?place geo:isIn geo:England .

?person lit:wrote lit:KingLear . }

?person ¼ Shakespeare

?place ¼ Stratford

Table 4-4 Graph Pattern Built on UNION and Its Results

Graph Pattern SPARQL Result

{{{?spouse1 bio:married ?spouse2}

UNION {?spouse2 bio:married ?spouse1}}

{?spouse1 lit:wrote lit:KingLear}}

?spouse1 ¼ Shakespeare

?spouse2 ¼ AnneHathaway
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In these examples, we have shown the results of our SPARQL queries as

binding lists, showing what value each variable is bound to. This mode of oper-

ation in SPARQL is called the SELECT form; that is, certain variables are selected

from the graph pattern, and all appropriate bindings for them are returned.

In the context of an RDF store, the results of the query are returned in a more

standard machine-readable form. The SPARQL standard includes the SPARQL

Query Results XML Format for this purpose.

The SELECT form in SPARQL can be thought of as converting a graph to a
table; the graph pattern matches parts of the graph, and the resulting bindings

are returned as a table of values for the corresponding variables. SPARQL also

supports another mode of operation called the CONSTRUCT form. The CONSTRUCT

form uses two graph patterns and produces a new graph built from the matches

in the input graph. Variable bindings in both graph patterns must match the

same resources in the graph.

As an example of the use of the CONSTRUCT mode, let’s consider the reifica-

tion pattern from Chapter 3, in which we represented the statement Wikipedia

says Shakespeare wrote Hamlet with these triples:

q:n1 rdf:subject lit:Shakespeare;
rdf:predicate lit:wrote;
rdf:object lit:Hamlet.

Then we can express the relation of Wikipedia to this statement as follows:

web:Wikipedia m:says q:n1.

As we noted in Chapter 3, the presence of these triples does not mean that the

triple

lit:Shakespeare lit:wrote lit:Hamlet.

is present, just as the statement Wikipedia says Shakespeare wrote Hamlet

does not necessarily mean that we believe that Shakespeare wrote Hamlet.

We can use a SPARQL construct query to pick out all of the reified statements

asserted by Wikipedia as follows:

CONSTRUCT {?s ?p ?o}
WHERE {?r rdf:subject ?s.

?r rdf:predicate ?p.
?r rdf:object ?o.
web:Wikipedia m:says ?r.}

This SPARQL query will construct the graph made up of all the statements

that Wikipedia asserts. This kind of query allows an application to process

reified statements according to whatever policy it wants to implement; an

application that trusts Wikipedia can use this query to add the Wikipedia

statements into its graph. An application that does not will refrain from using

this query.

RDF Store 71



An RDF query engine is intimately tied to the RDF store. To solve a query,

the engine relies on the indices and internal representations of the RDF store;

the more finely tuned the store is to the query engine, the better its perfor-

mance. For large-scale applications, it is preferable to have an RDF store and

query engine that retain their performance even in the face of very large data

sets. For smaller applications, other features (e.g., cost, ease of installation, plat-

form, open-source status, and built-in integration with other enterprise systems)

may dominate.
It is worth noting, however, that an information source other than a triple

store can be queried in SPARQL (or another RDF query language). In this case,

some procedural code is generally used to map the information being returned

into the form required by the SPARQL query. The use of SPARQL endpoints, as

such applications are known, is becoming increasingly common, and makes it

possible for data resources in formats other than RDF to provide information

to the Semantic Web.

Comparison to Relational Queries

In many ways, an RDF query engine is very similar to the query engine in a

relational data store: It provides a standard interface to the data and defines
a formalism by which data are viewed. A relational query language is based

on the relational algebra of joins and foreign key references. RDF query lan-

guages look more like statements in predicate calculus. Unification variables

are used to express constraints between the patterns.

A relational query describes a new data table that is formed by combining

two or more source tables. An RDF query (whether in SPARQL or another

RDF query language) can describe a new graph that is formed by describing

a subset of a source RDF graph. That graph, in turn, may be the result of
having merged together several other graphs. The inherently recursive

nature of graphs simplifies a number of detailed issues that arise in table-

based queries. For instance, an RDF query language like SPARQL has no need

for a subquery construct; the same effect can be achieved with a single

query. Similarly, there is nothing special about a “self-join” in an RDF query

language.

In the special case in which an RDF store is implemented as a single table

in a relational database, any graph pattern match in such a scenario will
constitute a self-join on that table. Some end-developers choose to work

this way in a familiar SQL environment. Oracle takes another approach to

making RDF queries accessible to SQL programmers by providing its own

RDF-based graph query language extension to its version of SQL, optimized

for graph queries. The syntax of this language is graphlike (hence more sim-

ilar to SPARQL), but it is smoothly integrated with the table/join structure

of SQL.
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APPLICATION CODE

Database applications include more than just a database and query engine; they
also include some application code, in an application environment, that per-

forms some analysis on or displays some information from the database. The

only access the application has to the database is through the query interface,

as shown in Figure 4-4.

An RDF application has a similar architecture, but it includes the RDF parser

and serializer, scrapers and converters, the RDF merge functionality, and the

RDF query engine. These capabilities interact with the application itself and

the RDF store as shown in Figure 4-5.
The application itself can take any of several forms. Most commonly, it

is written in a conventional programming language (Java, C, Python, and

PERL are popular options). In this case, the RDF capabilities are provided as

API bindings for that language. It is also common for an RDF store to pro-

vide a scripting language as part of the query system, which gives pro-

grammatic access to these capabilities in a way that is not unlike how

advanced dialects of SQL provide scripting capabilities for relational database

applications.
Regardless of the method by which the RDF store makes these functional-

ities available to the application, it is still the responsibility of the application

to use them. Here are some examples of typical RDF applications:

n Calendar integration—shows appointments from different people and
teams on a single calendar view

n Map integration—shows locations of points of interest gathered from dif-

ferent websites, spreadsheets, and databases all on a single map

n Annotation—allows a community of users to apply keywords (with URIs)

to information (tagging) for others to consult

Analytics
User Interface
…

Database

Query Engine

Application

FIGURE 4-4

Application architecture for a database application.
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n Content management—makes a single index of information resources

(documents, webpages, databases, etc.) that are available in several con-

tent stores

The application will decide what information sources need to be scraped or

converted (e.g., diary entries in XML, lists of addresses from a webpage, direc-

tory listings of content servers).

Depending on the volatility of the data, some of this process may even

happen offline (e.g., the addresses of the Metro stations in Los Angeles are

not likely to change for a while; this conversion could be done entirely outside
the application context), whereas other data (like calendar data of team mem-

bers) will have to be updated on a regular basis. Some data can remain in the

RDF store itself (private information about this team); other data could be pub-

lished in RDF form for other applications to use (information about the most

popular documents in a repository).

Once all the required data sources have been scraped, converted, or

parsed, the application uses the merge functionality of the RDF store to pro-

duce a single, federated graph of all the merged data. It is this federated
graph that the application will use for all further queries. There is no need

for the queries themselves to be aware of the federation strategy or sched-

ule; the federation has already taken place when the RDF merge was

performed.

From this point onward, the application behaves very like any other database

application. A webpage to display the appointments of any member of a team

will include a query for that information. Even if the appointments came from

different sources and the information about team membership from still another
source, the query is made against the federated information graph.

Converters
and Scrapers  Parser and

Serializer 
RDF Store

(merge)

Query Engine 

Application 
Analytics
Interface
… 

Webpages, Spreadsheets,
Tables, Databases, etc. 

RDF Files

FIGURE 4-5

Application architecture for an RDF application.
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RDF-Backed Web Portals

When the front end of an application is a web server, the architecture (shown in

Figure 4-4) is well-known for a database-backed web portal. The pages are gen-

erated using any of a number of technologies (e.g., CGI, ASP, JSP, ZOPE) that

allow webpages to be constructed from the results of queries against a database.

In the earliest days of the web, webpages were typically stored statically as files

in a file system. The move to database-backed portals was made to allow web-

sites to reflect the complex interrelated structure of data as it appears in a rela-
tional database.

The system architecture outlined in Figure 4-5 can be used the same way to

implement a Semantic Web portal. The RDF store plays the same role that the

database plays in database-backed portals. It is important to note that because

of the separation between the presentation layer in both Figures 4-4 and 4-5,

it is possible to use all the same technologies for the actual webpage construc-

tion for a Semantic Web portal as those used in a database-backed portal. How-

ever, because of the distributed nature of the RDF store that backs a Semantic
Web portal, information on a single webpage typically comes from multiple

sources. The merge capability of an RDF store supports this sort of information

distribution as part of the infrastructure of the web portal. When the portal is

backed by RDF, there is no difference between building a distributed web portal

and one in which all the information is local. Using RDF, federated web portals

are as easy as siloed portals.

DATA FEDERATION

The RDF data model was designed from the beginning with data federation

in mind. Information from any source is converted into a set of triples so

that data federation of any kind—spreadsheets and XML, database tables

and webpages—is accomplished with a single mechanism. As shown in
Figure 4-5, this strategy of federation converts information from multiple

sources into a single format and then combines all the information into a sin-

gle store. This is in contrast to a federation strategy, in which the application

queries each source using a method corresponding to that format. RDF does

not refer to a file format or a particular language for encoding data but rather

to the data model of representing information in triples. It is this feature of

RDF that allows data to be federated in this way. The mechanism for merging

this information, and the details of the RDF data model, can be encapsulated
into a piece of software—the RDF store—to be used as a building block for

applications.

The strategy of federating information first and then querying the feder-

ated information store separates the concerns of data federation from the

operational concerns of the application. Queries written in the application
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need not know where a particular triple came from. This allows a single

query to seamlessly operate over multiple data sources without elaborate

planning on the part of the query author. This also means that changes to

the application to federate further data sources will not impact the queries

in the application itself.

This feature of RDF applications forms the key to much of the discussion

that follows. In our discussion of RDFS and OWL, we will assume that any fed-

eration necessary for the application has already taken place; that is, all queries
and inferences will take place on the federated graph. The federated graph is

simply the graph that includes information from all the federated data sources

over which application queries will be run.

SUMMARY

The components described in this chapter—RDF parsers, serializers, stores, and

query engines—are not semantic models in themselves but the components of a

system that will include semantic models. Even the information represented in

RDF is not necessarily a semantic model. These are the building blocks that
go into making and using a semantic model. The model will be represented in

RDF, to be sure. As we shall see, the semantic modeling languages of the

W3C, RDFS, and OWL are built entirely in RDF, and they can be federated just

like any other RDF data.

Where do semantic models fit into the application architecture of Figure 4-5?

As data expressed in RDF, they will be housed in the RDF store, along with all

other data. But semantic models are not simply data that will be used to answer

a query, like the list of plays that Shakespeare wrote or the places where paper
machines are kept. Semantic models are meta-data; they are data that help to

organize other data. When we federate information from multiple sources, the

RDF data model allows us to represent all the data in a single, uniform way.

But it does nothing to resolve any conflicts of meaning between the sources.

Do two states have the same definitions of “marriage”? Is the notion of “writing”

a play the same as the notion of “writing” a song? It is the semantic models that

give answers to questions like these. A semantic model acts as a sort of glue

between disparate, federated data sources so we can describe how they fit
together.

Just as Anyone can say Anything about Any topic, so also can anyone

say anything about a model; that is, anyone can contribute to the definition

and mapping between information sources. In this way, not only can a feder-

ated, RDF-based, semantic application get its information from multiple

sources, but it can even get the instructions on how to combine information

from multiple sources. In this way, the Semantic Web really is a web of

meaning, with multiple sources describing what the information on the
Web means.
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Fundamental Concepts

The following fundamental concepts were introduced in this chapter:

RDF parser/serializer—A system component for reading and writing RDF in
one of several file formats.

RDF store—A database that works in RDF. One of its main operations is to

merge RDF stores.

RDF query engine—This provides access to an RDF store, much as an SQL

engine provides access to a relational store.

SPARQL—The W3C standard query language for RDF.

SPARQL endpoint—Any application that can answer a SPARQL query, espe-

cially one where the native encoding of information is not in RDF.

Application interface—The part of the application that uses the content of an

RDF store in an interaction with some user.

Scraper—A tool that extracts structured information from webpages.

Converter—A tool that converts data from some form (e.g., tables) into RDF.

RDFa and GRDDL—Proposed standards for encoding and retrieving RDF

metadata from HTML pages.
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CHAPTER

5RDF and Inferencing

In Chapter 1, we introduced the notion of “dumb” data and how a more

connected Web infrastructure can result in behavior that lets smart applications

perform to their potential. One way to make data smarter is to provide an

integrated representation of information and to present information by making

queries to this representation. In the Semantic Web, we have seen how RDF

allows this integrated representation to be distributed over the Web. But we

have also stressed the importance of modeling to making sense of this network

of data. How can our Web infrastructure allow a model to help us to make sense
of an integrated network of data? Let’s look at another simple example of

“dumb” data to show how this can work.

Suppose you hit the webpage of an online clothing retailer, and you search

for “chamois” in the category of “Shirts.” Your search comes up empty. You

are surprised, because you were quite certain that you saw a chamois Henley

in the paper catalog that landed in your mailbox. So you look up the unit num-

ber in the catalog and do another search, using that. Sure enough, there is the

chamois Henley. Furthermore, you find that “Henleys” is shown as a subcate-
gory in the broad category of “Shirts.” “That’s dumb,” you mutter to yourself.

“If it comes up under “Henleys,” it should come up under “Shirts.” What’s the

matter with this thing?”

What would it take to make this example smarter? We want any search,

query, or other access to the data that references “Shirts” to also look at “Hen-

leys.” What is so special about the relationship between “Shirts” and “Henleys”

to make us expect this? That is what we mean when we say, “‘Henleys’ is a sub-

category of ‘Shirts.’” How can we express this meaning in a way that is consis-
tent and maintainable?

One solution to this problem is to leverage the power of the query; after all,

in conventional database applications, it is in the query where relationships

among data elements are elaborated. In the case of the Henley shirts, a complex

query could ask, “Show me all items in category ‘Shirts,’ or in any subcategory of

‘Shirts,’ or any sub-subcategory of ‘Shirts,’ and so on.” Depending on the syntax

of any particular query language, this could be a bit cumbersome to express, but 79



there is no essential difficulty with it. In fact, just such a solution is available

using many Semantic Web tools. Just as in the relational database case, a single

RDF store can be queried in different ways to create variant presentations of a

single data store, ensuring information consistency across the various views.

Relationships like the subcategory relationship in this example are represented

in the query language. Systems that support this style of solution provide query

languages that make this sort of query convenient so that the “and so on”

doesn’t require the query writer to write a program loop.
In contrast to this approach, the Semantic Web provides a model of data

expression that allows for explicit representation of the relationship between

various data items. In this sense, it genuinely allows a data modeler to create

data that are more connected, better integrated, and, dare we say, smarter—data

in which the consistency constraints on the data can be expressed in the data

itself. It is for this reason that some people have described the Semantic Web as

allowing us to model “smart data.” By this we don’t mean that the data are going

to start curing cancer or solving complex problems, but instead that the data
can describe something about the way they should be used.

As an alternative to the “smart query” approach, the Semantic Web stack

includes a series of layers on top of the RDF layer to describe consistency con-

straints in the data. The key to these levels is the notion of inferencing. In the

context of the Semantic Web, inferencing simply means that given some stated

information, we can determine other, related information that we can also

consider as if it had been stated. Inferencing is a powerful mechanism for deal-

ing with information, and it can cover a wide range of elaborate processing. For
the purposes of making our data more integrated and useful, very simple infer-

ences are often more useful than elaborate ones. As a simple example, in

Chapter 4, we saw how to write a complex query to make up for the fact that

although we stated that Anne Hathaway married Shakespeare, we did not assert

that Shakespeare married Anne Hathaway. It is this sort of mundane consistency

completion of data that can be done with inferencing in the Semantic Web.

Although inferencing of this sort seems trivial from the point of view of the

natural world (after all, doesn’t everyone just know that this is the way marriage
works?), it is just this sort of correlation that is missing in dumb data

applications.

INFERENCE IN THE SEMANTIC WEB

To make our data seem more connected and consistently integrated, we must be

able to add relationships into the data that will constrain how the data are

viewed. We want to be able to express the relationship between “Henleys”

and “Shirts” that will tell us that any item in the “Henleys” category should also

be in the “Shirts” category. We want to express the fact about locations that says
that if a hotel chain has a hotel at a particular location, then that location is
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served by a hotel in that chain. We want to express the list of planets in terms of

the classifications of the various bodies in the solar system.

Many of these relationships are familiar to information modelers in many

paradigms. Let’s take the relationship between “Henleys” and “Shirts” as an

example. Taxonomists and thesaurus writers are familiar with the notion

of broader term. “Shirts” is a broader term than “Henleys.” Object-oriented

programmers are accustomed to the notion of subclasses or class extensions.

“Henleys” is a subclass of, or extends, the class “Shirts.” In the RDF Schema
language, to be described in the next chapter, we say, “Henleys” subClassOf

“Shirts.” It is all well and good to say these things, but what do they mean?

Thesauri and taxonomies take an informal stance on what these things mean

in a number of contexts. If you use a broader term in a search, you will also find

all the entries that were tagged with the narrower term. If you classify some-

thing according to a broad term, you may be offered a list of the narrower terms

to choose from to focus your classification.

Many readers may be familiar with terms like class and subclass from Object-

Oriented Programming (OOP). There is a close historical and technical relationship

between the use of these and other terms in OOP and their use in the Semantic

Web, but there are also important and subtle differences. OOP systems take a

more formal, if programmatic, view of class relationships than that taken by the-

sauri and taxonomies. An object whose type is “Henleys” will respond to all mes-

sages defined for object of type “Shirts.” Furthermore, the action associated with

this call will be the same for all “Shirts,” unless a more specific behavior has been

defined for “Henley,” and so on. The Semantic Web also takes a formal view of

these relationships, but in contrast to the programmatic definition found in OOP,

the Semantic Web bases the meaning of these things on the notion of inference.

The Semantic Web infrastructure provides a formal and elegant specifica-

tion of the meaning of the various terms like subClassOf. For example, the
meaning of “B is a SubClassOf C” is “Every member of class B is also a member

of class C.” This specification is based on the notion of inference. From the

information “x is a member of B,” one can derive the new information, “x is

a member of C.”

For the next several chapters, we will introduce terms that can be used in an

RDF model, along with a statement of what each term means. This statement of

meaning will always be in the form of an inference pattern: “Given some initial

information, the following new information can be derived.” This is how the
RDF Schema language (RDFS, Chapter 6) and the Web Ontology Language

(OWL, Chapter 9) work. We will take our first example from RDFS. The details

of RDFS are given in a systematic fashion in Chapter 6.
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The pattern for the subClassOf in RDFS says the following:

IF
?A rdfs:subClassOf ?B .
AND
?x rdf:type ?A .
THEN
?x rdf:type ?B .

In plain English, this says that if one class A is a subclass of another class B,

and there is any individual (x) that belongs to class A (where “belongs to” means

it is related by the predicate rdf:type), then that individual x also belongs

to class B. This simple statement is the entire definition of the meaning of

subClassOf in the RDF Schema language. We will refer to this rule for the rest
of this chapter as the type propagation rule. This definition is consistent with

the informal notion of a broader term in a thesaurus or taxonomy, since it is

natural to think that any individual listed under “Henleys” should also be listed

under “Shirts.”

The Semantic Web definition of subClassOf is consistent to some extent with

the definition of subclass or extension in Object Oriented Programming (OOP).

In OOP, an instance of some class responds to the same methods in the same

way as instances of its superclass. In Semantic Web terms, this is because that

instance is also a member of the superclass, and thus must behave like any such

member. For example, the reason why an instance of class “Henleys” responds to

methods defined in “Shirts” is because the instance actually is also a member of

class “Shirts.”

This consistency is misleading when, in the OOP system, the subclass defines an

override for a method defined in the superclass. In Semantic Web terms, the

instances of “Henleys” are still instance of “Shirts” and should respond accordingly.

But in most OOP semantics, this is not the case; the definitions at “Henleys” take

precedence over those at “Shirts,” and thus “Henleys” need not actually behave like

“Shirts” at all. In the logic of the Semantic Web, this is not allowed.

Virtues of Inference-Based Semantics

Inference patterns constitute an elegant way to define the meaning of a data

construct. But is this approach really useful? Why is it a particularly effective

way to define the meaning of constructs in the Semantic Web?
Since our data is living in the Web, a major concern for making our data

more useful is to have they behave in a consistent way when they are combined

with data from multiple sources. The strategy of basing the meaning of our con-

straint terms on inferencing provides a robust solution to understanding the
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meaning of novel combinations of terms. Taking subClassOf as an example, it

is not out of the question for a single class to be specified as subClassOf two

other classes. What does this mean?

In an informal thesaurus setting, the meaning of such a construct is decided

informally: What do we want such an expression to mean? Since we have a

clear but informal notion of what broader term means, we can use that intui-

tion to argue for a number of positions, including but not limited to, deciding

that such a situation should not be allowed, to defining search behavior for all
terms involved. When the meaning of a construct like broader term is defined

informally, the interpretation of novel combinations must be resolved by

consensus or authoritative proclamation.

OOP also faces the issue of deciding an appropriate interpretation for a single sub-

class of two distinct classes. The issue is known as multiple inheritance, and it is

much discussed in OOP circles. Indeed, each OOP modeling system has a

response to this issue, ranging from a refusal to allow it (Cþþ), a distinction between

different types of inheritance (interface vs. implementation inheritance, e.g., Java), to

complex systems for defining such things (e.g., the Meta-Object Protocol of the

Common Lisp Object System). Each of these provides an answer to the multiple

inheritance question, and each is responsive to particular design considerations that

are important for the respective programming language.

In an inference-based system like the Semantic Web, the answer to this ques-

tion (for better or worse) is defined by the interaction of the basic inference pat-

terns. How does multiple inheritance work in the RDF Schema Language? Just

apply the rule twice. If A is subClassOf B and A is also subClassOf C, then any

individual x that is a member of A will also be a member of B and of C. No dis-

cussion is needed, no design decisions. The meaning of subClassOf, in any con-
text, is given elegant expression in a single simple rule: the type propagation

rule. This feature of inference systems is particularly suited to a Semantic Web

context, in which novel combinations of relationships are bound to occur as

data from multiple sources are merged.

WHERE ARE THE SMARTS?

An inference-based system for describing the meaning of Semantic Web con-

structs is elegant and useful in a distributed setting, but how does it help us make

our datamore useful? For our application to behave differently, wewill need a new
component in our deployment architecture, something that will respond to

queries based not only on the triples that have been asserted but also on the triples
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that can be inferred based on the rules of inference. This architecture is shown in
Figure 5-1, and it is very similar to the RDF query architecture shown in Figure 4-4.

The new item in this architecture is an inferencing component that stands

with the query component between the application and the RDF data store.

The power of the inferencing query engine is determined by the set of infer-

ences that it supports. An RDFS inference query engine supports a small set

of inferences defined in the RDFS standard; an OWL inference query engine sup-

ports the larger set of OWL inferences. (Note that there are alternative formula-

tions where the data is preprocessed by an inferencing engine and then queried
directly. We discuss this later in this chapter.)

Example Simple RDFS Query

Suppose we have an RDFS inference query engine working over an RDF store that

contains only these two triples:

shop:Henleys rdfs:subClassOf shop:Shirts .
shop:ChamoisHenley rdf:type shop:Henleys .

Suppose we have a SPARQL triple pattern that we use to examine these triples, thus:

?x rdf:type shop:Shirts .

In a plain RDF query situation, this pattern will match no triples because there is no triple

with predicate rdf:type and object shop:Shirts. However, since the RDFS inference

standard includes the type propagation rule just listed, with an RDFS inferencing query

engine, the following single result will be returned:

?x ¼ shop:ChamoisHenley

Converters
and Scrapers Parser and

Serializer 

Query Engine

Application
Analytics
Interface
…

Webpages, Spreadsheets,
Tables, Databases, etc.  

RDF Files

RDF Store
(merge)

FIGURE 5-1

Semantic Web architecture with inferencing.
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Asserted Triples versus Inferred Triples

It is often convenient to think about inferencing and queries as separate

processes, in which an inference engine produces all the possible inferred

triples, based on a particular set of inference rules. Then, in a separate pass,

an ordinary SPARQL query engine runs over the resulting augmented triple

store. It then becomes meaningful to speak of asserted triples versus inferred

triples.

Asserted triples, as the name suggests, are the triples that were asserted in the
original RDF store. In the case where the store was populated by merging triples

from many sources, all the triples are asserted. Inferred triples are the additional

triples that are inferred by one of the inference rules that govern a particular infer-

ence engine. It is, of course, possible for the inference engine to infer a triple that

has already been asserted. In this case, we still consider the triple to have been

asserted. It is important to note that the distinction between inferred and asserted

triples is a distinction for rhetorical and pedagogical purposes only; the inference

engine will draw exactly the same conclusions from an inferred triple as it would
have done, had that same triple been asserted.

Example Asserted versus Inferred Triples

Even with a single inference rule like the type propagation rule, we can show the

distinction of asserted vs. inferred triples. Suppose we have the following triples in a

triple store:

shop:Henleys rdfs:subClassOf shop:Shirts.
shop:Shirts rdfs:subClassOf shop:MensWear.
shop:Blouses rdfs:subClassOf shop:WomensWear.
shop:Oxfords rdfs:subClassOf shop:Shirts.
shop:Tshirts rdfs:subClassOf shop:Shirts.
shop:ChamoisHenley rdf:type shop:Henleys.
shop:ClassicOxford rdf:type shop:Oxfords.
shop:ClassicOxford rdf:type shop:Shirts.
shop:BikerT rdf:type shop:Tshirts.
shop:BikerT rdf:type shop:MensWear.

These triples are shown graphically in Figure 5-2.

An inferencing query engine that enforces just the type propagation rule will draw the

following inferences:

shop:ChamoisHenley rdf:type shop:Shirts.
shop:ChamoisHenley rdf:type shop:MensWear.
shop:ClassicOxford rdf:type shop:Shirts.
shop:ClassicOxford rdf:type shop:MensWear.
shop:BikerT rdf:type shop:Shirts.
shop:BikerT rdf:type shop:MensWear.
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Some of these triples were also asserted; the complete set of triples over which queries

will take place is as follows, with inferred triples in italics:

shop:Henleys rdfs:subClassOf shop:Shirts.
shop:Shirts rdfs:subClassOf shop:MensWear.
shop:Blouses rdfs:subClassOf shop:WomensWear.
shop:Oxfords rdfs:subClassOf shop:Shirts.
shop:TShirts rdfs:subClassOf shop:Shirts.
shop:ChamoisHenley rdf:type shop:Henleys.
shop:ChamoisHenley rdf:type shop:Shirts.
shop:ChamoisHenley rdf:type shop:MensWear.
shop:ClassicOxford rdf:type shop:Oxfords.
shop:ClassicOxford rdf:type shop:Shirts.
shop:ClassicOxford rdf:type shop:MensWear.
shop:BikerT rdf:type shop:Tshirts.
shop:BikerT rdf:type shop:Shirts.
shop:BikerT rdf:type shop:MensWear.

All triples in the model, both asserted and inferred, are shown in Figure 5-3. We use the

convention that asserted triples are printed with unbroken lines, and inferred triples are

printed with dashed lines. This convention is used throughout the book.

The situation can become a bit more subtle when we begin to merge infor-

mation from multiple sources in which each source itself is a system that

includes an inference engine. Most RDF implementations provide a capability
by which new triples can be asserted directly in the triple store. This makes

it quite straightforward for an application to assert any or all inferred triples.

If those triples are then serialized (say, in RDF/XML) and shared on the Web,

shop:MensWear

shop:Shirts

shop:Henleysshop:Tshirts
shop:Oxfords

shop:ChamoisHenley shop:ClassicOxford

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

rdf:type

rdf:type
rdf:type

FIGURE 5-2

Asserted triples in the catalogue model.
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another application could merge them with other sources and draw further

inferences. In complex situations like this, the simple distinction of asserted ver-

sus inferred might be too coarse to be a useful description of what is happening

in the system.

When Does Inferencing Happen?

The RDFS and OWL standards define what inferences are valid, given certain

patterns of triples. But when does inferencing happen? Where and how are

inferred triples stored, if at all? How many of them are there?

These questions are properly outside the range of the definitions of RDFS
and OWL, but they are clearly important for any implementation that conforms

to these standards. It should, therefore, come as no surprise that the answers

to these questions can differ from one implementation to another. The sim-

plest approach is to store all triples in a single store, regardless of whether

they are asserted or inferred. As soon as pattern is identified, any inferred tri-

ples are inserted into the store. This approach is quite simple to describe and

implement but risks an explosion of triples in the triple store. At the other

extreme, an implementation could instead never actually store any inferred
triples in any persistent store at all. Inferencing is done in response to

queries only. The query responses are produced in such a way as to respect

shop:MensWear

shop:Shirts

shop:Henleysshop:Tshirts shop:Oxfords

shop:ChamoisHenley shop:ClassicOxford

FIGURE 5-3

All triples in the catalogue model. Inferred triples are shown as dashed lines.
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all the appropriate inferences, but no inferred triple is retained. This method

risks duplicating inference work, but it is parsimonious in terms of persistent

storage.

These different approaches have an important impact in terms of change

management. What happens if a data source changes—that is, a new triple is

added to some data store or a triple is removed? A strategy that persistently

saves inferences will have to decide which inferred triples must also be

removed. This presents a difficult problem, since it is possible that there could
be many ways for a triple to be inferred. Just because one inference has been

undermined by the removal of a triple, does that mean that it is appropriate

to remove that triple? An approach that recomputes all inferences whenever a

query is made need not face this issue.

Although these are important issues in a Semantic Web deployment, they do

not have a major impact on modeling decisions in the Semantic Web. For this

reason, in this book, we will speak in terms of what triples can be inferred,

without any commitment to the implementation choices for how they will be
represented or stored.

Inferencing as Glue

Inferencing is the glue that holds the Semantic Web together. When Anyone says

Anything about Any topic, and someone else says something else, inferencing is

the way we make these two pieces of information fit together to provide conclu-

sions that go beyond the facts expressed by the individuals. Even with the single
inferencing pattern we have seen so far, we can see an example of how this can

work.

Suppose that one source of information provides a list of members of the

class “Henleys,” and another source provides a list of members of the class

“Oxfords.” Suppose further that we know that “Henleys” and “Oxfords” are both

types of “Shirts.” How can we find a list of all “Shirts”?

As we have seen, we can determine that all “Henleys” are also “Shirts” by

using a simple inference rule for subClassOf. Using this rule again for “Oxfords,”
we can determine that all “Oxfords” are also “Shirts.” The merged graph now

looks exactly the same as the one shown in Figure 5-3, and the inferencing

determines that both the ClassicOxford and the ChamoisHenley are in fact

members of the class “Shirts.”

There are two fundamental components in this simple data integration exam-

ple. First, there is a model that expresses the relationship between the two data

sources; in this case, the model consists simply of a single class (“Shirts”) that

has both of the classes to be integrated as subclasses; this is represented with
the single concept of subClassOf. Second, there is the notion of inferencing.

It is the process of inferencing that applies the model to the two data sources

to produce a single, integrated answer. In subsequent chapters, we will see a

variety of ways in which the inferencing standards of the Semantic Web can
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be used to integrate data. But the two components of model and inferencing are

the same for all the examples.

When data seems disconnected, it is often because some apparently simple

consistency is conspicuous by its absence. This is why simple inferences are

important; the simpler the missing connection, the “dumber” the data seem.

The inference systems of the Semantic Web may seem quite simple (even sim-

plistic) from the point of view of problem solving, but they are very useful for

making data more consistent and connected.

SUMMARY

RDF provides a consistent way to represent data so that information from mul-

tiple sources can be brought together and treated as if they came from a single

source. But when we want to use that data, the differences in those sources

comes out. For instance, we’d like to be able to write a single query that can
fetch related data from all the integrated data sources.

The Semantic Web approach to this problem uses a modeling language in

which the relationship between the sources can be described. The meaning of

the modeling language is specified by inferencing. A modeling construct’s mean-

ing is given by the pattern of inferences that can be drawn from it. Information

integration is achieved by invoking inferencing before or during the query pro-

cess; a query returns not only the asserted data but also inferred information.

This inferred information can draw on more than one data source.
We have seen how even very simple inferencing can provide value for data

integration. But just exactly what kind of inferencing is needed? There isn’t a

single universal answer to this question. The Semantic Web standards identify

a number of different inferencing modes, intended for different levels of sophis-

tication of data integration over the Semantic Web.

In the following chapters, we will explore three particular inferencing

modes. They differ only in terms of the inferences that each of the languages

allow. RDFS (Chapter 6) is a recommendation defined and maintained by the
W3C. It operates on a small number of inference rules that deal mostly with

relating classes to subclasses and properties to classes. RDFS-PLUS (Chapter 7)

is a mode that we have defined for this book. We have found a particular set

of inference patterns to be helpful both pedagogically (as a gentle introduction

to the more complex inference patterns of OWL) and practically (as a useful

integration tool in its own right). RDFS-PLUS builds on top of RDFS to include

constraints on properties and notions of equality. OWL (Chapters 9 and 10) is

a recommendation defined and maintained by the W3C, which builds further
to include rules for describing classes based on allowed values for properties.

All of these standards use the notion of inferencing to describe the meaning

of a model; they differ in the inferencing that they support.
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Fundamental Concepts

The following fundamental concepts were introduced in this chapter.

Inferencing—The process by which new triples are systematically added to a
graph based on patterns in existing triples.

Asserted triples—The triples in a graph that were provided by some data

source.

Inferred triples—Triples that were added to a model based on systematic

inference patterns.

Inference rules—Systematic patterns defining which of the triples should be

inferred.

Inference engine—A program that performs inferences according to some

inference rules. It is often integrated with a query engine.

90 CHAPTER 5 RDF and Inferencing



CHAPTER

6RDF Schema

Just as Semantic Web modeling in RDF is about graphs, Semantic Web modeling

in the RDF Schema Language (RDFS) is about sets. Some aspects of set member-

ship can be modeled in RDF alone, as we have seen with the rdf:type built-in

property. But RDF itself simply creates a graph structure to represent data. RDFS

provides some guidelines about how to use this graph structure in a disciplined

way. It provides a way to talk about the vocabulary that will be used in an RDF

graph. Which individuals are related to one another, and how? How are the

properties we use to define our individuals related to other sets of individuals
and, indeed, to one another? RDFS provides a way for an information modeler

to express the answers to these sorts of questions as they pertain to particular

data modeling and integration needs.

As such, RDFS is like other schema languages: It provides information about

the ways in which we describe our data. But RDFS differs from other schema

languages in important ways.

SCHEMA LANGUAGES AND THEIR FUNCTIONS

RDFS is the schema language for RDF. But what is a schema language in the first

place? There are a number of successful schema languages for familiar technol-

ogies, but the role that each of these languages plays in the management of

information is closely tied to the particular language or system.

Let’s consider document modeling systems as an example. For such a

system, a schema language allows one to express the set of allowed formats

for a document. For a given schema, it is possible to determine (often automati-

cally) whether a particular document conforms to that schema. This is the major
capability provided by XML Schema definitions. XML parsers can automatically

determine whether a particular XML document conforms to a given schema.

Other schema languages help us to interpret particular data. For example, a

database schema provides header and key information for tables in a relational

database. There is neither anything in the table itself to indicate the meaning 91



of the information in a particular column nor anything to indicate which col-

umn is to be used as an index for the table. This information is appropriately

included in the database schema, since it does not change from one data record

to the next.

For Object Oriented Programming Systems, the class structure plays an orga-

nizing role for information as well. But in object-oriented programming, the class

diagram does more than describe data. It determines, according to the inheritance

policy of the particular language, what methods are available for a particular
instance and how they are implemented. This stands in stark contrast to relational

databases and XML, in that it does not interpret information but instead provides a

systematic way for someone to describe information and available transformations

for that information.

Given this variety of understandings of how schema information can be used

in different modeling paradigms, one might wonder whether calling something

a schema language actually tells us anything at all! But there is something in

common among all these notions of a schema. In all cases, the schema tells us
something about the information that is expressed in the system. The schema

is information about the data.

How then can we understand the notion of schema in RDF? What might we

want to say about RDF data? And how might we want to say it? The key idea of

the schema in RDF is that it should help provide some sense of meaning to the

data. The mechanism by which it does this is, again, the concept of inference.

The basic idea of inference is that it is possible to know more about a set of

data than what is explicitly expressed in the data. By making this extra informa-
tion explicit, we explicate (in a small way) the meaning of the original data. The

additional information is based in a systematic way on patterns in the original

data. This idea is not completely unfamiliar for schema languages. In the case

of XML Schema, the validation process provides more than just a yes/no answer,

but it also provides type information for the parsed data. RDFS builds on and

formalizes this idea by providing detailed axioms that express exactly what

inferences can be drawn from particular data patterns.

In most modeling systems, there is a clear division between the data and its
schema. The schema for a relational database is not typically expressed in a table

in the database; the object model of an object-oriented system is not expressed

as objects, and an XML DTD is not a valid XML document. But in many cases,

modern versions of such systems do model the schema in the same form as

the data; the meta-object protocol of Common Lisp and the introspection API

of Java represent the object models as objects themselves. The XML Stylesheet

Definition defines XML Styles in an XML language.

In the case of RDF, the schema language was defined in RDF from the very
beginning. That is, all schema information in RDFS is defined with RDF triples.

The relationship between “plain” resources in RDF and schema resources is

made with triples, just like relationships between any other resources. This

elegance of design makes it particularly easy to provide a formal description
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of the semantics of RDFS, simply by providing inference rules that work over

patterns of triples. While this is good engineering practice (in some sense, the

RDF standards committee learned a lesson from the issues that the XML stan-

dards had with DTDs), its significance goes well beyond its value as good engi-

neering. In RDF, everything is expressed as triples. The meaning of asserted

triples is expressed in new (inferred) triples. The structures that drive these

inferences, that describe the meaning of our data, are also in triples. This means

that this process can continue as far as it needs to; the schema information that
provides context for information on the Semantic Web can itself be distributed

on the Semantic Web.

We can see this in action by showing how a set is defined in RDFS. The basic

construct for specifying a set in RDFS is called an rdfs:Class. Since RDFS is

expressed in RDF, the way we express that something is a class is with a

triple—in particular, a triple in which the predicate is rdf:type, and the object

is rdfs:Class. Here are some examples that we will use in the following

discussion:

:AllStarPlayer rdf:type rdfs:Class.
:MajorLeaguePlayer rdf:type rdfs:Class.
:Surgeon rdf:type rdfs:Class.
:Staff rdf:type rdfs:Class.
:Physician rdf:type rdfs:Class.

These are triples in RDF just like any other; the only way we know that they

refer to the schema rather than the data is because of the use of the term in

the rdfs: namespace, rdfs:Class. But what is new here? In Chapter 3, we

already discussed the notion of rdf:type, which we used to specify that some-

thing was a member of a set. What do we gain by specifying explicitly that

something is a set? We gain a description of the meaning of membership in a

set. In RDF, the only “meaning” we had for set membership was given by the
results of some query; rdf:type actually didn’t behave any differently from any

other (even user-defined) property. How can we specify what we mean by set

membership? In RDFS, we express meaning through the mechanism of inference.

WHAT DOES IT MEAN? SEMANTICS AS INFERENCE

RDFS “extends” RDF by introducing a set of distinguished resources into the lan-

guage. This is similar to the way in which a traditional programming language

can be extended by defining new language-defined keywords. But there is an

important difference: In RDF, we already had the capability to use any resource

in any triple (Anyone can say Anything about Any topic). So by identifying

certain specific resources as “new keywords,” we haven’t actually extended

the language at all! We have simply identified certain triples as having a special

meaning, as defined by a standard.
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How can we define the “meaning” of a distinguished resource? Reiterating

what we said in Chapter 5, in RDFS, meaning is expressed by specifying infer-

ences that can be drawn when the resource is used in a certain way. Through-

out the rest of this section, whenever we introduce a new RDFS resource, we

will answer the question “What does it mean?” with an answer of the form

“In these circumstances (defined by some pattern of triples), you can add (infer)

the following new triples.” We demonstrate this principle using a simple exam-

ple of the meaning of one of the most fundamental terms in RDFS:
rdfs:subClassOf.

EXAMPLE Type Propagation through rdfs:subClassOf

In the previous chapter, we saw the type propagation rule as an example of inferencing

in the Semantic Web. The type propagation rule applies when we use rdf:type and

rdfs:subClassOf in a particular pattern. But how does this kind of inference tell us

anything about what it means to be a member of a class? In RDFS, membership in a

class is only given meaning when there are several (well, at least more than one)

classes involved, and some relation between those classes is known. What does it

mean for something to be a member of a class? It means that it is also a member of

any superclass. This meaning is expressed in RDFS in general through inferencing

and, in particular, with the type propagation rule. The type propagation rule is just one

of many rules in RDFS. When taken together, these rules provide a way to express a

variety of relations between classes and properties. Such a collection of classes and

properties can provide a rudimentary definition of a vocabulary for RDF data. That is, it

defines set of elements and the relationship of those sets to the properties that

describe the elements.

We begin with a simple example of the type propagation rule. We will combine

this with other rules later on to show how rdfs:subClassOf forms the basis of a

vocabulary definition.

Suppose we define a vocabulary that says that an AllStarPlayer is a

MajorLeaguePlayer and that Kaneda is an AllStarPlayer. Our ordinary understanding

of how terminology works tells us that we should be able to infer that Kaneda is a

MajorLeaguePlayer.

One of the challenges in vocabulary modeling in general (and RDFS in particular)

is to differentiate the two uses of the words is a in the example. When we say

that “AllStarPlayer is a MajorLeaguePlayer,” we are relating two types to one

another; but when we say “Kaneda is an AllStarPlayer,” we are giving type information

about a particular individual—that is, relating an individual to a type. We already

know how to provide individual type information from RDF; in N3, this latter statement

appears as

:Kaneda rdf:type :AllStarPlayer.

RDFS provides a new resource, rdfs:subClassOf, to express the is a relationship

between types. In N3, our statement about types of players appears as
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:AllStarPlayer rdfs:subClassOf :MajorLeaguePlayer.

RDFS provides a meaning for rdfs:subClassOf in this situation, which states that we

may infer that the type information for Kaneda propagates in the expected way:

:Kaneda rdf:type :MajorLeaguePlayer.

Inferred triples have the same status as triples that we asserted; that is, they can be used

again in other rules to produce more inferred triples.

In general, the pattern for rdfs:subClassOf states that if we have triples of the form

A rdfs:subClassOf B.
r rdf:type A.

then we can infer

r rdf:type B.

This very simple interpretation of the subclass relationship makes it a workhorse

for RDFS modeling (and also for OWL modeling, as described in subsequent

chapters). It corresponds to a great degree to the IF/THEN construct of programming

languages: IF something is a member of the subclass, THEN it is a member of the

superclass. It should come as no surprise that this has a large number of modeling

applications. In RDFS, there is no construct that corresponds to the ELSE clause that

is present in most conventional programming languages; you can infer things from

asserted membership of resources in classes, but you cannot infer things from the lack

of asserted membership.

THE RDF SCHEMA LANGUAGE

There’s a lot more to the RDF Schema Language (RDFS) than just the type prop-

agation rule of rdfs:subClassOf. RDFS consists of a small number of inference
patterns, each one of which can provide type information for individuals in a

variety of circumstances. We will go through these patterns in turn, showing

examples of their use.

Relationship Propagation through
rdfs:subPropertyOf

We have just seen how RDFS provides a means by which classes can be related
to one another by the subclass relationship and the inferences that define the

meaning of this construct. This allows a modeler who is using RDFS to describe

(using the notion of sets) relationships among the elements that are described

in a collection of RDF triples. But if we want to give meaning to our data, we

need to do more than just talk about the elements; we need to talk about the
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properties that link them—the predicates of the triples. RDFS provides a

simple mechanism for doing just that. The mechanism works in a way very

similar to the type propagation rule. The mechanism is, of course, based on

an inference pattern, which is defined using the resource (keyword)

rdfs:subPropertyOf.

The basic intuition behind the use of rdfs:subPropertyOf is that terminol-

ogy includes verbs as well as nouns, and many of the same requirements for

mapping nouns from one source to another will apply to relationships. Simple
examples abound in ordinary parlance. The relationship brother is more spe-

cific than the relationship sibling; if someone is my brother, then he is also

my sibling. This is formalized in RDFS for rdfs:subPropertyOf using an inference

rule that is almost as simple as the one for rdfs:subClassOf.

For two properties P and R, we can assert that

P rdfs:subPropertyOf R.

What does this mean? As always, the meaning of this statement will be given in

terms of the inferences that it allows to be drawn. In particular, these inferences

are that whenever we have the triple

A P B.

We can infer the triple

A R B.

EXAMPLE Employment

A large firm engages a number of people in various capacities and has a variety of ways

to administer these relationships. Some people are directly employed by the firm,

whereas others are contractors. Among these contractors, some of them are directly

contracted to the company on a freelance basis, others on a long-term retainer, and

still others contract through an intermediate firm. All of these people could be said to

work for the firm.

How can wemodel this situation in RDFS? First, we need to consider the inferences we

wish to be able to draw and under what circumstances. There are a number of relationships

that can hold between a person and the firm; we can call them contractsTo,

freeLancesTo, indirectlyContractsTo, isEmployedBy, and works For.

If we assert any of these statements about some person, then we would like to infer

that that person worksFor the firm. Furthermore, there are intermediate conclusions we

can draw—for instance, both a freelancer and an indirect contractor contract to the firm

and indeed work for the firm.

All these relationships can be expressed in RDFS using the rdfs:subPropertyOf

relation:

:freeLancesTo rdfs:subPropertyOf contractsTo.
:indirectlyContractsTo rdfs:subPropertyOf contractsTo.
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:isEmployedBy rdfs:subPropertyOf worksFor.
:contractsTo rdfs:subPropertyOf worksFor.

The discussion will be easier to follow if we represent this as a diagram, where the

arrows denote, rdfs:subPropertyOf (see Figure 6-1).

To see what inferences can be drawn, we will need some instance data:

Goldman isEmployedBy TheFirm.
Spence freeLancesTo TheFirm.
Long indirectlyContractsTo TheFirm.

The rule that defines the meaning of rdfs:subPropertyOf implies a new triple,

replacing any subproperty with its superproperty. So, since

isEmployedBy rdfs:subPropertyOf worksFor.

we can infer that

Goldman worksFor TheFirm.

And because of the assertions about freelancing and indirect contracts, we can infer that

Spence contractsTo TheFirm.
Long contractsTo TheFirm.

And finally, since, like asserted triples, inferred triples can be used to make further

inferences, we can further infer that

Spence worksFor TheFirm.
Long worksFor TheFirm.

In general, rdfs:subPropertyOf allows a modeler to describe a hierarchy of related

properties. Just as in class hierarchies, specific properties are at the bottom of the

tree, and more general properties are higher up in the tree. Whenever any property in

the tree holds between two entities, so does every property above it.

worksFor

isEmployedBy

indirectlyContractsTo

contractsTo

freeLancesTo

FIGURE 6-1

rdfs:subPropertyOf relations for workers in the firm.
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The construct rdfs:subPropertyOf has no direct analog in object-oriented pro-

gramming, where properties are not first-class entities (i.e., they cannot be

related to one another, independent of the class in which they are defined). For this

reason, unlike the case of rdfs:subClassOf, object-oriented programmers have

no conflict with a similar known concept. The only source of confusion is that sub-

property diagrams like the preceding one are sometimes mistaken for class

diagrams.

Typing Data by Usage—rdfs:domain and rdfs:range

We have seen how inferences around rdfs:subPropertyOf can be used to

describe how two properties relate to each other. But when we describe the

usage of terms in our data, we would also like to represent how a property is

used relative to the defined classes. In particular, we might want to say

that when a property is used, the triple subject comes from (i.e., has rdf:type)

a certain class and that the object comes from some other type. These two sti-

pulations are expressed in RDFS with the resources (keywords) rdfs:domain

and rdfs:range, respectively.

In mathematics, the words domain and range are used to refer to how a

function (or more generally, a relation) can be used. The domain of a function

is the set of values for which it is defined, and the range is the set of values it

can take. In Real Analysis, for instance, the relation squareroot has the positive

numbers as the domain (since negative numbers don’t have square roots in

the reals), and all reals as the range (since there are both positive and negative

square roots).
In RDFS, the properties rdfs:domain and rdfs:range have meanings inspired

by the mathematical uses of these words. A property P can have an rdfs:domain

and/or an rdfs:range. These are specified, as is everything in RDF, via triples:

P rdfs:domain D.
P rdfs:range R.

The informal interpretation of this is that the relation P relates values from
the class D to values from the class R. D and R need not be disjoint, or even

distinct.

The meaning of these terms is defined by the inferences that can be drawn

from them. RDFS inferencing interprets domain with the inference rule:

IF
P rdfs:domain D.
and
x P y.
THEN
x rdf:type D.
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Similarly, range is defined with the rule

IF
P rdfs:range R.
and
x P y.
THEN
y rdf:type R.

In RDFS, domain and range give some information about how the property P is
to be used; domain refers to the subject of any triple that uses P as its predicate,

and range refers to the object of any such triple. When we assert that property

P has domain D (respectively, range R), we are saying that whenever we use the

property P, we can infer that the subject (respectively object) of that triple is

a member of the class D (respectively R). In short, domain and range tell us

how P is to be used. Rather than signaling an error if P is used in a way that

is apparently inconsistent with this declaration, RDFS will infer the necessary

type information to bring P into compliance with its domain and range
declarations.

In RDFS, there is no way to assert that a particular individual is not a

member of a particular class (contrast with OWL, Chapter 10). In fact, in

RDFS, there is no notion of an incorrect or inconsistent inference. This

means that, unlike the case of XML Schema, an RDF Schema will never pro-

claim an input as invalid; it will simply infer appropriate type information. In

this way, RDFS behaves much more like a database schema, which declares

what joins are possible but makes no statement about the validity of the
joined data.

Combination of Domain and Range
with rdfs:subClassOf

So far, we have seen inference patterns for some resources in the rdfs namespace:

rdfs:domain, rdfs:range, rdfs:subPropertyOf, and rdfs:subClassOf. We have
seen how the inference patterns work on sample triples. But the inference patterns

can also interact with one another in interesting ways. We can already see this hap-

pening with the three patterns we have seen so far. We will show the interaction

between rdfs:subClassOf and rdfs:domain by starting with an example.

Suppose we have a very simple class tree that includes just two classes,

Woman and MarriedWoman, in the usual subclass relation:

:MarriedWoman rdfs:subClassOf :Woman.

Suppose we have a property called maidenName, whose domain is MarriedWoman:

:maidenName rdfs:domain :MarriedWoman.
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Figure 6-2 shows how this looks in diagram form.

This unsurprising model holds some subtlety; let’s examine closely what it

says. If we assert the maidenName of anything (even if we don’t know that it is

a Woman!), the rule for rdfs:domain allows us to infer that it is a MarriedWoman.

So, for instance, if someone asserts

:Karen :maidenName "Stephens".

We can infer

:Karen rdf:type :MarriedWoman.

But we can make further inferences based on the rdfs:subClassOf relationship

between the classes—namely, that

:Karen rdf:type :Woman.

There was nothing in this example that was particular to Karen; in fact, if we
learn of any resource at all that it has a maidenName, then we will infer that it

is a Woman. That is, we know that for any resource X, if we have a triple of the

form

X :maidenName Y.

we can infer

X rdf:type :Woman.

But this is exactly the definition of rdfs:domain; that is, we have just seen that

:maidenName rdfs:domain :Woman.

This is a different way to use the definition of rdfs:domain from what we have

encountered so far. Until now, we applied the inference pattern whenever a

triple using rdfs:domain was asserted or inferred. Now we are inferring an

rdfs:domain triple whenever we can prove that the inference pattern holds.

That is, we view the inference pattern as the definition of what it means for
rdfs:domain to hold.

We can generalize this result to form a new inference pattern as follows:

hasMaidenName
rdfs:domain

rdfs:subclasof

MarriedWoman

Woman

FIGURE 6-2

Domain and subClassOf triples for maidenName.
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IF
P rdfs:domain D.
and
D rdfs:subClassOf C.
THEN
P rdfs:domain C.

That is, whenever we specify the rdfs:domain of a property to be some class,
we can also infer that the property also has any superclass as rdfs:domain.

The same conclusion holds for rdfs:range, using the same argument.

These simple definitions of domain and range are actually quite aggressive;

we can draw conclusions about the type of any element based simply on its

use in a single triple whenever we have domain or range information about

the predicate. As we shall see in later examples, this can result in some

surprising inferences. The definitions of domain and range in RDFS are the most

common problem areas for modelers with experience in another data modeling
paradigm. It is unusual to have such a strong interpretation for very common

concepts.

The interaction between rdfs:domain and rdfs:subClassOf can seem partic-

ularly counterintuitive when viewed in comparison to Object-Oriented Program-

ming. One of the basic mechanisms for organizing code in OOP is called

inheritance. There are a number of different schemes for defining inheritance,

but they typically work by propagating information down the class tree; that is,

something (e.g., a method or a variable) that is defined at one class is also avail-

able at its subclasses.

When they first begin working with RDFS, there is a tendency for OO program-

mers to expect inheritance to work the same way. This tendency results from an

“obvious” mapping from RDFS to OOP in which an rdfs:Class corresponds to a

Class in OOP, a property in RDFS corresponds to a variable in OOP, and in which

the assertion

P rdfs:domain C.

corresponds to the definition of the variable corresponding to P being defined at

class C. From this “obvious” mapping comes an expectation that these definitions

should inherit in the same way that variable definitions inherit in OOP.

But in RDFS, there is no notion of inheritance per se; the only mechanism at work

in RDFS is inference. The inference rule in RDFS that most closely corresponds

to the OO notion of inheritance is the subclass propagation rule: that the mem-

bers of a subclass are also members of a class. The ramifications of this rule for

instance correspond to what one would expect from inheritance. Since an instance

of a subclass is also an instance of the parent class, then anything we say about

(Continued)
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members of the parent class will necessarily hold for all instances of the subclass;

this is consistent with usual notions of inheritance.

The interaction between rdfs:domain and rdfs:subClassOf, on the other

hand, is more problematic. Using to the “obvious” interpretation, we asserted that

the variable maidenName was defined at MarriedWoman and then inferred that it

was defined at a class higher in the tree—namely, Woman. Seen from an OO point

of view, this interaction seems like inheritance up the tree—in other words, just the

opposite of what is normally expected of inheritance in OOP.

The fallacy in this conclusion comes from the “obvious” mapping of rdfs:domain

as defining a variable relative to a class. In the Semantic Web, because of the AAA

slogan, a property can be used anywhere, and it must be independent of any class.

The property maidenName was, by design, always available for any resource in the

universe (including members of the class Woman); the assertion or inference of

rdfs:domain made no change in that respect. That is, it is never accurate in the

Semantic Web to say that a property is “defined for a class.” A property is defined

independently of any class, and the RDFS relations specify which inferences can

be correctly made about it in particular contexts.

RDFS MODELING COMBINATIONS AND PATTERNS

The inference rules for RDFS are few in number and quite simple. Nevertheless,

their effect can be quite subtle in the context of shared information in the

Semantic Web. In this section, we outline a number of patterns of use of the

basic RDFS features, illustrating each one with a simple example.

Set Intersection

It is not uncommon for someone modeling in RDFS to ask whether some

familiar notions from logic are available. “Can I model set intersection in

RDFS?” is a common question. The technically correct answer to this question

is simply “no.” There is no explicit modeling construct in RDFS for set inter-

section (or for set union). However, when someone wants to model intersec-

tions (or unions), they don’t always need to model them explicitly. They often
only need certain particular inferences that are supported by these logical

relations. Sometimes these inferences are indeed available in RDFS through

particular design patterns that combine the familiar RDFS primitives in

specific ways.

In the case of intersection in particular, one of the inferences someone might

like to draw is that if a resource x is in C, then it is also in both A and B. Expressed
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formally, the relationship they are expressing is that C�A\B. This inference can be

supported by making C a common subclass of both A and B, as follows:

C rdfs:subClassOf A.
C rdfs:subClassOf B.

How does this support an intersection-like conclusion? From the inference rule
governing rdfs:subClassOf, it is evident that from the triple

x rdf:type C.

We can infer

x rdf:type B.
x rdf:type A.

as desired. Notice that we can only draw the inferences in one direction;

from membership in C, we can infer membership in A and B. But from mem-

bership in A and B, we cannot infer membership in C. That is, we cannot express

A \ B � C. This is the sense in which RDFS cannot actually express set inter-
section; it can only approximate it by supporting the inferencing in one

direction.

EXAMPLE Hospital Skills

Suppose we are describing the staff at a hospital. There are a number of different jobs

and people who fill them, including nurses, doctors, surgeons, administrators,

orderlies, volunteers, and so on. A very specialized role in the hospital is the Surgeon.

Among the things we know about surgeons is that they are members of the hospital

staff. They are also qualified physicians. Logically, we would say that Surgeon � Staff

\ Physician—that is, Surgeon is a subset of those people who are both staff

members and physicians.

Notice that we don’t want to say that every staff physician is a surgeon, so the

set inclusion goes only one way. From this statement, we want to be able to infer that

if Kildare is a surgeon, then he is also a member of the staff, and he is a physician.

If we say

:Surgeon rdfs:subClassOf :Staff.
:Surgeon rdfs:subClassOf :Physician.
:Kildare rdf:type :Surgeon.

then we can infer that

:Kildare rdf:type :Staff.
:Kildare rdf:type :Physician.

We cannot make the inference the other way; that is, if we were to assert that Kildare is a

physician and member of the staff, no RDFS rules are applicable, and no inferences are

drawn. This is appropriate; consider the case in which Kildare is a psychiatrist. As such,
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he is both a member of the staff and a physician, but it is inappropriate to conclude that

he must be a surgeon. (OWL, Chapter 10, provides means for making it so that this

conclusion would hold, but RDFS does not.)

Property Intersection

In RDFS, properties are treated in a way analogous to the treatment of classes,

and all the same operations and limitations apply. Even though it might seem

unfamiliar to think of a property as a set, we can still use the set combination

terms (intersection, union) to describe the functionality supported for pro-
perties. As was the case for Class intersections and unions, RDFS cannot express

these things exactly, but it is possible to approximate these notions with

judicious use of subPropertyOf.

One of the inferences we can express using subPropertyOf is that one prop-

erty is an intersection of two others, P � R \ S. That is, if we know that two

resources x and y are related by property P,

x P y.

we want to be able to infer both

x R y.
x S y.

EXAMPLE Patients in Hospital Rooms

Suppose we are describing patients in a hospital. When a patient is assigned to a

particular room, we can infer a number of things about the patient: We know that they

are on the duty roster for that room and that their insurance will be billed for that room.

How do we express that both of these inferences come from the single assignment of

a patient to a room?

:lodgedIn rdfs:subPropertyOf :billedFor.
:logdedIn rdfs:subPropertyOf :assignedTo.

Now if patient Marcus is lodgedIn Room101,

:Marcus :lodgedIn :Room101.

we can infer the billing and duty roster properties as well:

:Marcus :billedFor :Room101.
:Marcus :assignedTo :Room101.

Notice that we cannot make the inference in the other direction; that is, if we were to

assert that Marcus is billedFor Room101 and assignedTo Room101, no RDFS rules

are applicable, and no inferences can be drawn.
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Set Union

Using a pattern similar to the one we used for set intersection, we can also

express certain things about set unions in RDFS. In particular, we can express

that A \ B � C. We do this by making C a common superclass of A and B, thus:

A rdfs:subClassOf C.
B rdfs:subClassOf C.

Any instance x that is a member of either A or B is inferred to be also a mem-

ber of C; that is,

x rdf:type A.

or

x rdf:type B.

implies

x rdf:type C.

EXAMPLE All-Stars

In determining the candidates for a season’s All Stars, a league’s rules could state that

they will select among all the players who have been named Most Valuable Player

(MVP), as well as among those who have been top scorers (TopScorer) in their league.

We can model this in RDFS by making AllStarCandidate a common superclass of

MVP and TopScorer as follows:

:MVP rdfs:subClassOf :AllStarCandidate.
:TopScorer rdfs:subClassOf :AllStarCandidate.

Now, if we know that Reilly was named MVP and Kaneda was a TopScorer:

:Reilly rdf:type :MVP.
:Kaneda rdf:type :TopScorer.

then we can infer that both of them are AllStarCandidates

:Reilly rdf:type :AllStarCandidate.
:Kaneda rdf:type :AllStarCandidate.

as desired. Notice that as in the case of intersection, we can only draw the inference in

one direction—that is, we can infer that AllStarCandidate � MVP \ TopScorer, but not

the other way around.

In summary, we can use rdfs:subClassOf to represent statements about intersection

and union as follows:

n C � A \ B (by making C rdfs:subClassOf both A and B)

n C � A \ B (by making both A and B rdfs:subClassOf C).
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Property Union

One can use rdfs:subPropertyOf to combine properties from different sources in a

way that is analogous to the way in which rdfs:subClassOf can be used to combine

classes as a union. If two different sources use properties P and Q in similar ways, then

a single amalgamated property R can be definedwith rdfs:subPropertyOf as follows:

P rdfs:subPropertyOf R.
Q rdfs:subPropertyOf R.

For any pair of resources x and y related by P or by Q

x P y.

or

x Q y.

we can infer that

x R y.

EXAMPLE Merging Library Records

Suppose one library has a table in which it keeps lists of patrons and the books

they have borrowed. It uses a property called borrows to indicate that a patron

has borrowed a book. Another library uses checkedOut to indicate the same relationship.

Just as in the case of classes, there are a number of ways to handle this situation. If we

are sure that the two properties have exactly the samemeaning, we canmake one property

equivalent to another with a creative use of rdfs:subPropertyOf as follows:

Library1:borrows rdfs:subPropertyOf Library2:checkedOut.
Library2:checkedOut rdfs:subPropertyOf Library1:borrows.

Then any relationship that is expressed by one library will be inferred to hold for the other.

In such a case, both properties are essentially equivalent.

If we aren’t sure that the two properties are used in exactly the same way, but we

have an application that we do know wants to treat them as the same, then we use

the Union pattern to create a common superproperty of both, as follows:

Library1:borrows rdfs:subPropertyOf :hasPossession.
Library2:checkedOut rdfs:subPropertyOf :hasPossession.

Using these triples, all patrons and books from both libraries will be related by the

property hasPossession, thus merging information from the two sources.

Property Transfer

When modeling the relationship between information that comes from multiple

sources, a common requirement is to state that if two entities are related by
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some relationship in one source, the same entities should be related by a

corresponding relationship in the other source. This can be accomplished quite

easily in RDFS with a single triple. That is, if we have a property P in one source

and property Q in another source, and we wish to state that all uses of P should

be considered as uses of Q, we can simply assert that

P rdfs:subPropertyOf Q.

Now, if we have any triple of the form

X P Y.

then we can infer that

X Q Y.

It may seem strange to have a design pattern that consists of a single triple, but

this use of rdfs:subPropertyOf is so pervasive that it really merits being called

out as a pattern in its own right.

EXAMPLE Terminology Reconciliation

There are a growing number of standard information representation schemes being

published in RDFS form. Information that has been developed in advance of these

standards (or in a silo away from them) needs to be retargeted to be compliant with

the standard. This process can involve a costly and error-prone search-and-replace

process through all the data sources. When the data are represented in RDF, there is

often an easier option available, using the Property Transfer pattern.

As a particular example, the Dublin Core is a set of standard attributes used to

describe bibliographic information for library systems. One of the most frequently used

Dublin Core terms is dc:creator, which indicates an individual (person or organization)

that is responsible for having created a published artifact.

Suppose that a particular legacy bibliography system uses the term author to denote

the person who created a book. This has worked fine for this system because it was not

intended to classify books that were created without an author, such as compilations

(which instead have an editor).

How can we make this data conformant to the Dublin Core without performing a

costly and error-prone process to copy-and-replace author with dc:creator? This can

be achieved in RDFS with the single triple

:author rdfs:subPropertyOf dc:creator.

Now any individual for which the author property has been defined will now have the

same value defined for the (standard) dc:creator property. The work is done by

the RDFS inference engine instead of by an off-line editing process. In particular, this

means that legacy applications that are using the author property can continue to

operate without modification, while newer, Dublin Core–compliant applications can use

the inferred data to operate in a standard fashion.
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CHALLENGES

Each of the preceding patterns demonstrates the utility of combining one

or more RDFS constructs to achieve a particular modeling goal. In this

section, we outline a number of modeling scenarios that can be addressed

with these patterns and show how they can be applied to address these

challenges.

Term Reconciliation

One of the most common challenges in terminology management is the resolu-

tion of terms used by different agents who want to use their descriptions

together in a single federated application. For example, suppose that one agent
uses the word analyst, and another uses the word researcher. There are a num-

ber of relationships that can hold between these two usages; we will examine a

number of common relations as a series of challenges.

Challenge 2 How do we then enforce the assertion that any member of the one class will

automatically be treated as a member of the other? There are a number of

approaches to this situation, depending on the details of the situation. All of

them can be implemented using the patterns we have identified so far.

SOLUTION

Let’s first take the case in which we determine that a particular term in one

vocabulary is fully subsumed by a term in another. For example, we determine

that a researcher is actually a special case of an analyst. How can we represent

this fact in RDFS?

First, we examine the inferences we want RDFS to draw, given this information.

If a researcher is a special case of an analyst, then all researchers are also analysts.

We can express this sort of “IF/THEN” relationship with a single rdfs:subClassOf

relationship, thus:

:Researcher rdfs:subClassOf :Analyst.

Now any resource that is a Researcher, such as

:Wenger rdf:type :Researcher.

will be inferred to be an Analyst as well:

:Wenger rdf:type :Analyst.

If the relationship happens to go the other way around (that is, all analysts

are researchers), the rdfs:subClassOf triple can be reversed accordingly.

108 CHAPTER 6 RDF Schema



Challenge 3 What if the relationship is more subtle? Suppose there is considerable semantic

overlap between the two concepts analyst and researcher, but neither concept
is defined in a sharp, formal way. It seems that there could be some analysts who

are not researchers, and vice versa. Nevertheless, for the purposes of the federated

application, we want to treat these two entities as the same. What can we do?

SOLUTION

In such a case, we can use the Union pattern outlined previously. We can

define a new term (for the federated domain) that is not defined in either of

the sources, such as investigator. Then we effectively define investigator as
the union of researcher and analyst, using the common superproperty idiom:

:Analyst rdfs:subClassOf :Investigator.
:Researcher rdfs:subClassOf :Investigator.

Described this way, we have made no commitment to a direct relationship

between analyst and researcher, but we have provided a federated handle for

speaking of the general class of these entities.

Challenge 4 At the other extreme, suppose that we determine that the two classes really

are identical in every way—that these two terms really are just two words

for the same thing. In terms of inference, we would like any member of

one class to be a member of the other, and vice versa.

SOLUTION

RDFS does not provide a primitive statement of class equivalence, but the same
result can be achieved with creative use of rdfs:subClassOf:

:Analyst rdfs:subClassOf :Researcher.
:Researcher rdfs:subClassOf :Analyst.

This may seem a bit paradoxical, especially to someone who is accustomed to

object-oriented programming, but the conclusions based on RDFS inferencing

are clear. For example, if we know that

:Reilly rdf:type :Researcher.
:Kaneda rdf:type :Analyst.

then we can infer the other statements:

:Reilly rdf:type :Analyst.
:Kaneda rdf:type :Researcher.
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In effect, the two rdfs:subClassOf triples together (or, indeed, any cycle of

rdfs:subClassOf triples) assert the equivalence of the two classes.

Instance-Level Data Integration

Suppose you have contributions to a single question coming from multiple

sources. In the case where the question determines which instances are of inter-

est, there is a simple way to integrate them using rdfs:subClassOf. We will give

an example from a simplified military domain.

A Command-and-Control Mission Planner wants to determine where ord-
nance can be targeted or, more specifically, where it cannot be targeted.

There are a number of different sources of information that contribute to

this decision. One source provides a list of targets and their types, some

of which must never be targeted (civilian facilities like churches, schools,

and hospitals). Another source provides descriptions of airspaces, some of

which are off-limits (e.g., politically defined no-fly zones). A target is deter-

mined to be off-limits if it is excluded on the grounds of either of these

data sources.

Challenge 5 Define a single class whose contents will includes all the individuals from all

of these data sources (and any new ones that are subsequently discovered).

SOLUTION

The solution is to use the Union construction to join together the two informa-
tion sources into a single, federated class.

fc:CivilianFacility rdfs:subClassOf cc:OffLimits.
space:NoFlyZone rdfs:subClassOf cc:OffLimits.

Now any instance from either the facility descriptions or the airspace des-

criptions that have been identified as restricted will be inferred to have

cc:OffLimitsTarget.

Readable Labels with rdfs:label

Resources on the Semantic Web are specified by URIs, which provide a globally

scoped unique identifier for the resource. But URIs are not particularly attrac-

tive or meaningful to people. RDFS provides a built-in property, rdfs:label,

whose intended use is to provide a printable name for any resource. This

provides a standard way for presentation engines (e.g., webpages or desktop

applications) to display the print name of a resource.

Depending on the source of the RDF data that are being displayed, there

might be another source for human-readable names for any resource. One solu-

tion would be to change the display agent to use a particular display property
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for each resource. A simpler solution can be done entirely using the semantics

of RDFS, through a combination of the property union and property transfer

patterns.

Suppose we have imported RDF information from an external form,

such as a database or spreadsheet. There are two classes of individuals

defined by the import: Person and Movie. For Person, a property called

personName is defined that gives the name by which that person is profes-

sionally known. For Movie, the property called movieTitle gives the title
under which the movie was released. Some sample data from this import

might be as follows:

:Person1 :personName "James Dean".
:Person2 :personName "Elizabeth Taylor".
:Person3 :personName "Rock Hudson".
:Movie1 :movieTitle "Rebel Without a Cause".
:Movie2 :movieTitle "Giant".
:Movie3 :movieTitle "East of Eden".

Challenge 6 We would like to use a generic display mechanism, which uses the standard

property rdfs:label to display information about these people and movies.

How can we use RDFS to achieve this?

SOLUTION

The answer is to define each of these properties as subproperties of rdfs:label

as follows:

:personName rdfs:subPropertyOf rdfs:label.
:movieTitle rdfs:subPropertyOf rdfs:label.

When the presentation engine queries for rdfs:label of any resource, by the

rules of RDFS inferencing, it will find the value of personName or movieTitle,
depending on which one is defined for a particular individual. There is no need

for the presentation engine to include any code that understands the (domain-

specific) distinction between Person and Movie.

Data Typing Based on Use

Suppose a shipping company has a fleet of vessels that it manages. The fleet

includes new vessels that are under construction, vessels that are being

repaired, vessels that are currently in service, and vessels that have been retired

from service. The information that the company keeps about its ships might

include the information in Table 6-1.
The information in the table can be expressed in RDF triples in the manner

outlined in Chapter 3. Each row corresponds to a resource of type ship:Vessel;
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triples express the information that appears in the body of the table, such as the

following:

ship:Berengaria ship:maidenVoyage "Dec. 16, 1946".
ship:QEII ship:nextDeparture "Mar 4, 2010".

In addition to the class ship:Vessel, we can have subclasses that correspond to

the status of the ships, such as the following:

ship:DeployedVessel rdfs:subClassOf ship:Vessel.
ship:InServiceVessel rdfs:subClassOf ship:Vessel.
ship:OutOfServiceVessel rdfs:subClassOf ship:Vessel.

A DeployedVessel is one that has been deployed sometime in its lifetime; an

InServiceVessel is one that is currently in service; and an OutOfServiceVessel

is one that is currently out of service (for any reason, including retired ships and

ships that have not been deployed).

Challenge 7 How can we automatically classify each vessel into more specific subclasses,

depending on the information we have about it in Table 6-1? For instance, if a

vessel has had a maiden voyage, then it is a ship:DeployedVessel. If its next
departure is set, then it is an ship:InServiceVessel. If it has a decommission

date or a destruction date, then it is an ship:OutOfServiceVessel.

SOLUTION

We can enforce these inferences using rdfs:domain as follows:

ship:maidenVoyage rdfs:domain ship:DeployedVessel.
ship:nextDeparture rdfs:domain ship:InServiceVessel.

Table 6-1 Ships

Name
Maiden
Voyage

Next
Departure

Decommission
Date

Destruction
Date Commander

Berengaria June 16,

1913

1938 Johnson

QEII May 2,

1969

March 4,

2010

Warwick

Titanic April 10,

1912

April 14, 1912 Smith

Constitution July 22,

1798

January 12,

2009

Preble
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ship:decommissionedDate rdfs:domain ship:OutOfServiceVessel.
ship:destructionDate rdfs:domain ship:OutOfServiceVessel.

The whole structure is shown in Figure 6-3. Vessel has three subclasses:

DeployedVessel, InServiceVessel, and OutOfServiceVessel. Each of these is

in the domain of one or more of the properties maidenVoyage, nextDeparture,

decommissionedDate, and destructionDate, as shown in the preceding triples

and in Figure 6-3. Four instances are shown; maidenVoyage is specified for all

four of them, so all of them have been classified as DeployedVessel. QEII and

Constitution have nextDeparture dates specified, so these two are classified

as InServiceVessel. The remaining two vessels, Titanic and Berengaria, have

specified destructionDate and decommissionedDate, respectively, and thus are

classified as OutOfServiceVessel.

maidenVoyage

nextDeparture

destructionDate

decommissionedData

rdfs:domain

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOf

rdfs:domain

rdf:type

rdf:typerdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdfs:domain

rdfs:domain

InServiceVessel

DeployedVesselVessel

outOfServiceVessel
QEII

Constitution

Titanic Berengaria

maidenVoyage = 1969-05-02
nextDeparture = 2010-03-04

maidenVoyage = 1798-07-22
nextDeparture = 2009-01-12

destructionDate = 1912-04-14
maidenVoyage = 1912-04-10

decommissionedDate = 1938-01...
maidenVoyage = 1913-06-16

FIGURE 6-3

Inferring classes of vessels from the information known about them.
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Challenge 8 All of these inferences concern the subject of the rows, that is, the vessels

themselves. It is also possible to draw inferences about the entities in the
other table cells.

How can we express the fact that the commander of a ship has the rank

of Captain?

SOLUTION

We express ranks as classes, as follows:

ship:Captain rdfs:subClassOf ship:Officer.
ship:Commander rdfs:subClassOf ship:Officer.
ship:LieutenantCommander rdfs:subClassOf ship:Officer.
ship:Lieutenant rdfs:subClassOf ship:Officer.
ship:Ensign rdfs:subClassOf ship:Officer.

Now we can express the fact that a ship’s commander has rank Captain with

rdfs:range, as follows:

ship:hasCommander rdfs:range ship:Captain.

From the information in Table 6-1, we can infer that all of Johnson, Warwick,

Black, and Montgomery are members of the class ship:Captain. These infer-

ences, as well as the triples that led to them, can be seen in Figure 6-4.

Officer

Captain

rdfs:subClassOf

rdfs:range

hasCommander hasCommander hasCommander hasCommander

Warwick Preble Smith Johnson

BerengariaTitanicConstitutionQEII

hasCommander

rdf:typerdf:typerdf:typerdf:type

FIGURE 6-4

Inferring that the commanders of the ships have rank “Captain.”
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Filtering Undefined Data

A related challenge is to sort out individuals based on the information that

is defined for them. The set of individuals for which a particular value is

defined should be made available for future processing; those for which it

is undefined should not be processed.

Challenge 9 In the preceding example, the set of vessels for which nextDeparture is

defined could be used as input to a scheduling system that plans group tours.

Ships for which no nextDeparture is known should not be considered.

SOLUTION

It is easy to define the set of vessels that have nextDeparture specified by using

rdfs:domain. First, define a class of DepartingVessels that will have these

vessels as its members. Then define this to be the domain of nextDeparture:

ship:DepartingVessel rdf:type rdfs:Class.
ship:nextDeparture rdfs:domain ship:DepartingVessel.

From Table 6-1, only the Constitution and the QEII are members of the class

ship:DepartingVessels and can be used by a scheduling program (see Figure 6-5).

RDFS and Knowledge Discovery

The use of rdfs:domain and rdfs:domain differs dramatically from similar

notions in other modeling paradigms. Because of the inference-based semantics

Vessel

DepartingVessel
rdfs:label = Departingvessel

rdf:typerdf:type

rdfs:domain

rdfs:subClassOf
nextDeparture

Constitution QEII
maidenVoyage = 1798-07-22
nextDeparture = 2009-01-12

maidenVoyage = 1969-05-02
nextDeparture = 2010-03-04

FIGURE 6-5

Ships with a nextDeparture specified are DepartingVessels.
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of RDFS (and OWL), domains and ranges are not used to validate information (as

is the case, for example, in OO modeling and XML) but instead are used to

determine new information based on old information. We have just seen

how this unique aspect of rdfs:domain and rdfs:range support particular uses

of filtering and classifying information.

These definitions are among the most difficult for beginning Semantic Web

modelers to come to terms with. It is common for beginning modelers to find

these tools clumsy and difficult to use. This difficulty can be ameliorated to
some extent by understanding that RDFS in general, and domain and range in

particular, are best understood as tools for knowledge discovery rather than

knowledge description. On the Semantic Web, we don’t know in advance

how information from somewhere else on the Web should be interpreted in

a new context. The RDFS definitions of domain and range allow us to discover

new things about our data based on its use.

What does this mean for the skillful use of domain and range in RDFS?

They are not to be used lightly—that is, merely as a way to bundle together
several properties around a class. Filtering results such as those shown

in these challenge problems are the result of the use of domain and range.

Proper use of domain and range must take these results into account.

Recommended use of domain and range goes one step further; its use is

in one of these patterns, where some particular knowledge filtering or dis-

covery pattern is intended. When used in this way (e.g., using domain to

describe which of the ships are departing), it is guaranteed that the mean-

ing of domain and range will be appropriate even in a web setting.

MODELING WITH DOMAINS AND RANGES

Although RDFS has considerable applicability in data amalgamation, and the sim-

plicity of its small number of axioms makes it compact and easy to implement,

there are some confusions that arise even in very simple modeling situations

when using RDFS.

Multiple Domains/Ranges

In our shipping example, we had two definitions for the of nextDeparture

domain:

ship:nextDeparture rdfs:domain DepartingVessel.
ship:nextDeparture rdfs:domain InServiceVessel.

What is the interpretation of these two statements? Is the nextDeparture domain

DepartingVessel, InServiceVessel, or both? What does this sort of construc-

tion mean?
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The right way to understand what a statement or set of statements means in

RDFS is to understand what inferences can be drawn from them. Let’s consider

the case of the QEII, for which we have the following asserted triples:

ship:QEII ship:maidenVoyage "May 2, 1969".
ship:QEII ship:nextDeparture "Mar 4, 2010".
ship:QEII ship:hasCommander Warwick.

The rules of inference for rdfs:domain allow us to draw the following

conclusions:

ship:QEII rdf:type ship:DepartingVessel .
ship:QEII rdf:type ship:InServiceVessel.

Each of these conclusions is drawn from the definition of rdfs:domain, as

applied, respectively, to each of the domain declarations just given. This behav-

ior is not a result of a discussion of “what will happen when there are multiple

domain statements?” but rather a simple logical conclusion based on the defini-

tion of rdfs:domain.
How can we interpret these results? Any vessel for which a nextDeparture is

specified will be inferred to be a member (i.e., rdf:type) of both Departing

Vessel and InServiceVessel classes. Effectively, any such vessel will be inferred

to be in the intersection of the two classes specified in the domain statements.

This is something that many people find counterintuitive, even though it is

“correct” in RDFS.

In object-oriented modeling, when one asserts that a property (or field, or variable, or

slot) is associated with a class (as is done by rdfs:domain), the intuition is that “it is

now permissible to use this property to describe members of this class.” If there are

two such statements, then the intuitive interpretation is that “it is now permissible to

use this property with members of either of these classes.” Effectively, multiple

domain declarations are interpreted in the sense of set union: You may now use this

property to describe any item in the union of the two specified domains. For some-

one coming in with this sort of expectation, the intersection behavior of RDFS can be

something of a surprise.

This interaction makes it necessary to exercise some care when modeling
information with the expectation that it will be merged with other information.

Let’s suppose we have another modeling context in which a company is manag-

ing a team of traveling salespeople. Each salesperson has a schedule of business

trips. Some of the triples that define this model are as follows:

sales:SalesPerson rdfs:subClassOf foaf:Person.
sales:sells rdfs:domain sales:SalesPerson.
sales:sells rdfs:range sales:ProductLine.
sales:nextDeparture rdfs:domain sales:SalesPerson.
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That is, we have a sales force that covers certain ProductLines; each member

travels on a regular basis, and it is useful for us to track the date of the next

departure of any particular SalesPerson.

Suppose we were to merge the information for our sales force management

with the schedules of the oceanliners. This merge becomes interesting if we

map some of the items in one model to items in another. An obvious candidate

for such a mapping is between sales:nextDeparture and ship:nextDeparture.

Both refer to dates, and the intuition is that they specify the next departure date
of something or someone. So a simple connection to make between the two

models would be to link these two properties, such as the following:

sales:nextDeparture rdfs:subPropertyOf ship:nextDeparture.
ship:nextDeparture rdfs:subPropertyOf sales:nextDeparture.

using the mutual subPropertyOf pattern. The intuition here is that the two uses
of nextDeparture, one for ships and the other for sales, are in fact the same.

But wait! Let’s see what inferences are drawn from this merger. Suppose we

have a triple that describes a member of the sales force:

sales:Johannes sales:nextDeparture "May 31, 2008".

and we already have the triple about the QEII:

ship:QEII ship:nextDeparture "Mar 4, 2010".

What inferences can we draw from these two triples? Using rdfs:subPropertyOf

inferences first, then rdfs:domain inferences, and finally using the rdfs:

subClassOf triple with foaf:Person, we get the following inferred triples:

sales:Johannes ship:nextDeparture "May 31, 2008" .
ship:QEII sales:nextDeparture "Mar 4, 2010".
sales:Johannes rdf:type ship:DepartingVessel.
ship:QEII rdf:type sales:SalesPerson.
ship:QEII rdf:type foaf:Person.

These inferences start off innocently enough, but they become more and more

counterintuitive as they go on, and eventually (when the QEII is classified as a

foaf:Person) become completely outrageous (or perhaps dangerously mislead-

ing, especially given that the Monarch herself might actually be a foaf:Person,

causing the inferences to confuse the Monarch with the ship named after

her). The asserted triples, and the inferences that can be drawn from them,

are shown in Figure 6-6.

It is easy to lay blame for this unfortunate behavior at the feet of the definition
of rdfs:domain, but to do so would throw out the baby with the bathwater. The

real issue in this example is that we havemade amodeling error. The error resulted

from the overzealous urge to jump to the conclusion that two properties should

be mapped so closely to each other. The ramifications of using subPropertyOf

(or any other RDFS construct) can be subtle and far-reaching.
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In particular, when each of these models stated its respective domain and

range statements about sales:nextDeparture and ship:nextDeparture, respec-

tively, it was saying, “Whenever you see any individual described by sales:

nextDeparture (resp. ship:nextDeparture), that individual is known to be of

type sales:SalesPerson (resp. ship:DepartingVessel).” This is quite a strong
statement, and it should be treated as such. In particular, it would be surprising

if two properties defined so specifically would not have extreme ramifications

when merged.

So what is the solution? Should we refrain from merging properties? This is

hardly a solution in the spirit of the Semantic Web. Should we avoid making

strong statements about properties? This will not help us to make useful mod-

els. Should we change the RDFS standard so we can’t make these statements?

This is a bit extreme, but as we shall see, OWL does provide some more subtle
constructs for property definitions that allow for finer-grained modeling. Rather,

the solution lies in understanding the source of the modeling error that is at the

heart of this example: We should refrain from merging things, like the two

notions of nextDeparture, whose meanings have important differences.

Using the idioms and patterns of RDFS shown in this chapter, there are more

things we can do, depending on our motivation for the merger. In particular, we

can still merge these two properties but without making such a strong state-

ment about their equivalence.
If, for instance, we just want to merge the two notions of nextDeparture to

drive a calendar application that shows all the departure dates for the sales force

and the ocean liner fleet, then what we really want is a single property that will

Ships:nextDepature Sales:nextDeparture

Ships:DepartingVessel
Sales:SalesPerson

foaf:Person

Sales:Johannes

Ships:QEII

rdf:typerdf:type

rdf:type

rdf:type

rdfs:domain rdfs:subClassOf

rdfs:subPropertyOf

rdfs:domain

FIGURE 6-6

Inferences resulting from merging two notions of nextDeparture.
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provide us the information we need (as we did in the property union pattern).

Rather than mapping the properties from one domain to another, instead we

map both properties to a third, domain-neutral property, thus:

ship:nextDeparture rdfs:subPropertyOf cal:nextDeparture.
sales:nextDeparture rdfs:subPropertyOf cal:nextDeparture.

Notice that the amalgamating property cal:nextDeparture doesn’t need any

domain information at all. After all, we don’t need to make any (further) infer-

ences about the types of the entities that it is used to describe. Now we can

infer that

sales:Johannes cal:nextDeparture "May 31, 2008" .
ship:QEII cal:nextDeparture "Mar 4, 2010".

A single calendar display, sorted by the property cal:nextDeparture, will show

these two dates, but no further inference can be made. In particular, no infer-

ences will be made about considering the QEII as a member of the sales force

or Johannes as a sailing vessel.

What can we take from this example into our general Semantic Web model-

ing practice? Even with a small number of primitives, RDFS provides consider-

able subtlety for modeling relationships between different data sources. But

with this power comes the ability to make subtle and misleading errors. The
way to understand the meaning of modeling connections is by tracing the infer-

ences. The ramifications of any modeling mapping can be worked through by

following the simple inference rules of RDFS.

NONMODELING PROPERTIES IN RDFS

In addition to the properties described so far, RDFS also provides a handful of

properties that have no defined inference semantics—that is, there are no infer-
ences that derive from them. We already saw one example of such a property,

rdfs:label. No inferences are drawn from rdfs:label, so in that sense it has no

semantics. Nevertheless, it does by convention have an operational semantics in

that it describes the ways in which display agents interact with the model.

Cross-Referencing Files: rdfs:seeAlso

Every resource in a Semantic Web model is specified by a URI that can also be

dereferenced and used as a URL. In the case where this URL resolves to a real

document, this provides a place where defining information about a resource
can be stored.

In some contexts, it is useful to include some supplementary information

about a resource for its use in a certain context. This is usually meant to be

other documents that might help explain the entity—for example, we might

include a pointer to a Wikipedia entry, or a pointer to related data (e.g., if the
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resource corresponds to a table from a database, the supplementary information

could be the other tables from the same database) or even to another RDF or

RDFS file that contains linked information. For such cases, rdfs:seeAlso pro-

vides a way to specify the web location of this supplementary information

(i.e. it should be a URI, not a human-readable property). rdfs:seeAlso has no

formal semantics, so the precise behavior of any processor when it encounters

rdfs:seeAlso is not specified. A common behavior of tools that encounter

rdfs:seeAlso links is to expose those links in a browser or application interface
through which the RDFS document is being used.

Organizing Vocabularies: rdfs:isDefinedBy

Just as rdfs:seeAlso can provide supplementary information about a resource,

rdfs:isDefinedBy provides a link to the primary source of information about

a resource. This allows modelers to specify where the definitional description

of a resource can be found. rdfs:isDefinedBy is defined in RDF to be a
rdfs:subPropertyOf of rdfs:seeAlso.

Model Documentation: rdfs:comment

Just as in any computer language (modeling languages, markup languages, or

programming languages), sometimes it is helpful if a document author can leave

natural language comments about a model for future readers to see. Since RDFS

is implemented entirely in RDF, the comment feature is also implemented in
RDF. To make a comment on some part of a model, simply assert a triple using

the property rdfs:comment as a predicate. For example:

sales:nextDeparture rdfs:comment "This indicates the next
planned departure date for a salesperson."

SUMMARY

RDFS is the schema language for RDF; it describes constructs for types of

objects (Classes), relating types to one another (subClasses), properties that

describe objects (Properties), and relationships between them (subProperty).

The Class system in RDFS includes a simple and elegant notion of inheritance,

based on set inclusion; one class is a subclass of another means that instances

of the one are also instances of the other.
The RDFS language benefits from the distributed nature of RDF by being

expressed in RDF itself. All schema information (classes, subclasses, subproper-

ties, domain, range, etc.) is expressed in RDF triples. In particular, this makes

schema information, as well as data, subject to the AAA slogan: Anyone can

say Anything about Any topic—even about the schema.
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The semantics of RDFS is expressed through the mechanism of inferencing;

that is, the meaning of any construct in RDFS is given by the inferences that can

be inferred from it. For example, it is this simple but powerful mechanism for

specifying semantics that allows for the short and elegant definition of subclass

and subproperty.

RDFS also includes the constructs rdfs:domain and rdfs:range to describe

the relationship between properties and classes. The meanings of these con-

structs are given by very simple rules, but these rules have subtle and far-reaching
impact. The rules may be simple, but the statements are powerful.

Even with its small set of constructs and simple rules, RDFS allows for the

resolution of a wide variety of integration issues. Whenever you might think

of doing a global find-and-replace in a set of structured data, consider using

rdfs:subPropertyOf or rdfs:subClassOf instead. It may seem trivial to say that

one should merge only entities from multiple sources that don’t have important

differences. Using the inference mechanism of RDFS, we can determine just

what happens when we do merge things and judge whether the results are
desirable or dangerous. Although RDFS does not provide logical primitives like

union and intersection, it is often possible to achieve desired inferences by

using specific patterns of subClassOf and subPropertyOf. RDFS provides a

framework through which information can flow; we can think of subClassOf

and subPropertyOf as the IF/THEN facility of semantic modeling. This utility

persists even when we move on to modeling in OWL. In fact, using subClassOf

in this way provides a cornerstone of OWL modeling.

When used in careful combination, the constructs of RDFS are particularly
effective at defining how differently structured information can be used

together in a uniform way.

Fundamental Concepts

The following fundamental concepts were introduced in this chapter.

rdfs:subClassOf—Relation between classes, that the members of one class

are included in the members of the other.

rdfs:subPropertyOf—Relation between properties, that the pairs related

by one property are included in the other.

rdfs:domain and rdfs:range—Description of a property that determines
class membership of individuals related by that property.

Logical operations (Union, Intersection, etc.) in RDFS—RDFS constructs

can be used to simulate certain logical combinations of sets and

properties.

122 CHAPTER 6 RDF Schema



CHAPTER

7RDFS-Plus

RDFS provides a very limited set of inference capabilities that, as we have seen,

have considerable utility in a Semantic Web setting for merging information from

multiple sources. In this chapter, we take the first step toward the Web Ontology

Language OWL, in which more elaborate constraints on how information is to be

merged can be specified. We have selected a particular set of OWL constructs to

present at this stage. This set was selected to satisfy a number of goals:

n Pedagogically, these constructs constitute a gentle addition to the con-

structs that are already familiar from RDFS, increasing the power of the

language without making a large conceptual leap from RDFS.

n Practically, we have found that this set of OWL constructs has considerable

utility in the information integration projects we have done. In fact, it is

much easier to find and describe case studies using RDFS plus this set of

OWL constructs than it is to find case studies that use RDFS by itself.

n Computationally, this subset of OWL can be implemented using a wide

variety of inferencing technologies, lessening the dependency between

the Semantic Web and any particular technology.

For these reasons, we feel that this particular subset will have value beyond the

pedagogical value in this book. We call this subset of OWL RDFS-Plus, because

we see a trend among vendors of Semantic Web tools and Web applications

designers for determining a subset of OWL that is at the same time useful and

can be implemented quickly. We have identified this particular subset via an

informal poll of cutting-edge vendors, and from our own experience with early

adopters of Semantic Web technology.
Just as was the case for RDFS, RDFS-Plus is expressed entirely in RDF. The

only distinction is that there are a number of resources, all in the namespace

owl. The meaning of these resources is specified, as before, by the rules that

govern the inferences that can be made from them.

In the case of RDFS, we saw how the actions of an inference engine could be

used to combine various features of the schema language in novel ways. This 123



trend will continue for RDFS-Plus, but as you might expect, the more constructs

we have to begin with, the more opportunity we have for useful and novel

combinations.

INVERSE

The names of many of the OWL constructs come from corresponding names in

mathematics. Despite their mathematical names, they also have a more com-

mon, everyday interpretation. The idea owl:inverseOf is a prime example; if a

relationship—say, hasParent—is interesting enough to mention in a model, then

it’s a good bet that another relationship—say, hasChild—is also interesting.

Because of the evocative names hasParent and hasChild, you can guess the rela-

tionship between them, but of course the computer can’t. The OWL construct

owl:inverseOf makes the relationship between hasParent and hasChild

explicit, and describes precisely what it means.

In mathematics, the inverse of a function f (usually written as f�1) is the

function that satisfies the property that if f(x) ¼ y, then f�1( y) ¼ x. Similarly

in OWL, the inverse of a property is another property that reverses its direction.

To be specific, we look at the meaning of owl:inverseOf. In OWL, as in

RDFS, the meaning of any construct is given by the inferences that can be drawn

from it. If we have the following triples:

P owl:inverseOf Q .
x P y .

then we can infer that

y Q x .

In the examples in the book, we have already seen a number of possibilities for

inverses, though we haven’t used them so far. In our Shakespeare examples, we

have the triples

lit:Shakespeare lit:wrote lit:Macbeth .
lit:Macbeth lit:setIn geo:Scotland .

If, in addition to these triples, we also state some inverses, such as:

lit:wrote owl:inverseOf lit:writtenBy .
lit:settingFor owl:inverseOf lit:setIn .

then we can infer that

lit:Macbeth lit:writtenBy lit:Shakespeare .
geo:Scotland lit:setingFor lit:Macbeth .

Although the meaning of owl:inverseOf is not difficult to describe, what is the

utility of such a construct in a modeling language? After all, the effect of inverse-

Of can be achieved just as easily by writing the query differently. For instance,
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if we want to know all the plays that are setIn Scotland, we can use the inverse

property settingFor in our query pattern, such as

{geo:Scotland lit:settingfor ?play . }

Because of the semantics of the inverse property, this will give us all plays that

were setIn Scotland.

But we could have avoided the use of the inverse property and simply writ-

ten the query as

{?play lit:setIn geo:Scotland . }

We get the same answers, and we don’t need an extra construct in the modeling

language.

While this is true, owl:inverseOf nevertheless does have considerable utility

in modeling, based on how it can interact with other modeling constructs. In
the next challenge, we’ll see how the Property Union challenge can be

extended using inverses.

Challenge: Integrating Data that Do Not
Want to Be Integrated

In the Property Union challenge, we had two properties, borrows and checked-

Out. We were able to combine them under a single property by making them

both rdfs:subPropertyOf the same parent property, hasPosession. We were
fortunate that the two sources of data happened to link a Patron as the subject

to a Book as the object (i.e., they had the same domain and range). Suppose

instead that the second source was an index of books, and for each book there

was a field specifying the patron the book was signedTo (i.e., the domain and

range are reversed).

Challenge 10 How can we merge signedTo and borrows in a way analogous to how we

merged borrows and checkedOut, given that signedTo and borrows don’t share

good domains and ranges?

SOLUTION

The solution involves a simple use of owl:inverseOf to specify two properties

for which the domain and range do match, as required for the merge. We

define a new property—say, signedOut—as the inverse of signedTo, as

follows:

:signedTo owl:inverseOf :signedOut .

Now we can use the original Property Union pattern to merge signedOut and

borrows into the single hasPossession property:
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:signedOut rdfs:subPropertyOf :hasPossession .
:borrows rdfs:subPropertyOf :hasPossession .

So if we have some data expressed using signedTo, along with data expressed

with borrows, as follows:

:Amit :borrows :MobyDick .
:Marie :borrows :Orlando .
:LeavesOfGrass :signedTo :Jim .
:WutheringHeights :signedTo :Yoshi .

then with the rule for inverseOf, we have the additional triples

:Jim :signedOut :LeavesOfGrass .
:Yoshi :signedOut :WutheringHeights .

and with subPropertyOf, we have

:Amit :hasPossession :MobyDick .
:Marie :hasPossession :Orlando .
:Jim :hasPossession :LeavesOfGrass .
:Yoshi :hasPossession :WutheringHeights .

as desired.

SOLUTION (ALTERNATIVE)

There is a certain asymmetry in this solution; the choice to specify an inverse for

signedTo rather than for hasPossession was somewhat arbitrary. Another solu-

tion that also uses owl:inverseOf and rdfs:subPropertyOf and is just as viable

as the first is the following:

:signedTo :rdfs:subPropertyOf :possessedBy .
:borrows rdfs:subPropertyOf :hasPossession .
:possessedBy owl:inverseOf :hasPossession .

These statements use the same rules for owl:inverseOf and rdfs:subPro-

pertyOf but in a different order, resulting in the same hasPossession tri-
ples. Which solution is better in what situations? How can we tell which

to use?

If all we were concerned with was making sure that the inferences about

hasPossession will be supported, then there would be no reason to prefer

one solution over the other. But modeling in the Semantic Web is not just about

supporting desired inferences but also about supporting reuse. What if someone

else wants to use this model in a slightly different way? A future query is just as

likely to be interested in hasPossession as possessedBy. Furthermore, we might
in the future wish to combine hasPossession (or possessedBy) with another

property. For this reason, one might choose to use both solutions together by

using both inverseOf and subPropertyOf in a systematic way—that is, by
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specifying inverses for every property, regardless of the subPropertyOf level.

In this case, this results in

:signedTo owl:inverseOf :signedOut .
:signedTo rdfs:subPropertyOf :possessedBy .
:signedOut rdfs:subPropertyOf :hasPossession .
:lentTo owl:inverseOf :borrows .
:lentTo rdfs:subPropertyOf :possessedBy .
:borrows rdfs:subPropertyOf :hasPossession .
:possessedBy owl:inverseOf :hasPossession .

The systematicity of this structure can be more readily seen in Figure 7-1.

The attentive reader might have one more concern about the systematicity of

Figure 7-1—in particular, the selection of which properties are the subject of
owl:inverseOf and which are the object (in the diagram, which ones go on

the left or on the right of the diagram) is arbitrary. Shouldn’t there be three

more owl:inverseOf triples, pointing from right to left? Indeed, there should

be, but there is no need to assert these triples, as we shall see in the next

challenge.

Challenge: Using the Modeling Language
to Extend the Modeling Language

It is not unusual for beginning modelers to look at the list of constructs defined

in OWL and say, “There is a feature of the OWL language I would like to use

that is very similar to the ones that are included. Why did they leave it out?

I would prefer to build my model using a different set of primitives.” In many

cases, the extra language feature that they desire is actually already supported

by OWL as a combination of other features. It is a simple matter of using these
features in combination.

possessedBy

signedTo signedOut

hasPossession

lentTo

owl:inverseOf

owl:inverseOf

owl:inverseOf

borrows

rdfs:subPropertyOf

rdfs:subPropertyOf

rdfs:subPropertyOf

rdfs:subPropertyOf

FIGURE 7-1

Systematic combination of inverseOf and subPropertyOf.
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Challenge 11 For example, RDFS allows you to specify that one class is a subClassOf

another, but you might like to think of it the other way around (perhaps
because of the structure of some legacy data you want to work with) and

specify that something is superClassOf something else. That is, you want the

parent class to be the subject of all the definitional triples. Using your own

namespace myowl: for this desired relation, you would like to have the

triples look like this:

:Food myowl:superClassOf :BakedGood;
myowl:superClassOf :Confectionary;
myowl:superClassOf :PackagedFood;
myowl:superClassOf :PreparedFood;
myowl:superClassOf :ProcessedFood .

If we instead use rdfs:subClassOf, all the triples go the other way around;

Food will be the object of each triple, and all the types of Food will be the

subjects.

Since OWL does not provide a superClassOf resource (or to speak more
correctly, OWL does not define any inference rules that will provide any

semantics for a superClassOf resource), what can we do?

SOLUTION

What do we want myowl:superClassOf to mean? For every triple of the form

P myowl:superClassOf Q .

we want to be able to infer that

Q rdfs:subClassOf P .

This can be accomplished simply by declaring an inverse

myowl:superClassOf owl:inverseOf rdfs:subClassOf .

It is a simple application of the rule for owl:inverseOf to see that this accom-

plishes the desired effect. Nevertheless, this is not a solution that many begin-

ning modelers think of. It seems to them that they have no right to modify or
extend the meaning of the OWL language or to make statements about the

OWL and RDFS resources (like rdfs:subClassOf). But remember the AAA slogan

of RDF: Anyone can say Anything about Any topic. In particular, a modeler can

say things about the resources defined in the standard.

In fact, we can take this slogan so far as to allow a modeler to say

rdfs:subClassOf owl:inverseOf rdfs:superClassOf .

This differs from the previous triple in that the subject is a resource in the (stan-

dard) RDFS namespace. The RDF slogan allows a modeler to say this, and

indeed, there is nothing in the standards that will prevent it. However, referring
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to a resource in the RDFS namespace is likely to suggest to human readers of the

model that this relationship is part of the RDFS standard. Since one purpose of a

model is to communicate to other human beings, it is generally not a good idea

to make statements that are likely to be misleading, so we do not endorse this

practice.

Selecting namespaces for resources that extend the capabilities of the OWL
language is a delicate matter; in the next chapter, we will examine a case study

in which this has been done in a careful way.

Challenge: The Marriage of Shakespeare

In a previous chapter, we lamented that even though we had asserted that Anne

Hathaway had married Shakespeare, we did not know that Shakespeare had

married Anne Hathaway. We are now in a position to remedy that.

Challenge 12 How can we infer marriages in the reverse direction from which they are

asserted?

SOLUTION

We could do this by simply declaring bio:married to be its own inverse, thus:

bio:married owl:inverseOf bio:married .

Now any triple that used bio:married would automatically be inferred to hold

in the other direction. In particular, if we asserted

bio:AnneHathaway bio:married lit:Shakespeare .

we could infer that

lit:Shakespeare bio:married bio:AnneHathaway .

This pattern of self-inverses is so common that it has been built into OWL using

a special construct called owl:SymmetricProperty.

SYMMETRIC PROPERTIES

owl:inverseOf relates one property to another. The special case in which these

two properties are the same (as was the case for bio:married for the Shake-

speare example) is common enough that the OWL language provides a special

name for it: owl:SymmetricProperty. Unlike owl:inverseOf, which is a property
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that relates two other properties, owl:SymmetricProperty is just an aspect of a sin-

gle property and is expressed in OWL as a Class.We express that a property is sym-

metric in the same way as we express membership in any class—in other words:

P rdf:type owl:SymmetricProperty .

As usual, the meaning of this statement is given by the inferences that can be

drawn from it. From this triple, we can infer that

P owl:inverseOf P .

So in the case of the marriage of Shakespeare, we can assert that

bio:married rdf:type owl:SymmetricProperty .

Using OWL to Extend OWL

As we describe more and more of the power of the OWL modeling language,

there will be more and more opportunities to define at least some aspects of

a new construct in terms of previously defined constructs. We can use this

method to streamline our presentation of the OWL language. We have seen a

need for this already in figure Figure 7-1, in which all of our inverses are
expressed in one direction but we really need to have them go both ways, as

shown in Figure 7-2.

We asserted the triples from left to right—namely:

:possessedBy owl:inverseOf :hasPossession .
:signedTo owl:inverseOf :signedOut .
:lentTo owl:inverseOf :borrows .

possessedBy

signedTo signedOut

hasPossession

lentTo

owl:inverseOf

owl:inverseOf

owl:inverseOf

borrows

rdfs:subPropertyOf

rdfs:subPropertyOf

rdfs:subPropertyOf

rdfs:subPropertyOf

FIGURE 7-2

Systematic combination of inverseOf and subPropertyOf. Contrast this with Figure 7-1,

with one-directional inverses.

130 CHAPTER 7 RDFS-Plus



But we would like to be able to infer the triples from right to left—namely:

:hasPossession owl:inverseOf :possessedBy.
:signedOut owl:inverseOf :signedTo.
:borrows owl:inverseOf :lentTo.

Challenge 13 How can we infer all of these triples without having to assert them?

SOLUTION

Since we want owl:inverseOf to work in both directions, this can be done

easily by asserting that owl:inverseOf is its own inverse, thus:

owl:inverseOf owl:inverseOf owl:inverseOf .

You might have done a double take when you read that owl:inverseOf is its

own inverse. Fortunately, we now have a more readable and somewhat more

understandable way to say this—namely:

owl:inverseOf rdf:type owl:SymmetricProperty .

In either case, we get the inferences we desire for Figure 7-2, in which the

inverses point both ways. This also means that all the inferences in both

directions will always be found.

TRANSITIVITY

In mathematics, a relation R is said to be transitive if R(a,b) and R(b,c)

implies R(a,c). The same idea is used for the OWL construct owl:Transitive-

Property. Just like owl:SymmetricProperty, owl:TransitiveProperty is a
class of properties, so a model can assert that a property is a member of

the class

P rdf:type owl:TransitiveProperty .

The meaning of this is given by a somewhat more elaborate rule than we have

seen so far in this chapter. Namely, if we have two triples of the form

X P Y .
Y P Z .

then we can infer that

X P Z .
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Notice that there is no need for even more elaborate rules like

A P B .
B P C .
C P D .

implies

A P D .

since this conclusion can be reached by applying the simple rule over and over again.

Some typical examples of transitive properties include ancestor/descendant

(if Victoria is an ancestor of Edward, and Edward is an ancestor of Elizabeth,

then Victoria is an ancestor of Elizabeth) and geographical containment

(if Osaka is in Japan, and Japan is in Asia, then Osaka is in Asia).

Challenge: Relating Parents to Ancestors

A model of genealogy will typically include notions of parents as well as

ancestors, and we’d like them to fit together. But parents are not transitive

(my parents’ parents are not my parents), whereas ancestors are.

Challenge 14 How can we allow a model to maintain consistent ancestry information,

given parentage information.

SOLUTION

Start by defining the parent property to be a subPropertyOf the ancestor prop-

erty, thus:

:hasParent rdfs:subPropertyOf :hasAncestor .

Then declare ancestor (only) to be a transitive property:

:hasAncestor rdf:type owl:TransitiveProperty .

Let’s see how this works on some examples.

:Alexia :hasParent :WillemAlexander .
:WillemAlexander :hasParent :Beatrix .
:Beatrix :hasParent :Wilhelmina .

Because of the subPropertyOf relation between hasParent and hasAncestor and

the fact that hasAncestor is a TransitiveProperty, we can infer that

:Alexia :hasAncestor :WillemAlexander.
:WillemAlexander :hasAncestor :Beatrix.
:Alexia :hasAncestor :Beatrix.
:WillemAlexander :hasAncestor :Wilhelmina.
:Alexia :hasAncestor :Wilhelmina.
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Information about the heritage is integrated, regardless of whether it origi-

nated with hasParent or hasAncestor. Information about hasParent, on

the other hand, is only available as it was directly asserted because it
was not declared to be transitive. The results of this inference are shown in

Figure 7-3.

Challenge: Layers of Relationships

Sometimes it can be somewhat controversial whether a property is transitive

or not. For instance, the relationship that is often expressed by the words

“part of” in English is sometimes transitive (a piston is part of the engine,
and the engine is part of the car; is the piston part of the car?) and sometimes

not (Mick Jagger’s thumb is part of Mick Jagger, and Mick Jagger is part of

the Rolling Stones; is Mick Jagger’s thumb part of the Rolling Stones?). In

the spirit of anticipating possible uses of a model, it is worthwhile to support

both points of view whenever there is any chance that controversy might

arise.

Challenge 15 How can we simultaneously maintain transitive and nontransitive versions

of the partOf information?
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Inferences from transitive properties.
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SOLUTION

We can define two versions of the partOf property in different namespaces (or

with different names) with one a subPropertyOf the other, and with the super-

property declared as transitive:

dm:partOf rdfs:subPropertyOf gm:partOf .
gm:partOf rdf:type owl:TransitiveProperty .

Depending on which interpretation of partOf any particular application needs, it

can query the appropriate property. For those who prefer to think that Mick Jag-

ger’s thumb is not part of the Rolling Stones, the original dm:partOf property is

useful. For those who instead consider that Mick Jagger’s thumb is part of the Roll-

ing Stones, the transitive superproperty gm:partOf is appropriate (see Figure 7-4).

Managing Networks of Dependencies

The same modeling patterns we have been using to manage relationships

(like ancestry), or set containment (like part of) can be used just as well in a

very different setting—namely, to manage networks of dependencies. In the

series of challenges that follow, we will see how the familiar constructs of

rdfs:subPropertyOf, owl:inverseOf, and owl:TransitiveProperty can be com-

bined in novel ways to model important aspects of such networks.

A common application of this idea is in workflow management. In a com-

plex working situation, a variety of tasks must be repeatedly performed in a
set sequence. The idea of workflow management is that the sequence can be

represented explicitly and the progress of each task tracked in that sequence.

Why would someone want to model workflow in a Semantic Web? The answer

is for the same reason one wants to put anything on the web: so that parts of the

workflow can be shared with others, encouraging reuse, review, and publica-

tion of work fragments.
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Different interpretations of partOf.
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Real workflow specifications are far too detailed to serve as examples in a

book, so we will use a simple example to show how it works. Let’s make some

ice cream, using the following recipe:

Slice a vanilla bean lengthwise, and scrape the contents into 1 cup of heavy

cream. Bring the mixture to a simmer, but do not boil.

While the cream is heating, separate three eggs. Add 1/2 cup white sugar,

and beat until fluffy. Gradually add the warm cream, beating constantly.
Return the custard mixture to medium heat, and cook until mixture

leaves a heavy coat on the back of a spatula. Chill well. Combine custard

with 1 cup whole milk, and turn in ice cream freezer according to

manufacturer’s instructions.

First, let’s use a property dependsOn to represent the dependencies between the

steps and define its inverse enables, since each step enables the next in the cor-

rect execution of the workflow:

:dependsOn owl:inverseOf :enables .

Now we can define the dependency structure of the recipe steps:

:SliceBean :enables :HeatCream .
:SeparateEggs :enables :AddSugar .
:AddSugar :enables :BeatEggs
:BeatEggs :enables :GraduallyMix .
:HeatCream :enables :GraduallyMix .
:GraduallyMix :enables :CookCustard .
:CookCustard :enables :Chill .
:Chill :enables :AddMilk .
:AddMilk :enables :TurnInFreezer .

Because of the inverseOf, we can view these steps either in enabling order as

asserted or in dependency order, as show in Figure 7-5.

Challenge 16 For any particular step in the process, we might want to know all the

steps it depends on or all the steps that depend on it. How can we do

this, using the patterns we already know?

SOLUTION

We can use the subPropertyOf/TransitivePropertypattern for each of dependsOn

and enables as follows:

:dependsOn rdfs:subPropertyOf :hasPrerequisite .
:hasPrerequisite rdf:type owl:TransitiveProperty .
:enables rdfs:subPropertyOf :prerequisiteFor .
:prerequisiteFor rdf:type owl:TransitiveProperty .

These relationships can be seen graphically in Figure 7-6.
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From these triples, for instance, we can infer that GraduallyMix has five pre-
requisites—namely:

:GraduallyMix :hasPrerequisite :AddSugar ;
:hasPrerequisite :SeparateEggs ;
:hasPrerequisite :SliceBean ;
:hasPrerequisite :HeatCream ;
:hasPrerequisite :BeatEggs .

Challenge 17 In a more realistic workflow management setting, we wouldn’t just be

managing a single process (corresponding to a single recipe). We would be

managing several processes that interact in complex ways. We could even

TurnInFreezer
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dependsOn

dependsOn

dependsOn

dependsOn

dependsOn

SliceBeanAddSugar

SeparateEggs

HeatCream

dependsOn

dependsOn

BeatEggs
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AddMilk

Chill

CookCustard

GraduallyMix

FIGURE 7-5

Dependencies for homemade ice cream.
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lose track of which steps are in the same procedure. Is there a way to find
out, given a particular step, what the other steps in the same process are?

In our recipe example, can we model the relationship between steps so that

we can connect steps in the same recipe together?

SOLUTION

First, we combine together both of our fundamental relationships (enables and

dependsOn) as common subPropertyOf a single unifying property (neighbor-

Step). We then, in turn, make that a subPropertyOf of a transitive property
(inSameRecipe), shown here in N3 and in Figure 7-7(a).

:dependsOn rdfs:subPropertyOf :neighborStep .
:enables rdfs:subPropertyOf :neighborStep .
:neighborStep rdfs:subPropertyOf :inSameRecipe .
:inSameRecipe rdf:type owl:TransitiveProperty .

What inferences can we draw from these triples for the instance GraduallyMix?

Any directly related step (related by either dependsOn or enables) becomes a

neighborStep, and any combination of neighbors is rolled up with inSame-

Recipe. A few selected inferences are shown here:

:GraduallyMix :neighborStep :BeatEggs ;
:neighborStep :HeatCream ;
:neighborStep :CookCustard .
:CookCustard :neighborStep :Chill ;
:neighborStep :GraduallyMix .

rdf:type

rdfs:subPropertyOf

owl:inverseOf

rdfs:subPropertyOf

rdf:type

prerequisiteFor

enables dependsOn

hasPrerequisite

owl:TransitiveProperty

FIGURE 7-6

Transitive properties hasPrerequisite and prerequisiteFor defined in terms of

dependsOn and enables.
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:GraduallyMix :inSameRecipe :BeatEggs ;
:inSameRecipe :HeatCream ;
:inSameRecipe :CookCustard .
:CookCustard :inSameRecipe :Chill ;
:inSameRecipe :GraduallyMix .

...

:GraduallyMix :inSameRecipe :AddMilk ;
:inSameRecipe :CookCustard ;
:inSameRecipe :TurnInFreezer ;
:inSameRecipe :AddSugar ;
:inSameRecipe :SeparateEggs ;
:inSameRecipe :SliceBean ;
:inSameRecipe :HeatCream ;
:inSameRecipe :GraduallyMix ;
:inSameRecipe :Chill ;
:inSameRecipe :BeatEggs .

All the steps in this recipe have been gathered up with inSameRecipe, as

desired. In fact, any two steps in this recipe will be related to one another by

inSameRecipe, including relating each step to itself. In particular, the triple

:GraduallyMix :inSameRecipe :GraduallyMix .

has been inferred. Although this is, strictly speaking, correct (after all, indeed

GraduallyMix is in the same recipe as GraduallyMix), it might not be what we

actually wanted to know.

Challenge 18 How can we define a property that will relate a recipe step only to the

other steps in the same recipe?

SOLUTION

Earlier we defined two properties, hasPrerequisite and prerequisiteFor, one

looking “downstream” along the dependencies and one looking “upstream.”

:dependsOn rdfs:subPropertyOf :hasPrerequisite .
:hasPrerequisite rdf:type owl:TransitiveProperty .
:enables rdfs:subPropertyOf :prerequisiteFor .
:prerequisiteFor rdf:type owl:TransitiveProperty .

If we join these two together under a common superproperty that is not transi-

tive, we get the following:

:hasPrerequisite rdfs:subPropertyOf :otherStep .
:prerequisiteFor rdfs:subPropertyOf :otherStep .

These relationships are shown diagrammatically in Figure 7-7(b).
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We track the inferences separately for each property. For hasPrerequisite,

we have already seen that we can infer the following:

:GraduallyMix :hasPrerequisite :AddSugar ;
:hasPrerequisite :SeparateEggs ;
:hasPrerequisite :SliceBean ;
:hasPrerequisite :HeatCream ;
:hasPrerequisite :BeatEggs .

For prerequisiteOf, we get the following inferences:

:GraduallyMix :prerequisiteFor :AddMilk ;
:prerequisiteFor :CookCustard ;
:prerequisiteFor :TurnInFreezer ;
:prerequisiteFor :Chill .

Now, for otherStep, we get the combination of these two. Notice that neither

list includes GraduallyMix itself, so it does not appear in this list either.

:GraduallyMix :otherStep :AddMilk ;
:otherStep :CookCustard ;
:otherStep :TurnInFreezer ;
:otherStep :AddSugar ;
:otherStep :SeparateEggs ;
:otherStep :SliceBean ;
:otherStep :HeatCream ;
:otherStep :Chill ;
:otherStep :BeatEggs .

Figure 7-7 shows the two patterns. For inSameRecipe, we have a single transi-

tive property at the top of a subPropertyOf tree; both primitive properties

(enables and dependsOn) are brought together, and any combinations of the result-

ing property (neighborStep) are chained together as a TransitiveProperty

(inSameRecipe). For otherStep, the top-level property itself is not transitive but
is a simple combination (via two subPropertyOf links) of two transitive properties

(hasPrerequisite and prerequisiteFor). Inference for each of these transitive

properties is done separately from the other, and the results combined (without

anymore transitive interaction). Hence, for inSameRecipe, the reflexive triples like

:GraduallyMix :inSameRecipe :GraduallyMix .

are included, whereas for otherStep, they are not.

EQUIVALENCE

RDF provides a global notion of identity that has validity across data sources;

that global identity is the URI. This makes it possible to refer to a single entity
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in a distributed way. But when we want to merge information from multiple

sources controlled by multiple stakeholders, it is not necessarily the case

that any two stakeholders will use the same URI to refer to the same entity. Thus,

in a federated information setting, it is useful to be able to stipulate that two URIs

actually refer to the same entity. But there are different ways in which two enti-

ties can be the same. Some aremore equal than others. RDFS-Plus provides a vari-

ety of notions of equivalence. As with other constructs in OWL, these different
constructs are defined by the inferences they entail.

owl:TransitiveProperty
rdf:type
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(b)

rdfs:subPropertyOf
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FIGURE 7-7

Contrast patterns forinSameRecipe (includes self) andotherStep (excludes self). Both patterns

work from the same input properties dependsOn and enables but yield different results.
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Equivalent Classes

We previously used a simple idiom to express that one class had the same ele-

ments as another; in particular, we asserted two triples

:Analyst rdfs:subClassOf :Researcher .
:Researcher rdfs:subClassOf :Analyst .

to indicate that every Analyst is a Researcher and every Researcher is an Ana-

lyst. As we saw, the rule for rdfs:subClassOf can be applied in each direction to

support the necessary inferences to make every Analyst a Researcher and vice

versa. When two classes are known to always have the same members, we say

that the classes are equivalent. The preceding pattern allows us to express class
equivalence in RDFS, if in a somewhat unintuitive way.

RDFS-Plus provides a more intuitive expression of class equivalence, using

the construct owl:equivalentClass. A single triple expresses class equivalence

in the obvious way:

:Analyst owl:equivalentClass :Researcher .

As with any other construct in RDFS or OWL, the precise meaning of

owl:equivalentClass is given by the inferences that can be drawn. In particular,
if we know that

A owl:equivalentClass B .
r rdf:type A .

then we can infer that

r rdf:type B .

So far, this is just the type propagation rule that we used to define the meaning

of rdfs:subClassOf in Chapter 6. But owl:equivalentClass has another rule as

well—given

A rdfs:subClassOf B .
r rdf:type B .

then we can infer that

r rdf:type A .

That is, the two classes A and B have exactly the same members.

It seems a bit of a shame that something as simple as equivalence requires

two rules to express, especially when the rules are so similar. In fact, this isn’t

necessary; if we observe that

owl:equivalentClass rdfs:type owl:SymmetricProperty .

then there is no need for the second rule; we can infer it from the first rule and
the symmetry of equivalentClass.
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In fact, we don’t actually need any rules at all; if we also assert that

owl:equivalentClass rdfs:subPropertyOf rdfs:subClassOf .

we can use the rules for subPropertyOf and subClassOf to infer everything

about equivalentClass! Let’s see how the rules for OWL, which we have

already learned work for owl:equivalentClass, in the case of the Analyst and

the Researcher.

From the rule about rdfs:subClassOf and the statement of equivalence of
Analyst and Researcher, we can infer that

:Analyst rdfs:subClassOf :Researcher .

But since owl:equivalentClass is symmetric, we can also infer that

:Researcher owl:equivalentClass :Analyst .

and by applying the rule for rdfs:subClassOf once again, we get

:Researcher rdfs:subClassOf :Analyst .

That is, simply by applying what we already know about rdfs:subClassOf and

owl:SymmetricProperty, we can infer both rdfs:subClassOf triples from the

single owl:equivalentClass triple.

Notice that when two classes are equivalent, it only means that the two clas-

ses have the same members. Other properties of the classes are not shared; for

example, each class keeps its own rdfs:label. This means that if these classes

have been merged from two different applications, each of these applications
will still display the class by the original print name; only the members of the

class will change.

Equivalent Properties

We have seen how to use rdfs:subPropertyOf to make two properties behave in

the same way; the trick we used there was very similar to the double subClassOf

trick. We use rdfs:subPropertyOf twice to indicate that two properties are

equivalent.

:borrows rdfs:subPropertyOf :checkedOut .
:checkedOut rdfs:subPropertyOf :borrows .

RDFS-Plus also provides a more intuitive way to express property equivalence,

using owl:equivalentProperty, as follows:

:borrows owl:equivalentProperty :checkedOut .

When two properties are equivalent, we expect that in any triple that uses one

as a predicate, the other can be substituted—that is, for any triple

A borrows B .
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we can infer that

A checkedOut B .

and vice versa. We can accomplish this in a manner analogous to the method

used for owl:equivalentClass. We define owl:equivalentProperty in terms of

other RDFS-Plus constructs.

owl:equivalentProperty rdfs:subPropertyOf rdfs:subPropertyOf.
owl:equivalentProperty rdf:type owl:SymmetricProperty .

Starting with the asserted equivalence of borrows and checkedOut, using these

triples, and the rules for rdfs:subPropertyOf and owl:SymmetricProperty, we
can infer that

:borrows rdfs:subPropertyOf checkedOut .
:checkedOut owl:equivalentProperty borrows .
:checkedOut rdfs:subPropertyOf borrows .

Once we have inferred that borrows and checkedOut are rdfs:subPropertyOf

one another, we can make all the appropriate inferences.
When we express new constructs (like owl:equivalentProperty in this sec-

tion) to constructs we already know (rdfs:subPropertyOf and owl:Symmetric-

Property), we explicitly describe how the various parts of the language fit

together. That is, rather than just noticing that the rule governing owl:equivalent

Property is the same rule as the one that governs rdfs:subPropertyOf (except

that it works both ways!), we can actually model these facts. By making owl:

equivalentProperty a subproperty of rdfs:subPropertyOf, we explicitly assert

that they are governed by the same rule. By making owl:equivalentProperty a
owl:SymmetricProperty, we assert the fact that this rule works in both direct

ions. This makes the relationship between the parts of the OWL language

explicit and, in fact, models them in OWL.

Same Individuals

Class equivalence—that is, owl:equivalentClass—and property equivalence

(own:equivalentProperty) provide intuitive ways to express relationships that

were already expressible in RDFS. In this sense, neither of these constructs

have increased the expressive power of RDFS-Plus beyond what was already

available in RDFS. They have just made it easier to express and clearer to read.

These constructs refer respectively to classes of things and the properties that

relate them.

But when we are describing things in the world, we aren’t only describing
classes and properties; we are describing the things themselves. These are the

members of the classes. We refer to these as individuals. We have encountered

a number of individuals in our examples so far—Wenger the Analyst, Twelfth

Night the Play, Shakespeare the Playwright, Kildare the Surgeon, Kaneda the
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All-Star Player—and any number of things whose class membership has not

been specified—Wales, The Firm, and Moby Dick. But remember the non-

unique naming assumption: Often, our information comes from multiple

sources that might not have done any coordination in their reference to

individuals. How do we handle the situation in which we determine that

two individuals that we originally thought of separately are in fact the same

individual?

In RDFS-Plus, this is done with the single construct owl:sameAs. Our old
friend William Shakespeare will provide us with an example of how owl:sameAs

works. From Chapter 3, we have the following triples about the literary career

of William Shakespeare:

lit:Shakespeare lit:wrote lit:AsYouLikeIt ;
lit:wrote lit:HenryV ;
lit:wrote lit:LovesLaboursLost ;
lit:wrote lit:MeasureForMeasure ;
lit:wrote lit:TwelfthNight ;
lit:wrote lit:WintersTale ;
lit:wrote lit:Hamlet ;
lit:wrote lit:Othello .

Suppose we have at our disposal information from the Stratford Parish Register,

which lists the following information from some baptisms that occurred there.

We will use spr: as the namespace identifier for URIs from the Stratford Parish
Register.

spr:Gulielmus spr:hasFather spr:JohannesShakspere .
spr:Susanna spr:hasFather spr:WilliamShakspere .
spr:Hamnet spr:hasFather spr:WilliamShakspere .
spr:Judeth spr:hasFather spr:WilliamShakspere .

Suppose that our research determines that, indeed, the resources mentioned
here as spr:Gulielmus, spr:WilliamShakspere and lit:Shakespeare all refer

to the same individual, so the answer to the question “Did Hamnet’s father write

Hamlet?” would be “yes.” If we had known that all of these things refer to the

same person in advance of having represented the Stratford Parish Register in

RDF, we could have used the same URI (e.g., lit:Shakespeare) for each occur-

rence of the Bard. But now it is too late; the URIs from each data source have

already been chosen. What is to be done?

First, let’s think about how to pose the question “Did Hamnet’s father write
Hamlet?” We can write this as a graph pattern in SPARQL as follows:

{spr:Hamnet spr:hasFather ?d .
?d lit:wrote lit:Hamlet . }

that is, we are looking for a single resource that links Hamnet to Hamlet via the

two links spr:hasFather and lit:wrote.
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In RDFS-Plus, we have the option of asserting the sameness of two resources.

Let’s start with just one:

spr:WilliamShakspere owl:sameAs lit:Shakespeare .

The meaning of this triple, as always in RDFS-Plus, is expressed by the infer-

ences that can be drawn. The rule for owl:sameAs is quite intuitive; it says that

if A owl:sameAs B, then in any triple where we see A, we can infer the same tri-

ple, with A replaced by B. So for our Shakespeare example, we have that for any
triple of the form

spr:WilliamShakespere P O .

we can infer that

lit:Shakespeare P O .

Similarly, for any triple of the form

S P spr:WilliamShakespeare .

we can infer that

S P lit:Shakespeare .

Also, as we did for owl:equivalentClass and owl:equivalentProperty,

we assert that owl:sameAs is a owl:SymmetricProperty :

owl:sameAs rdf:type owl:SymmetricProperty .

This allows us to infer that

lit:Shakespeare owl:sameAs spr:WilliamShakspere.

so that we can replace any occurrence of lit:Shakespeare with spr:William-

Shakspere as well.

Let’s see how this workswith the triples we know from literary history and the

Register. We list all triples, with asserted triples in Roman and inferred triples in

italics. Among the inferred triples, we begin by replacing lit:Shakespeare with
spr:WilliamShakspere, then continue by replacing spr:WilliamShakspere

with lit:Shakespeare :

lit:Shakespeare lit:wrote lit:AsYouLikeIt ;
lit:wrote lit:HenryV ;
lit:wrote lit:LovesLaboursLost ;
lit:wrote lit:MeasureForMeasure ;
lit:wrote lit:TwelfthNight ;
lit:wrote lit:WintersTale ;
lit:wrote lit:Hamlet ;
lit:wrote lit:Othello .

spr:Gulielmus spr:hasFather spr:JohannesShakspere .
spr:Susanna spr:hasFather spr:WilliamShakspere .
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spr:Hamnet spr:hasFather spr:WilliamShakspere .
spr:Judeth spr:hasFather spr:WilliamShakspere .
spr:WilliamShakspere

lit:wrote lit:AsYouLikeIt ;
lit:wrote lit:HenryV ;
lit:wrote lit:LovesLaboursLost ;
lit:wrote lit:MeasureForMeasure ;
lit:wrote lit:TwelfthNight ;
lit:wrote lit:WintersTale ;
lit:wrote lit:Hamlet ;
lit:wrote lit:Othello .

spr:Susanna spr:hasFather lit:Shakespeare .
spr:Hamnet spr:hasFather lit:Shakespeare .
spr:Judeth spr:hasFather lit:Shakespeare .

Now the answer to the query “Did Hamnet’s father write Hamlet?” is “yes,”

since there is a binding for the variable ?d in the preceding SPARQL graph pat-

tern. In fact, there are two possible bindings: ?d ¼ lit:Shakespeare and ?d ¼
spr:Shakspere.

Challenge: Merging Data from Different Databases

We have seen how to interpret information in a table as RDF triples. Each row in

the table became a single individual, and each cell in the table became a triple.

The subject of the triple is the individual corresponding to the row that the cell

is in; the predicate is made up from the table name and the field name; and

the object is the cell contents. Table 7-1 (from Table 3-10) shows 63 triples
for the 7 fields and 9 rows. Let’s look at just the triples having to do with the

Manufacture_Location.

mfg:Product1 mfg:Product_Manufacture_Location Sacramento .
mfg:Product2 mfg:Product_Manufacture_Location Sacramento .
mfg:Product3 mfg:Product_Manufacture_Location Sacramento .
mfg:Product4 mfg:Product_Manufacture_Location Elizabeth .
mfg:Product5 mfg:Product_Manufacture_Location Elizabeth .
mfg:Product6 mfg:Product_Manufacture_Location Seoul .
mfg:Product7 mfg:Product_Manufacture_Location Hong Kong .
mfg:Product8 mfg:Product_Manufacture_Location Cleveland .
mfg:Product9 mfg:Product_Manufacture_Location Cleveland .

Suppose that another division in the company keeps its own table of the

products with information that is useful for that division’s business activ-

ities—namely, it describes the sort of facility that is required to produce
the part. Table 7-2 shows some products and the facilities they require.

Some of the products in Table 7-2 also appeared in Table 7-1, and some

did not. It is not uncommon for different databases to overlap in such an

inexact way.
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Table 7-1 Sample Tabular Data for Triples

Product

ID
Model
Number Division

Product
Line

Manufacture
Location SKU Available

1 ZX-3 Manufacturing

Support

Paper

Machine

Sacramento FB3524 23

2 ZX-3P Manufacturing

Support

Paper

Machine

Sacramento KD5243 4

3 ZX-3S Manufacturing

Support

Paper

Machine

Sacramento IL4028 34

4 B-1430 Control

Engineering

Feedback

Line

Elizabeth KS4520 23

5 B-1430X Control

Engineering

Feedback

Line

Elizabeth CL5934 14

6 B-1431 Control

Engineering

Active Sensor Seoul KK3945 0

7 DBB-12 Accessories Monitor Hong Kong ND5520 100

8 SP-1234 Safety Safety Valve Cleveland HI4554 4

9 SPX-1234 Safety Safety Valve Cleveland OP5333 14

Table 7-2 Sample Data: Parts and the Facilities Required

to Produce Them

Product

ID Model Number Facility

1 B-1430 Assembly Center

2 B-1431 Assembly Center

3 M13-P Assembly Center

4 ZX-3S Assembly Center

5 ZX-3 Factory

6 TC-43 Factory

7 B-1430X Machine Shop

8 SP-1234 Machine Shop

9 1180-M Machine Shop
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Challenge 19 Using the products that appear in both tables, how can we write a federated
query that will cross-reference cities with the facilities that are required

for the production that takes place there?

SOLUTION

If these two tables had been in a single database, then there could have been a

foreign-key reference from one table to the other, and we could have joined the

two tables together. Since the tables come from two different databases, there is

no such common reference.

When we turn both tables into triples, the individuals corresponding to each

row are assigned global identifiers. Suppose that we use the namespace p: for

this second database; when we turn Table 7-2 into triples, we get 27 triples,
for the 9 rows and 3 fields. The triples corresponding to the required facilities

are as follows:

p:Product1 p:Product_Facility "Assembly Center" .
p:Product2 p:Product_Facility "Assembly Center" .
p:Product3 p:Product_Facility "Assembly Center" .
p:Product4 p:Product_Facility "Assembly Center" .
p:Product5 p:Product_Facility "Factory" .
p:Product6 p:Product_Facility "Factory" .
p:Product7 p:Product_Facility "Machine Shop" .
p:Product8 p:Product_Facility "Machine Shop" .
p:Product9 p:Product_Facility "Machine Shop" .

Although we have global identifiers for individuals in these tables, those identi-

fiers are not the same. For instance, p:Product1 is the same as mfg:Product4

(both correspond to model number B-1430). How can we cross-reference from

one table to the other? The answer is to use a series of owl:sameAs triples, as

follows:

p:Product1 owl:sameAs mfg:Product4 .
p:Product2 owl:sameAs mfg:Product6 .
p:Product4 owl:sameAs mfg:Product3 .
p:Product5 owl:sameAs mfg:Product1 .
p:Product7 owl:sameAs mfg:Product5 .
p:Product8 owl:sameAs mfg:Product8 .

Now if we match the following SPARQL graph pattern:

{?p p:Product_Facility ?facility .
?p mfg:Product_Manufacture_Location ?location .}

and display ?facility and ?location, we get the results in Table 7-3.
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This solution has addressed the challenge for the particular data in the exam-

ple, but the solution relied on the fact that we knew which product from one

table matched with which product from another table. But owl:sameAs only

solves part of the problem. In real data situations, in which the data in the tables

change frequently, it is not practical to assert all the owl:sameAs triples by hand.

In the next section, we will see how RDFS-Plus provides a solution to the rest of

the challenge.

COMPUTING SAMENESS—FUNCTIONAL PROPERTIES

Functional Properties in OWL get their name from a concept in mathematics,

but like most of the OWL constructs, they have a natural interpretation in every-
day life. A function property is one for which there can be just one value. Exam-

ples of such properties are quite common: hasMother (since a person has just

one biological mother), hasBirthplace (someone was born in just one place),

and birthdate (just one) are a few simple examples.

In mathematics, a function is a mapping that gives one value for any partic-

ular input, so x2 is a function, since for any value of x, there is exactly one value

for x2. Another way to say this is that if x ¼ y, then x2 ¼ y2. To solve the previ-

ous challenge problem, we have to have constructs in RDFS-Plus that have this
same sort of behavior; that is, we want to describe something as being able to

refer to only a single value.

The next two constructs, FunctionalProperty and InverseFunctionalProperty,

we describe use this idea to determine when two resources refer to the same indi-

vidual, thereby providing the OWL modeler with a means for describing how

information from multiple sources are to be considered as a distributed web of

information. These constructs provide an important semantic framework for

using RDFS-Plus in the Semantic Web setting.

Table 7-3 Locations Cross-Referenced with

Facilities, Computed via Products

?location ?facility

Elizabeth Assembly Center

Seoul Assembly Center

Sacramento Assembly Center

Sacramento Factory

Elizabeth Machine Shop

Cleveland Machine Shop
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Functional Properties

RDFS-Plus borrows the name functional to describe a property that, like a math-

ematical function, can only take one value for any particular individual. The pre-

cise details of the meaning of owl:FunctionalProperty is given, as usual, as an

inference pattern. If we have the following triples:

P rdf:type owl:FunctionalProperty .
X P A .
X P B .

then we can infer that

A owl:sameAs B .

This definition of owl:FunctionalProperty is analogous to the mathematical sit-

uation in which we know that x2 has a single unambiguous value. More pre-

cisely, if we know that x2 ¼ a and x2 ¼ b, then we may conclude that a ¼ b.

In RDFS-Plus, this looks as follows, in which the first three triples are asserted

and the fourth is inferred:

math:hasSquare rdf:type owl:FunctionalProperty .
x math:hasSquare A .
x math:hasSquare B .
A owl:sameAs B .

Functional properties are important in RDFS-Plus because they allow sameness

to be inferred. For instance, suppose that in the Stratford Parish Registry we

have an entry that tells us

lit:Shakespeare fam:hasFather bio:JohannesShakspere .

and that from Shakespeare’s grave we learn that

lit:Shakespeare fam:hasFather bio:JohnShakespeare .

We would like to conclude that John and Johannes are in fact the same person.

If we know from a background model of family relationships that

fam:hasFather rdf:type owl:FunctionalProperty .

then we can conclude, from the definition of owl:FunctionalProperty, that

bio:JohannesShakspere owl:sameAs bio:JohnShakespeare .

as desired.

Although owl:FunctionalProperty provides us with a means of concluding

that two resources are the same, this is not the usual pattern for determin-

ing that two entities are the same in most real data. Much more common
is the closely related notion of owl:InverseFunctionalProperty, which we

treat next.
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Inverse Functional Properties

Some people consider owl:InverseFunctionalProperty to be the most impor-

tant modeling construct in RDFS-Plus, especially in situations in which a model

is being used to manage data from multiple sources. Whether or not this is true,

it is certainly true that it has the most difficult name with respect to its utility of

any construct.

The name owl:InverseFunctionalProperty was chosen to be consistent

with the closely related owl:FunctionalProperty, and in fact one can think of
an owl:InverseFunctionalProperty simply as the inverse of an owl:Functional

Property. So if math:hasSquare is a functional property, then its inverse, math:

hasSquareRoot , is an inverse functional property.

What exactly does this mean in terms of inferences that can be drawn? The

rule looks very similar to the rule for owl:FunctionalProperty . If we know that

P rdf:type owl:InverseFunctionalProperty .
A P X .
B P X .

then we can infer that

A owl:sameAs B .

For example, if we define a property buriedAt to be sufficiently specific that we

cannot have two people buried at the same location, then we can declare it to

be an owl:InverseFunctionalProperty . If we were then to have two triples that
assert

spr:Shakespere buriedAt :TrinityChancel .
lit:Shakespeare buriedAt :TrinityChancel .

then we could infer that

spr:Shakespere owl:sameAs lit:Shakespeare .

An owl:InverseFunctionalProperty plays the role of a key field in a relational

database. A single value of the property cannot be shared by two entities, just

as a key field may not be duplicated in more than one row. Unlike the case of

a relational database, RDFS-Plus does not signal an error if two entities are found
to share a value for an inverse functional property. Instead, RDFS-Plus infers that

the two entities must be the same. Because of the nonunique naming assumption,

we cannot tell that two entities are distinct just by looking at their URIs.

Examples of inverse functional properties are fairly commonplace; any iden-

tifying number (Social Security number, employee number, driver’s license num-

ber, serial number, etc.) is an inverse functional property. In some cases, full

names are inverse functional properties, though in most applications, name

duplications (is it the same John Smith?) are common enough that full names
are not inverse functional properties. In an application at the Boston Children’s
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Hospital, it was necessary to find an inverse functional property that would

uniquely identify a baby (since newborns don’t always have their Social Security

numbers assigned yet). The added catch was that it had to be a property that the

mother was certain, or at least extremely likely, to remember. Although babies

are born at any time of day in a busy hospital, it is sufficiently unusual for two

babies to be born at exactly the same minute that time of birth could be used

as an inverse functional property. And every mother was able to remember

when her baby was born.
Now that we have inverse functional properties, we are able to continue the

solution to the challenge. Previously, we merged information from two data-

bases by matching the global URIs of individuals from two databases with the

following series of owl:sameAs triples:

p:Product1 owl:sameAs mfg:Product4 .
p:Product2 owl:sameAs mfg:Product6 .
p:Product4 owl:sameAs mfg:Product3 .
p:Product5 owl:sameAs mfg:Product1 .
p:Product7 owl:sameAs mfg:Product5 .
p:Product8 owl:sameAs mfg:Product8 .

Once we had these triples, we were able to cross-reference cities with facili-
ties, using products as an intermediary. But we had to create these triples by

hand.

Challenge 20 How can we infer the appropriate owl:sameAs triples from the data that

have already been asserted?

SOLUTION

The approach we will take to this challenge is to find an inverse functional prop-

erty that is present in both data sets that we can use to bridge between them.

When we examine Tables 7-1 and 7-2, we see that they both have a field called

ModelNo , which refers to the identifying model number of the product. As is

typical for such identifying numbers, if two products have the same model num-

ber, they are the same product. So we want to declare ModelNo to be an inverse
functional property, thus:

mfg:Product_ModelNo rdf:type owl:InverseFunctionalProperty .

This almost works, but there is still a catch: Each database has its own

ModelNo property. The one in this triple came from the database in Chapter 3;

in this chapter, there is another property, p:Product_ModelNo . So it seems that

we still have more integration to do. Fortunately, we already have the tool we

need to do this; we simply have to assert that these two properties are equiva-
lent, thus:

p:Product_ModelNo owl:equivalentProperty mfg:Product_ModelNo .
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It really doesn’t matter in which order we do any of these things. Since

owl:equivalentProperty is symmetric, we can write this triple with the subject

and object reversed, and it will make no difference to the inferences.

Let’s see how these inferences roll out. We begin with the asserted triples

from both data sources and proceed with inferred triples:

p:Product1 p:Product_ModelNo "B–1430" .
p:Product2 p:Product_ModelNo "B–1431" .
p:Product3 p:Product_ModelNo "M13–P" .
p:Product4 p:Product_ModelNo "ZX–3S" .
p:Product5 p:Product_ModelNo "ZX–3" .
p:Product6 p:Product_ModelNo "TC–43" .
p:Product7 p:Product_ModelNo "B–1430X" .
p:Product8 p:Product_ModelNo "SP–1234" .
p:Product9 p:Product_ModelNo "1180–M" .
mfg:Product1 mfg:Product_ModelNo "ZX–3" .
mfg:Product2 mfg:Product_ModelNo "ZX–3P" .
mfg:Product3 mfg:Product_ModelNo "ZX–3S" .
mfg:Product4 mfg:Product_ModelNo "B–1430" .
mfg:Product5 mfg:Product_ModelNo "B–1430X" .
mfg:Product6 mfg:Product_ModelNo "B–1431" .
mfg:Product7 mfg:Product_ModelNo "DBB–12" .
mfg:Product8 mfg:Product_ModelNo "SP–1234" .
mfg:Product9 mfg:Product_ModelNo "SPX–1234" .
p:Product1 mfg:Product_ModelNo "B–1430" .
p:Product2 mfg:Product_ModelNo "B–1431" .
p:Product3 mfg:Product_ModelNo "M13–P" .
p:Product4 mfg:Product_ModelNo "ZX–3S" .
p:Product5 mfg:Product_ModelNo "ZX–3" .
p:Product6 mfg:Product_ModelNo "TC–43" .
p:Product7 mfg:Product_ModelNo "B–1430X" .
p:Product8 mfg:Product_ModelNo "SP–1234" .
p:Product9 mfg:Product_ModelNo "1180–M" .
p:Product1 owl:sameAs mfg:Product4 .
p:Product2 owl:sameAs mfg:Product6 .
p:Product4 owl:sameAs mfg:Product3 .
p:Product5 owl:sameAs mfg:Product1 .
p:Product7 owl:sameAs mfg:Product5 .
p:Product8 owl:sameAs mfg:Product8 .

The last six triples are exactly the owl:sameAs triples that we needed to com-

plete our challenge.

Although this use of owl:InverseFunctionalProperty works fine for an

example like this, most real data integration situations rely on more elaborate

notions of identity that include multiple properties as well as uncertainty (what
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about that one freak day when two babies were born the same minute and the

same second at the same hospital?). This problem can often be solved by using

combinations of OWL properties that we will explore later in this book,

although a fully general solution remains a topic of research.

Combining Functional and Inverse
Functional Properties

It is possible and often very useful for a single property to be both an

owl:FunctionalProperty and an owl:InverseFunctionalProperty. When a

property is in both of these classes, then it is effectively a one-to-one

property; that is, for any one individual, there is exactly one value for

the property, and vice-versa. In the case of identification numbers, it is

usually desirable that the property be one-to-one, as the following chal-

lenge illustrates.

Challenge 21 Suppose we want to assign identification numbers to students at a university.

These numbers will be used to assign results of classes (grades), as well as

billing information for the students. Clearly no two students should share

an identification number, and neither should one student be allowed to

have more than one identification number. How do we model this situation

in RDFS-Plus?

SOLUTION

Define a property hasIdentityNo that associates a number with each student so

that its domain and range are defined by

:hasIdentityNo rdfs:domain :Student .
:hasIdentityNo rdfs:range xsd:Integer .

Furthermore, we can enforce the uniqueness properties by asserting that

:hasIdentityNo rdf:type owl:FunctionalProperty .
:hasIdentityNo rdf:type owl:InverseFunctionalProperty .

Now any two students who share an identity number must be the same (since it

is Inverse Functional); furthermore, each student can have at most one identity

number (since it is Functional).

To summarize, there are several ways we can use these properties:

Functional only—hasMother is a functional property only. Someone has

exactly one mother, but many people can share the same mother.
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Inverse Functional Only—hasDiary is an inverse functional property

only. A person may have many diaries, but it is the nature of a diary

that it is not a collaborative effort; it is authored by one person only.

Both Functional and Inverse Functional—taxID is both inverse functional

and functional, since we want there to be exactly one taxID for each

person and exactly one person per taxID .

A FEW MORE CONSTRUCTS

RDFS-Plus provides a small extension to the vocabulary beyond RDFS, but
these extensions greatly increase the scope of applicability of the language.

In the preceding examples, we have seen how these new features interact

with the features of RDFS to provide a richer modeling environment. The

inclusion of owl:inverseOf combines with rdfs:subClassOf by allowing us

to align properties that might not have been expressed in compatible ways

in existing data schemas. The inclusion of owl:TransitiveProperty com-

bines with rdfs:subPropertyOf in a number of novel combinations, as

seen here, allowing us to model a variety of relationships among chains of
individuals.

The most applicable extensions, from a Semantic Web perspective, are those

that deal with sameness of different individuals. sameAs, FunctionalProperty,

and InverseFunctionalProperty in particular provide the OWL modeler with

a means for describing how information from multiple sources is to be merged

in a distributed web of information.

OWL provides a few more distinctions that, although they do not pro-

vide any semantics to a model, provide some useful discipline and provide
information that many editing tools can take advantage of when displaying

models. For example, when displaying what value some property takes

for some subject, should the GUI display be a link to another object or

a widget for a particular data type? Tools that get this right seem intuitive

and easy to use; tools that don’t seem awkward. So OWL provides a

way to describe properties that can help a tool sort this out. This

is done in OWL by distinguishing between owl:DatatypeProperty and

owl:ObjectProperty.
In RDF, a triple always has a resource as its subject and predicate, but it can

have either another resource as object or it can have a data item of some XML

data type. We have seen plentiful examples of both of these:

ship:QEII ship:maidenVoyage "May 2, 1969" .
mfg:Product1 mfg:Product_SKU "FB3524" .
AnneHathaway bio:married lit:Shakespeare .
GraduallyMix inSameRecipe BeatEggs .
spr:Susanna spr:hasFather spr:WilliamShakspere .

A Few More Constructs 155



Most tools that deal with OWL at this time prefer to make the distinction. In this

case, ship:maidenVoyage and mfg:Product_SKU are datatype properties, while

bio:married, inSameRecipe, and spr:hasFather are object properties. In triples,

we say:

ship:maidenVoyage rdf:type owl:DatatypeProperty .
mfg:Product_SKU rdf:type owl:DatatypeProperty .
bio:married rdf:type owl:ObjectProperty .
inSameRecipe rdf:type owl:ObjectProperty .
spr:hasFather rdf:type owl:ObjectProperty .

Another distinction that is made in OWL is the difference between rdfs:Class

and owl:Class .

In Chapter 6, we introduced the notion of rdfs:Class as the means by which
schema information could be represented in RDF. Since that time, we have intro-

duced awide array of “schema-like” constructs like inverse, subproperty, transitiv-

ity, and so on. OWL also provides a special case of rdfs:Class called owl:Class.

Since OWL is based on RDFS, it was an easy matter to make owl:Class backward

compatible with rdfs:Class by saying that every member of owl:Class is also a

member of rdfs:Class. This statement needn’t be made in prose, since we can

say it in RDFS. In particular, the OWL specification stipulates that

owl:Class rdfs:subClassOf rdfs:Class .

Most tools today insist that classes used in OWL models be declared as members

of owl:Class . In this chapter, we have left these class declarations out, since

this level of detail was not needed for the modeling examples we provided.

Implicit in the examples in this chapter, are statements such as

:Food rdfs:type owl:Class .
:BakedGood rdfs:type owl:Class .
:Confectionary rdfs:type owl:Class .
:PackagedFood rdfs:type owl:Class .
:PreparedFood rdfs:type owl:Class .
:ProcessedFood rdfs:type owl:Class .
mfg:Product rdfs:type owl:Class .
p:Product rdfs:type owl:Class .

Most OWL tools today will work more consistently if classes are defined as

instances of owl:Class; most model editors will do this automatically when a class

is created. However, there are subtle distinctions that we will discuss more in

Chapter 13.

SUMMARY

The constructs in RDFS-Plus are a subset of the constructs in OWL. This subset

provides considerable flexibility for modeling in the Semantic Web. In the
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next chapter, we will see some examples of how RDFS-Plus is used in some

large-scale Semantic Web projects. A summary of the constructs in this set

follow.

Fundamental Concepts

rdfs:subClassOf—Members of subclass are also member of superclass.

rdfs:subPropertyOf—Relations described by subproperty also hold for

superproperty.

rdfs:domain—The subject of a triple is classified into the domain of the
predicate.

rdfs:range—The object of a triple is classified into the range of the predicate

Annotation Properties

rdfs:label—No inferential semantics, printable name

rdfs:comment—No inferential semantics, information for readers of the
model

OWL Features: Equality

equivalentClass—Members of each class are also members of the other.

equivalentProperty—Relations that hold for each property also hold for

the other.

sameAs—All statements about one instance hold for the other.

OWL Features: Property Characteristics

inverseOf—Exchange subject and object

TransitiveProperty—Chains of relationships collapse into a single

relationship.

SymmetricProperty—A property that is its own inverse

FunctionalProperty—Only one value allowed (as object)

InverseFunctionalProperty—Only one value allowed (as subject)

ObjectProperty—Property can have resource as object.

DatatypeProperty—Property can have data value as object.
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CHAPTER

8Using RDFS-Plus
in the Wild

We have seen a number of examples of the use of RDFS-Plus modeling for merg-

ing information from multiple sources in a dynamic and flexible way. In this

chapter, we describe two extended uses of the RDFS-Plus constructs. Both of

these applications of RDFS-Plus have attracted considerable user communities

in their respective fields. Both of them also make essential use of the constructs

in RDFS-Plus, though often in quite different ways. These are real modeling

applications built by groups who originally had no technology commitment to

RDFS or OWL (though both were conceived as RDF applications).
In both cases, the projects are about setting up an infrastructure for a particular

web community. The use of RDFS-Plus appears in the models that describe data in

these communities, rather than in the everyday use in these communities. In this

book, we are describing how modeling works in RDFS and OWL, so we focus on

the community infrastructure of these projects.

The first application is called SKOS, the Simple Knowledge Organization Sys-

tem, and proposes a Semantic Web approach to expressing concept organization

systems such as thesauri, taxonomies, and controlled vocabularies in RDF.
The second application is called FOAF, for “Friend of a Friend.” FOAF is a

project dedicated to creating and using machine-readable homepages that

describe people, the links between them, and the things they create and do.

It is based on RDF, but it originally made no commitment to RDFS or OWL.

Both of these projects were originally based on RDF because of the inherently

distributed andweblike nature of the project requirements. As the projects evolved,

they found a need to be able to describe the relationships between various

resources in a formal way; this led both of them to RDFS and then on to RDFS-Plus.
In this chapter, we describe each of these modeling systems and show the use

they have made of the RDFS-Plus constructs we introduced in previous chapters.

SKOS

SKOS (Simple Knowledge Organization System) was developed by the Institute

for Learning & Research Technology to provide a means for representing 159



knowledge organization systems (including controlled vocabularies, thesauri,

taxonomies, and folksonomies) in a distributed and linkable way. Given the exis-

tence of several thesaurus standards, one could well wonder why this group

found it necessary to create another one. The key differentiator between SKOS

and thesaurus standards is its basis in the Semantic Web. Unlike the standards,

SKOS was designed from the start to allow modelers to create modular knowl-

edge organizations that can be reused and referenced across the web. SKOS

was not designed to replace any thesaurus standard but in fact to augment it by
bringing the distributed nature of the Semantic Web to thesauri and controlled

vocabularies. Toward this end, it was also a design goal of SKOS that it be possible

to map any thesaurus standards to SKOS in a fairly straightforward way.

SKOS is organized in layers: The SKOS Core is the most mature and is the

part that maps directly to the thesaurus standards. SKOS Mapping is an exten-

sion to SKOS that defines a number of specific properties for mapping thesaurus

concepts from one source to another. In this section we will concentrate on

describing the mature SKOS Core in terms of its usage of RDFS-Plus and the
inferences that it entails.

Figure 8-1 shows a sample from a SKOS thesaurus, in which a small fragment

of the UK Archival Thesaurus has been rendered in SKOS. The diagram shows

seven concepts, which are related to one another by various properties that

are defined in the SKOS Core. Data properties are shown within the boxes

corresponding to the concepts. As we shall see, each of these properties is

defined in relation to other properties, so certain useful inferences can be made.

The same information from Figure 8-1 is shown as triples in N3 here:

@prefix rdf: <http://www.w3.org/1999/02/22–rdf–syntax–ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf–schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix core: <http://www.w3.org/2004/02/skos/core#>.
@prefix UKAT: <http://www.workingontologist.com/Ch8/UKAT.

owl#>.

UKAT:EconomicCooperation a core:Concept;
core:altLabel "Economic co-operation";
core:broader UKAT:EconomicPolicy;
core:narrower UKAT:IndustrialCooperation,

UKAT:EconomicIntegration,
UKAT:EuropeanIndustrialCooperation,
UKAT:EuropeanEconomicCooperation;

core:prefLabel "Economic cooperation";
core:related UKAT:Interdependence;
core:scopeNote "Includes cooperative measures in banking,

trade, industry etc., between and among countries.."

UKAT:EconomicIntegration a core:Concept;
core:prefLabel "Economic integration."
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EconomicPolicy

Interdependence

IndustrialCooperation

EconomicIntegration

EuropeanIndustrialCooperation

EuropeanEconomicCooperation

EconomicCooperation

owl:versionInfo =
core:prefLabel = Economic policy

owl:versionInfo =
core:altLabel = Economic co-operatio...
core:preLabel = Economic cooperation
core:scopeNote = Includes cooperative...

owl:versionInfo =
core:prefLabel = European economic co...

owl:versionInfo =
core:prefLabel = Interpendence

owl:versionInfo =
core:prefLabel = Industrial cooperati...

owl:versionInfo =
core:prefLabel = Economic integration

owl:versionInfo =
core:prefLabel = European industrial...

core:broader

core:related

core:narrower

core:narrower

core:narrower
core:narrower

FIGURE 8-1

Sample thesaurus in SKOS. Example from W3C; data from UKAT.

1
6
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UKAT:EconomicPolicy a core:Concept;
core:prefLabel "Economic policy."

UKAT:EuropeanEconomicCooperation a core:Concept;
core:prefLabel "European economic cooperation."

UKAT:EuropeanIndustrialCooperation a core:Concept;
core:prefLabel "European industrial cooperation."

UKAT:IndustrialCooperation a core:Concept;
core:prefLabel "Industrial cooperation."

UKAT:Interdependence a core:Concept;
core:prefLabel "Interdependence."

First, let’s look at the notion of labels in SKOS. As we have seen before, there is

already a label resource defined in RDFS: rdfs:label. Although rdfs:label has no

formal semantics defined (that is, there are no inferences that concern rdfs:label),
it does have the informal meaning that it is something that can be used as the print-

able or human readable name of a resource. SKOSprovides amore detailed notion of

a concept’s label, in accordance with usual thesaurus practice. In particular, it

defines three different kinds of labels: a preferred label, an alternative label, and a

hidden label. These are defined in SKOS with the following triples:

skos:prefLabel
a rdf:Property ;
rdfs:label "preferred label" ;
rdfs:subPropertyOf rdfs:label .

skos:altLabel
a rdf:Property ;
rdfs:label "alternative label" ;
rdfs:subPropertyOf rdfs:label .

skos:hiddenLabel
a rdf:Property ;
rdfs:label "hidden label" ;
rdfs:subPropertyOf rdfs:label .

The SKOS definition includes a number of other triples defining these proper-

ties, but we will concentrate on these for this description.

Notice that each property has an rdfs:label, which provides a human read-
able version of the name of each resource. Furthermore, each of these proper-

ties is declared to be of type rdf:Property. Finally, each of these is declared

to be a subproperty of rdfs:label. What does this mean in terms of RDFS-Plus?

As we have already seen, rdfs:subPropertyOf propagates triples from the

subproperty to the superproperty. In the first case, from any triple using

skos:prefLabel as a predicate, we can infer the same triple with rdfs:label as
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a predicate instead. The same is true for skos:altLabel and skos:hiddenLabel;

in particular, in our UKAT example, we can infer the following triples:

UKAT:EconomicCooperation
rdfs:label "Economic co-operation" .

UKAT:EconomicCooperation
rdfs:label "Economic cooperation" .

UKAT:EconomicIntegration
rdfs:label "Economic integration" .

UKAT:EconomicPolicy
rdfs:label "Economic policy" .

UKAT:EuropeanEconomicCooperation
rdfs:label "European economic cooperation" .

UKAT:EuropeanIndustrialCooperation
rdfs:label "European industrial cooperation" .

UKAT:IndustrialCooperation
rdfs:label "Industrial cooperation" .

UKAT:Interdependence
rdfs:label "Interdependence" .

That is, every SKOS label shows up as an rdfs:label. In some cases (e.g., UKAT:

EconomicCooperation), more than one value for rdfs:label can be inferred. This

is perfectly legal in RDFS-Plus (after all, rdfs:label is not an owl:Functional-

Property), even though its informal interpretation as the printable name of a
resource is not clear.

SKOS uses this same pattern for many of the properties it defines; for each of

them, the sort of inference it supports is similar. So for the seven documentation

properties in SKOS, six of them are subproperties of the seventh, thus:

core:definition rdfs:subPropertyOf core:note .
core:scopeNote rdfs:subPropertyOf core:note .
core:example rdfs:subPropertyOf core:note .
core:historyNote rdfs:subPropertyOf core:note .
core:editorialNote rdfs:subPropertyOf core:note .
core:changeNote rdfs:subPropertyOf core:note .

Similarly, SKOS defines three properties having to do with symbols:

core:altSymbol rdfs:subPropertyOf core:symbol .
core:prefSymbol rdfs:subPropertyof core:symbol .

Just as was the case for the SKOS label properties, any triple using one of

the symbol properties or documentation properties will entail a triple using

core:symbol or core:note , respectively.

Semantic Relations in SKOS

SKOS defines three so-called Semantic Properties; these are the properties that

relate concepts to one another, using the familiar terms broader, narrower,
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and related from thesaurus standards. SKOS defines some simple constraints

among these properties:

skos:broader
a owl:TransitiveProperty ;
owl:inverseOf skos:narrower ;
rdfs:comment "Broader concepts are typically rendered as

parents in a concept hierarchy (tree)." ;
rdfs:label "has broader" .

skos:narrower
a owl:TransitiveProperty ;
owl:inverseOf skos:broader ;
rdfs:comment "Narrower concepts are typically rendered as

children in a concept hierarchy (tree)." ;
rdfs:label "has narrower" .

skos:related
a owl:SymmetricProperty;
rdfs:label "related to" ;
rdfs:subPropertyOf rdfs:seeAlso .

These properties take advantage of a handful of the constructs of RDFS-Plus.

We’ll see how these work together in the UKAT example.

First, since skos:narrower is an inverse of skos:broader,we can make the

following inferences about UKAT concepts in Figure 8-1.

UKAT:EconomicPolicy core:narrower UKAT:EconomicCooperation .
UKAT:IndustrialCooperation core:broader UKAT:Economic

Cooperation .
UKAT:EconomicIntegration core:broader UKAT:Economic

Cooperation .
UKAT:EuropeanIndustrialCooperation core:broader

UKAT:EconomicCooperation .
UKAT:EuropeanEconomicCooperation core:broader

UKAT:EconomicCooperation .

Furthermore, since each of core:narrower is a owl:TransitiveProperty, we

can infer that every concept in this sample is narrower than the item at the

“top” of the tree, UKAT:EconomicPolicy:

UKAT:EconomicPolicy core:narrower
UKAT:IndustrialCooperation ,
UKAT:EconomicIntegration ,
UKAT:EuropeanIndustrialCooperation ,
UKAT:EuropeanEconomicCooperation .

Similar triples can be inferred (swapping subject for object, as usual) for the

inverse property, core:broader.
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In the case of core:related, it is not defined as owl:TransitiveProperty,

so we cannot make inferences about chains of related items. This is probably as

it should be; since it is easy to imagine a chain of pairwise-related terms in

which the first term is not related to the last term. However, we see that

core:related is an owl:SymmetricProperty;this means that we can make the

following inference. If we assert that

UKAT:EconomicCooperation core:related UKAT:Interdependence .

then we can infer that

UKAT:Interdependence core:related UKAT:EconomicCooperation .

Meaning of Semantic Relations

It is no accident that there is a considerable similarity between the definitions in

SKOS of skos:narrower and skos:broader and the definitions of rdfs:subClas-

sOf and superClassOf. Both of these pairs of properties are intended for model-

ing hierarchies. In both cases, it is desirable that the hierarchies could be

traversed either “upward” or “downward.” In both cases, the intention of the

hierarchical structure is that the relationship be transitive—that is, narrower
than narrower is narrower, and subClassOf subClassOf is subClassOf.

There is one definition for subClassOf that has no corresponding con-

dition in SKOS; that is the semantic rule that says that if we have triples of

the form

B rdfs:subClassOf C .
x rdf:type B .

then we can infer that

x rdf:type C .

Because of this rule, there is no confusion about the interpretation of rdfs:sub-

ClassOf . This rule makes it clear that C has more members (or at least, just as
many) as B;that is, C is the more encompassing of the two classes.

Since we have no such rule in SKOS, there is the possibility for confusion;

when we say

UKAT:EconomicCooperation skos:broader UKAT:EconomicPolicy .

should we read this (in English) as “Economic Cooperation has broader category

Economic Policy,” or should we read it as “Economic Cooperation is broader

than Economic Policy”? There is nothing in the formal SKOS model to tell us
which is which. The relationship is expressed informally in the annotations on

skos:broader and skos:narrower; that is, the labels “has broader” and “has nar-

rower” respectively indicate that the former interpretation is the intended

one—economic cooperation has broader-term economic policy. It is important
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to keep this in mind when reading the SKOS examples that follow in this book,

where we will see triples like

:Milk skos:broader :Dairy .

For many people, this interpretation of broader is backward from what they

expect.

If there were an inference-based definition of the semantics of skos:broader

(as there is, for example, for rdfs:subClassOf), then the intended direction of

this statement would be explicit. There would be no need to rely on the inter-

pretation of examples (like this one for Milk and Dairy) to communicate which

way the terms are intended to be used.

Special Purpose Inference

SKOS includes a special provision for implementing Collections of concepts.

Collections of terms are common in thesaurus and indexing standards. Consider

the following example from the W3C SKOS Core Guide.

A term index describes agricultural products and includes several kinds of

milk: cow milk, goat milk, sheep milk, and buffalo milk. There is a meaningful
collection of these concepts called “milk by source animal.” This practice of

grouping concepts is common practice in indexing and cataloguing. It is impor-

tant to notice that according to the common practice of professional catalo-

guers, the grouping “milk by source animal” is itself not a concept in its own

right; it is simply a grouping for concepts.

SKOS uses a class called skos:Collection and a property called skos: member

to express such situations, as shown in Figure 8-2. The triples for Figure 8-2 are

given in N3 as

skos:Collection

rdf:type

MilkBySourceAnimal

CowMilk

BuffaloMilk GoatMilk

SheepMilk
sko

s:m
emb

er

sk
os
:m
em
be
r skos:member

skos:member

FIGURE 8-2

“Milk by source animal” is a collection of four concepts related to milk.
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agro:MilkBySourceAnimal a skos:Collection;
rdfs:label "Milk by source animal ;
core:member agro:CowMilk,

agro:BuffaloMilk,
agro:GoatMilk,
agro:SheepMilk .

agro:BuffaloMilk a skos:Concept;
skos:prefLabel "Buffalo milk .

agro:CowMilk a skos:Concept;
skos:prefLabel "Cow milk" .

agro:GoatMilk a skos:Concept;
skos:prefLabel "Goat milk" .

agro:SheepMilk a skos:Concept;
skos:prefLabel "Sheep milk" .

The interest in this example comes when we examine what inferences we can

draw from such a construct. So far, we have used only skos:narrower to express

that one term has another as a narrower term. But what would it mean to this

same notion of skos:narrower to describe the relationship between a term

and a collection? For example:

agro:Milk skos:narrower agro:MilkBySourceAnimal .

SKOS does not model the answer to this question in RDFS-Plus but instead spe-

cifies a special purpose rule as part of the SKOS specification. If we have triples

of the form

X skos:narrower C .
C skos:member Y .

then we can infer the triple

X skos:narrower Y .

When we apply this rule to agro:Milk,we can infer that it has as a narrower

term each of the kinds of milk in the collection agro:MilkBySourceAnimal,

thus:

agro:Milk skos:narrower agro:BuffaloMilk .
agro:Milk skos:narrower agro:CowMilk .
agro:Milk skos:narrower agro:SheepMilk .
agro:Milk skos:narrower agro:GoatMilk .

SKOS represents this constraint as a rule rather than modeling it in RDFS-Plus.

This is not surprising, since the constructs of RDFS-Plus are not well-suited to

this problem. We shall see in Chapter 10 how further constructs in OWL can
be brought to bear on situations like this one.
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Published Subject Indicators

SKOS includes support for the notion of a Published Subject Indicator, or PSI.

The idea of a PSI is that a community can agree on a particular publication that

can act as a unique identifier for a certain concept. For traditional, generic con-

cepts like “Milk” or “Economic Policy,” it is unlikely that there will be a useful

unique publication for the concept. But for the results of standards bodies, such

publications are commonplace. Examples include things like CDC disease list-

ings, technical standards, acts of governments, and so forth. For instance, if
two diseases have the same CDC listing, then they are the same disease.

SKOS provides a property—skos:subjectIndicator—to link a skos:Concept

to a published document. Since a PSI is intended as a unique identifier of a con-

cept, it should not be possible for two different concepts to share the same

subjectIndicator. This stipulation is quite simple to represent in RDFS-Plus,

as we saw when we discussed owl:InverseFunctionalProperty. The SKOS

specification includes the triple

skos:subjectIndicator rdf:type owl:InverseFunctionalProperty .

This indicates that any two concepts that share the same PSI must therefore

refer to the same concept, unifying them in the knowledge organization system.

For instance, suppose that the document at http://www.usdoj.gov/foia/

privstat.htm is the PSI for the U.S. Privacy Act of 1974. Then, if we have concepts

from two different knowledge organization systems, such as the following:

policy:Privacy a skos:Concept;
skos:subjectIndicator http://www.usdoj.gov/foia/privstat.
htm .

gov:InfoAccess a skos:Concept ;
skos:subjectIndicator http://www.usdoj.gov/foia/privstat.
htm .

We can infer that these two concepts are indeed the same:

gov:InfoAccess owl:sameAs policy:Privacy .

Any indexing application that utilizes the thesaurus can then respond accordingly;
for example, any items indexed under gov:InfoAccess will also be accessible

under policy:Privacy. This illustrates how the property skos:subjectIndicator

plays an important role in the utilization of SKOS on the Semantic Web, since it

allows terms from different vocabularies to be mapped to one another.

SKOS in Action

SKOS is an example of a model on the Semantic Web; it models particular stan-

dards for how to represent thesauri. In this section, we examined what the

SKOS model says about terms and concepts in a thesaurus and how they can
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relate to one another. But how is SKOS itself being used? What do we gain by

representing a thesaurus in SKOS?

The information explosion that we are familiar with on theWeb is taking place

elsewhere as well. Libraries around the world are interested in indexing their

materials in a way that will allow patrons to find information from all around

the world. The United Nations has been quite successful with a thesaurus called

AGROVOC, which provides multilingual indexing for materials concerning any

aspect of agriculture. Not surprisingly, member nations have their own indices
for agriculture. The National Agriculture Library (NAL) of the United States also

has an extensive thesaurus (in English) for indexing agricultural materials.

When the United Nations pursued a project to map these thesauri together,

they needed a representation that would allow for terms from multiple sources

to be distinguished in a global way. For example, the AGROVOCword for “Ground

Water” and the NAL word for “Ground Water” must be managed separately, but it

also must be possible to represent the relationship between them. The use of

URIs in RDF (and thus in SKOS) is ideal for this job. SKOS itself provides a set of
terms as described here for familiar thesaurus relationships broader and nar-

rower. This makes it a straightforward task to export each thesaurus in SKOS. In

fact, both AGROVOC and the NAL had independently sponsored SKOS exports

of their thesauri. With these SKOS representations in place, it was a straightfor-

ward matter to represent mappings between the two vocabularies in RDF.

FOAF

FOAF (Friend of a Friend) is a format for supporting distributed descriptions of

people and their relationships. The name Friend of a Friend is intended to evoke
the fundamental relationship that holds in social networks; you have direct

knowledge of your own friends, but only through your network can you access

the friends of your friends.

FOAF works in the spirit of the AAA principle: Anyone can say Anything

about Any topic. In the case of FOAF, the topics that anyone is usually saying

things about are people. Other things that are commonly related to what we

might want to say about people, such as Organizations (that people belong

to), Projects (that people work on), Documents (that people have created or
that describe them), and Images (that depict people), are also included in the

core FOAF description. Information about a single person is likely to be

distributed across the Web and represented in different forms. On their own

webpage, a person is likely to list basic information about interests, current pro-

jects, and some images. Further information will be available only on other

pages; a photoset taken at a party or conference could include a picture that

depicts a person who has not listed that photoset in her own webpage. A con-

ference organizer could include information about a paper that lists its authors,
even if the authors themselves might not have listed the paper on their own
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web site. A laboratory or office might have a page that lists all of its members.

FOAF leverages the distributed nature of RDF to provide a distributed represen-

tation of this information. Social networking sites have begun to make informa-

tion available in FOAF for web-scale distribution.

Given that there are a number of social networking websites available and

that each one of them has a way to represent its members, information about

them, and ways in which they are connected to one another, one could well

ask why there is a need for yet another way to describe people and their social
networks. The idea of FOAF is not to replace any of these systems but to provide

a framework whereby this information can be distributed. Furthermore, using

RDF, FOAF provides a framework that is extensible. Because Anyone can say

Anything about Any topic, FOAF allows anyone to make novel statements about

people, projects, and so on, and to relate these statements to other statements

already made.

FOAF leverages the AAA principle as well as the distributed and extensible

nature of RDF in an essential way. At any point in time, FOAF is a work in prog-
ress. There are vocabulary terms in FOAF whose semantics are defined only by

natural language descriptions in the FOAF “standard.” Other terms have defini-

tions defined in RDFS-Plus that relate them in a formal way to the rest of the

description. FOAF is designed to grow in an organic fashion, starting with a

few intuitive terms and focusing their semantics as they are used. There is no

need to commit early on to a set vocabulary, since we can use RDFS-Plus to con-

nect new vocabulary and old vocabulary, once we determine the desired rela-

tionship between them.
FOAF provides a small number of classes and properties as its starting point;

these use some of the basic constructs of RDFS-Plus to maintain consistency and

to implement FOAF policies for information merging. FOAF is a fairly simple sys-

tem for describing people, the things they create, and the projects they partici-

pate in. It is primarily organized around three classes: foaf:Person, foaf:Group,

and foaf:Document.

People and Agents

Although FOAF is primarily about people, some of the things we want to say

about people are true of other things as well: groups, companies, and so forth.

So a foaf:Person is defined as part of a compact hierarchy under the general

grouping of foaf:Agent:

foaf:Person rdfs:subClassOf foaf:Agent .
foaf:Group rdfs:subClassOf foaf:Agent .
foaf:Organization rdfs:subClassOf foaf:Agent .

Many things we might say about a foaf:Person can hold for any foaf:Agent.

In fact, FOAF is quite liberal in this regard; most of the properties we describe

here for people hold for agents in general. Details of exactly which properties
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are used for which classes are available in the FOAF Vocabulary Specification at

http://xmlns.com/foaf/0.1/.

Names in FOAF

Probably the most essential thing we know about a person is that person’s

name. FOAF provides a number of vocabulary terms to describe the name of a

person. Even something as simple as a person’s name can be quite complex.

FOAF begins with a simple notion of name, which it sensibly calls foaf:name.

foaf:name rdfs:domain owl:Thing .
foaf:name rdfs:subPropertyOf rdfs:label .

That is, anything in the world can have a name (including a foaf:Person), and

that name is also used as the printable label for that thing. For a foaf:Person,

the name is typically the full name of the person, like “William Shakespeare”

or “Anne Hathaway.”

Although the full name of a person is quite useful, parts of a person’s

name are needed in some circumstances. foaf:firstName, foaf:givenname,

foaf:family_name, and foaf:surname are four properties relating to names

of people that are defined in FOAF. Each of them has an intuitive meaning,
but there are no formal semantics; the meaning is given only in prose

descriptions and by evolving conventions of use. As FOAF evolves, it will

need to encompass different cultures and their use of names. Does the given

name always come first? Is a family name always the surname? How do cul-

ture-specific names (for example, the “Christian name” that is still used in

some cultures) relate to other names?

One of the advantages to basing FOAF on RDF is that it is not necessary to

resolve all of these issues to begin the project of marking up data using the
FOAF vocabulary. The strategy taken by FOAF is to begin by annotating a per-

son’s name while providing other naming vocabulary such as surname, first-

name, givenname, and so on. Usage patterns will dictate which of these will

turn out to be useful. If it turns out that, say, two properties are used in exactly

the same way, then this observation can be cast by describing the relationship in

OWL. For example:

foaf:surname owl:equivalentProperty foaf:family_name .

Nicknames and Online Names

Since FOAF is primarily used on the Web, it is expected that many of the people
FOAF will be used to describe will be active in various internet communities.

For instance, it is likely that a FOAF Person will have a screen name

on some online chat service. FOAF identifies foaf:aimChatID, foaf:icqChatID,

foaf:msnChatID, and foaf:yahooChatID currently. A recent addition includes
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foaf:jabberID as well. In the spirit of extensibility of FOAF, new ID properties

can be added on an as-needed basis. Although some part of the semantics of

these properties is given by their natural language descriptions (which con-

nect foaf:yahooChatID to the chat service Yahoo!), FOAF also makes a formal

connection between these properties. In particular, all of them are subproper-

ties of a single property, foaf:nick:

foaf:aimChatID rdfs:subPropertyOf foaf:nick .
foaf:icqChatID rdfs:subPropertyOf foaf:nick .
foaf:msnChatID rdfs:subPropertyOf foaf:nick .
foaf:yahooChatID rdfs:subPropertyOf foaf:nick .
foaf:jabberID rdfs:subPropertyOf foaf:nick .

Following the rules of rdfs:subPropertyOf from Chapter 6, this means that any
foaf:Personwho is active in chat spaces is likely to have multiple values for the

property foaf:nick—that is, to have multiple nicknames. They can, of course,

have further nicknames as well. For instance, when William Shakespeare

became active in Internet chat rooms, from a FOAF point of view, all those

screen names are also nicknames:

lit:Shakespeare foaf:aimChatID "Willie1564" .
lit:Shakespeare foaf:msnChatID "TempestMan" .
lit:Shakespeare foaf:nick "Willie1564" .
lit:Shakespeare foaf:nick "TempestMan" .

Of course, we can still assert a nickname for the poet and playwright, even if he

doesn’t use it as a screen name anywhere:

lit:Shakespeare foaf:nick "The Bard of Avon" .

Online Persona

The Internet provides a number of ways for a person to express himself, and

FOAF is under constant revision to provide properties to describe these things.

A person is likely to have an electronic mailbox, and FOAF provides a property

foaf:mbox for this purpose. Many people maintain a number of webpages

describing parts of their lives. Some have personal homepages, some have

homepages at their workplace or school, and some may even have both. Even
their workplaces can have homepages. FOAF uses the same strategy for these

properties as it does for names: It provides a wide array of properties, defined

informally (by natural language descriptions).

foaf:homepage—relates a person to their primary homepage. This property

applies to anything in FOAF, not just to people.

foaf:workplaceHomepage—the homepage of the workplace of a person. Any-

thing can have a homepage (even an employer), but only a foaf:Person

can have a workplaceHomepage.
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foaf:workInfoHomepage—the homepage of a person at their workplace. Such a

page is usually hosted by a person’s employer, but it is about the person’s

own work there.

foaf:schoolHomepage—the homepage of the school that a foaf:Person

attended.

As the Internet provides new means of expression, FOAF keeps up:

foaf:weblog—the address of the web blog of a person.

All of these properties specify instances of the class foaf:Document—that is, a

webpage is a foaf:Document, a weblog is a foaf:Document, and so on.

Groups of People

One of the interesting things about people is the groups they belong to. FOAF

provides a class called foaf:Group to define these groups. A group is connected
to its members via a property called, appropriately enough, foaf:member.

A foaf:Group is defined quite loosely; any grouping of people can be described

this way. For instance, we could define a group called English Monarchy as

follows:

:English_Monarchy
a foaf:Group ;
foaf:name "English Monarchy" ;
foaf:homepage "http://www.monarchy.com/" ;
foaf:member :William_I, :Henry_I, :Henry_II,

:Elizabeth_I, :Elizabeth_II .

A group in FOAF is an individual of type foaf:Group. As such, there are a num-

ber of properties that can describe it, like foaf:name (as we see here). In fact, a

foaf:Group has a lot in common with a foaf:Person; it can have a chat ID,

a nickname, an e-mail box, a homepage, or even a blog.

It is also useful to consider the members of a group as instances of a class—

that is, to relate the instance of foaf:Group to an rdfs:Class. For this purpose,
FOAF provides a link from a group to a class, called foaf:membershipClass. Sup-

pose that the membership class for English_Monarchy is called Monarch; this

connection is expressed in FOAF with the triple

:English_Monarchy foaf:membershipClass :Monarch .

The members of the group English_Monarchy all have type Monarch:

:William_I a :Monarch .
:Henry_I a :Monarch .
:Henry_II a :Monarch .
:Elizabeth_I a :Monarch .
:Elizabeth_II a :Monarch .

FOAF 173



Ideally, all of these triples should be maintained automatically; that is, any

individual of type Monarch should appear as a member of the group

English_Monarchy and every member of the group English_Monarchy should

have Monarch as a type. This stipulation is state explicitly as part of the FOAF

description. We will see in Chapter 9 how to use the capabilities of OWL to

build a model from which we can infer these triples. The distinction between

the instance English_Monarchy and the class Monarch is a subtle one: The class

Monarch is a type in RDFS, and as such, it refers to schematic things about
monarchs—property domains, subclasses, and so on. English_Monarchy, on

the other hand, refers to the institution of the monarchy itself, which refers

to things like this history of the monarchy, webpages and books about the

monarchy, and so on.

In our examples so far, we have been kept the world of classes separate from

the world of instances. The only relationship between an instance and a class

has been the rdf:type property. The intuition behind foaf:membershipClass

is that it indicates a class, whose instances are exactly the same as the members
of the group. The expression of this kind of relationship, in which we some-

times wish to view something as an instance (e.g., English_Monarchy, an

instance of the class foaf:Group) and sometimes as a class (e.g., the class Mon-

arch, representing all the instances that are foaf:member of that group), is an

example of a practice called meta-modeling. We will see more about meta-mod-

eling when we learn about the rest of the OWL language, and we will see how

we can use meta-modeling constructs in OWL to formalize the relationship

between a foaf:Group and its foaf:membershipClass.

Things People Make and Do

Interesting people create things. They write books, publish webpages, create

works of art, found companies, and start organizations. FOAF provides two
properties to relate people to their creations: foaf:made and foaf:maker. They

are inverses of one another, and they relate a foaf:Agent to an owl:Thing as

follows:

foaf:made rdfs:domain foaf:Agent .
foaf:made rdfs:range owl:Thing .
foaf:maker rdfs:domain owl:Thing .
foaf:maker rdfs:range foaf:Agent .
foaf:made owl:inverseOf foaf:maker .

That is, anything in the describable universe is fair game for being made by
some agent. Even another agent could have a foaf:maker!

If a person is an author, then he is likely to have publications to his

credit. The property foaf:publications relates a foaf:Person to any

foaf:Document published. Interestingly, FOAF does not specify that a person
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has foaf:made any of their foaf:publications. In the spirit of the AAA principle,

if we were to decide to make such a statement, we could do so simply by saying

foaf:publications rdfs:subPropertyOf foaf:made .

Identity in FOAF

The main goal of FOAF is to apply the AAA principle to describing networks of

people; anyone can contribute descriptions about anyone. But this leads to a

problem: It is easy enough for me to describe myself; I can publish a document

that says whatever I wish to make known. If someone else wants to contribute

information about me (say, for example, that the publisher of this book wants to
add the information that I am an author), how will that person refer to me? Or if

I have several profiles on different sites that I would like to merge together, how

can I link them to describe the one thing that is “me”?

The RDF answer to this question is quite simple but not really adequate for

the uses of FOAF. RDF uses URIs to denote the things it describes; that means

that I should have a URI that denotes me, and anyone who wants to make a

comment about me can make it using that URI. This is a simple, elegant, and

standard solution to this problem.
The problem arises in the adoption of FOAF. When someone makes their

first FOAF page, how do they determine their own URI? Do they just make it

up? It just isn’t very common on the Web for people to have their own personal

URIs to describe themselves. In order to lower the barriers to adopting FOAF,

there must be a way people can refer to one another that uses some part of

the Internet infrastructure that is already ubiquitous and familiar. FOAF needs

to utilize some preexisting way to identify individuals. Is there any identifying

marker that everyone on the Internet already has and is already familiar with?
The clearest answer to this puzzle is e-mail. Just about anyone who is

described on the Web in any way at all has an e-mail address. Furthermore, it

is quite rare that two people share the same e-mail address. It is so rare that

for the purposes of FOAF, e-mail can serve as a unique identifier for people on

the Web. Notice that it isn’t a problem if someone has two or more e-mail

addresses or if one e-mail address is valid only for a limited period of time. All

FOAF requires of the e-mail address is that another person doesn’t share it

(either simultaneously or later on).
We can express this constraint in plain language by saying simply that two

people who share the same e-mail address are in fact not two distinct people

at all but instead are the same person. As we have already seen, RDFS-PLUS

has a way to formalize this relationship. When a property uniquely identifies

an individual, we say that the property is an owl:InverseFunctionalProperty.

So in FOAF, we can express the central role that foaf:mbox plays in identifying

individuals with the single triple

foaf:mbox rdf:type owl:InverseFunctionalProperty .
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Once we identify foaf:mbox as an owl:InverseFunctionalProperty, we realize

that a similar statement can be made about a number of the properties we use

to describe people; it is unusual for two people to share a yahooChatID or an

aimChatID. In fact, all of the following properties in FOAF are owl:

InverseFunctionalProperties:

foaf:aimChatID rdf:type owl:InverseFunctionalProperty .
foaf:homepage rdf:type owl:InverseFunctionalProperty .
foaf:icqChatID rdf:type owl:InverseFunctionalProperty .
foaf:jabberID rdf:type owl:InverseFunctionalProperty .
foaf:mbox rdf:type owl:InverseFunctionalProperty .
foaf:msnChatID rdf:type owl:InverseFunctionalProperty .
foaf:weblog rdf:type owl:InverseFunctionalProperty .
foaf:yahooChatID rdf:type owl:InverseFunctionalProperty .

Using the foaf:mbox (and similar properties) as identifiers of individuals

solves the technical problem of identifying individuals by some preexisting iden-
tification, but it raises another problem: Publishing someone’s e-mail address is

considered a violation of privacy, since e-mail addresses (and chat IDs) can be

used to pester or even attack someone by sending unwanted, offensive, or just

bulky mail. So if we want to apply the AAA principle to William Shakespeare,

and we know that he uses the e-mail address Shakespeare@gmail.com, we can

refer to him as “the person with e-mail ‘Shakespeare@gmail.com’” (using a blank

node, as we did for Shakespeare’s inspiration):

[ foaf:mbox "Shakespeare@gmail.com"]

When we do this, we publish his e-mail address in plain text for information

vandals to steal and use. This isn’t a very polite thing to do to someone we

know and respect. For this reason, FOAF also offers an obfuscated version of

foaf:mbox, called foaf:mbox_sha1sum. It indicates the result of applying a hash-

ing function called SHA-1 to the e-mail address. The SHA-1 function is publicly

available but very difficult to reverse. To get the obfuscated string—

f964f2dfd4784fe9d68ada960099e0b592e16a95—we apply the algorithm to Shake-
speare’s e-mail address. Now we can refer to him using this value:

[ foaf:mbox_sha1sum "f964f2dfd4784fe9d68ada960099e0b592e16a95" ]

without compromising his privacy. Unfortunately, FOAF does not provide a stan-

dard way to obfuscate the other identifying properties such as foaf:aimChatID,

foaf:yahooChatID, and so forth.

It’s Not What You Know, It’s Who You Know

The key to FOAF as a social networking system is the ability to link one person

to another. FOAF provides a single, high-level property for this relationship,

called foaf:knows. The idea behind foaf:knows is simple: One person knows

another one, who knows more people, and so on, forming a network of people
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who know people. There isn’t a lot of inferencing going on with foaf:knows;

the only triples defined for it are

foaf:knows rdfs:domain foaf:Person .
foaf:knows rdfs:range foaf:Person .

that is, foaf:knows just links one foaf:Person to another.
The lack of inferencing over foaf:knows is by design; the foaf:knows design

is intentionally vague, to indicate some relationship between people. Such a

relationship could be concluded informally from other information—for

instance, coauthors can usually be assumed to know one another. And while

it is usual to think that if one person knows another that the relationship is

mutual, the FOAF designers intentionally left out the assertion of foaf:knows

as an owl:SymmetricProperty, since there might even be some disagreement

about whether one person knows another. Despite its vague definition, foaf:

knows provides the infrastructure for using FOAF for social networking, as it

links one person to the next and then to the next and so on.

SUMMARY

SKOS and FOAF demonstrate how a fairly simple set of modeling constructs can

be used to create extensible, distributed information networks. They both take

advantage of the distributed nature of RDF to allow extension to a network of
information to be distributed across the web. Both of them rely on the inferen-

cing structure of RDFS-Plus to add completeness to their information structure.

Both of them use owl:InverseFunctionalProperty to determine identity of key

elements.

Although they are similar in these ways, FOAF and SKOS are organized very

differently in terms of how they support extension by their expected user com-

munities. FOAF takes something of an evolutionary approach to information

extension. Many concepts have a broad number of terms (like the several var-
iants of “name” that we examined). FOAF can be extended as new features

are needed. For instance, foaf:weblog was not as important before blogging

became fashionable, but recently, it has almost surpassed the more classical

foaf:homepage in importance.

SKOS, in contrast, takes a much more orderly approach to extension. SKOS

comes in three parts: the SKOS Core, which has been described here; SKOS

Mapping, which includes vocabulary for mapping vocabularies from different

sources; and the SKOS Extensions, for particular vertical applications of SKOS.
The SKOS Core is intended to be a sort of interlingua for thesauri, and it has

been designed by a small committee in an attempt to consolidate the funda-

mentals of other thesaurus systems into a single Semantic Web model.

The other two documents import the Core and build further semantics

on top of it.
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The difference in these two approaches becomes more apparent when we

think about how theywill be extended. FOAF takes very seriously the AAA slogan,

to the point that the actual preferred parts of the representation will be deter-

mined to a large extent by its use. SKOS, on the other hand, has a fairly stable core,

which has been designed by an informed committee who have performed a

detailed commonality/variability analysis of extant vocabulary systems. The archi-

tecture of SKOS has been determined and published, and it serves as a roadmap for

its development.
The technical structure of RDF supports both of these modes. The free

extension style of FOAF and the orderly layering of SKOS are accomplished

using the same graph overlay mechanism of RDF. The difference is in how the

overlay is organized and governed. Neither approach is inherently superior to

the other; each of them accomplishes certain goals that are of importance to

each of these projects.

The SKOS and FOAF efforts are similar in many ways to standards efforts.

Each of them is maintained by a committee who makes and publishes policy
decisions about them. But they differ from standards in an important way. Nei-

ther of them is intended as a complete work that will provide prescriptive

advice to someone who is designing a vocabulary control system or a social net-

working system. Their role is to provide an exchange mechanism on the Web

for sharing this sort of information. This is the power of a model on the Seman-

tic Web; it does not prescribe how to represent things, but it provides a means

of transfer from one representation to another. Each of these efforts provides an

example of how a model can play this sort of mediating role.

Fundamental Concepts

The following fundamental concepts were introduced in this chapter.

foaf—Namespace for a system of representation of social network informa-

tion; short for “friend of a friend.”

SKOS—Namespace for a system of representation for information management.
SKOS stands for “Simple Knowledge Organization System.”

Meta-modeling—Generally speaking, the craft of building a model that

describes another model. A specific example is the practice of represent-
ing a class in a model as an individual member of another class. FOAF does

this explicitly with the foaf:membershipClass property that links an indi-

vidual of type foaf:Group to the Class of all members of the group.

UKAT—The UK Archival Thesaurus. See http://www.ukat.org.uk/.

178 CHAPTER 8 Using RDFS-Plus in the Wild



CHAPTER

9Basic OWL

In previous chapters, we saw how RDFS-Plus as a modeling system provides

considerable support for distributed information and federation of information.

Simple constructs in RDFS-Plus can be combined in various ways to match prop-

erties, classes, and individuals. We saw its utility in application to social net-

working (FOAF) and knowledge organization (SKOS); although RDFS-Plus has

provided considerable and valuable infrastructure for these projects, we also

identified capabilities required by these systems that RDFS-Plus cannot provide.

In this chapter, we go further into the modeling capabilities of OWL, beyond
RDFS-Plus, which provides a systematic treatment of information description.

OWL provides constructs for describing information structure that will satisfy

many of the outstanding requirements of FOAF and SKOS, as well as a number

of more general information integration issues.

We continue our presentation of OWL with a treatment of owl:Restriction.

This single construct opens up the representational power of OWL by allowing

us to describe classes in terms of other things we have already modeled. As we

shall see, this opens up whole new vistas in modeling capabilities.

RESTRICTIONS

Suppose we have defined in RDFS a class we call BaseballTeam, with a particu-

lar subclass called MajorLeagueTeam, and another class we call BaseballPlayer.

The roster for any particular season would be represented as a property

playsFor that relates a BaseballPlayer to a BaseballTeam. Certain players

are special in that they play for a MajorLeagueTeam. We’d like to define that

class and call it MajorLeaguePlayers. If we are interested in the fiscal side of
baseball, we could also be interested in the class of Agents who represent

Major League Players, and then the bank accounts controlled by the Agents

who represent Major League Players and so on.

One of the great powers of the Semantic Web is that information that has

been specified by one person in one context can be reused either by that 179



person or by others in different contexts. There is no expectation that the same

source who defined the roster of players will be the one that defines the role of

the agents or of the bank accounts. If we want to use information from multiple

sources together, we need a way to express concepts from one context in terms

of concepts from the other. In OWL, this is achieved by having a facility with

which we can describe new classes in terms of classes that have already been

defined. This facility can also be used to model more complex constructs than

the ones we’ve discussed so far.
We have already seen how to define simple classes and relationships

between them in RDFS and OWL, but none of the constructs we have seen so

far can create descriptions of the sort we want in our Major League Baseball

Player example. This is done in OWL using a language construct called a

Restriction.

Consider the case of a MajorLeaguePlayer. We informally defined a Major-

LeaguePlayer as someone who plays on a MajorLeagueTeam. The intuition

behind the name Restriction is that membership in the class MajorLeague-

Player is restricted to those things that play for a MajorLeagueTeam. Since a

Restriction is a special case of a Class, we will sometimes refer to a Restric-

tion as a Restriction Class just to make that point clear.

More generally, a Restriction in OWL is a Class defined by describing the

individuals it contains. This simple idea forms the basis for extension of mod-

els in OWL: If you can describe a set of individuals in terms of known classes,

then you can use that description to define a new class. Since this new class

is now also an existing class, it can be used to describe individuals for inclu-
sion in a new class, and so on. We will return to the baseball player example

later in this chapter, but first we need to learn more about the use of restriction

classes.

Example: Questions and Answers

To start with, we will use a running example of managing questions and

answers, as if we were modeling a quiz, examination, or questionnaire. This is
a fairly simple area that nevertheless illustrates a wide variety of uses of restric-

tion classes in OWL.

Informally, a questionnaire consists of a number of questions, each of which

has a number of possible answers. A question includes string data for the text of

the question, whereas an answer includes string data for the text of the answer.

In contrast to a quiz or examination, there are typically no “right” answers in a

questionnaire. In questionnaires, quizzes, and examinations, the selection of

certain answers may preclude the posing of other questions.
This basic structure for questionnaires can be represented by classes and

properties in OWL. Any particular questionnaire is then represented by a set

of individual questions, answers, and concepts, and particular relationships

between them.
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The basic schema for the questionnaire is as follows and is shown diagram-
matically in Figure 9-1. Throughout the example, we will use the name-

space q: to refer to elements that relate to questionnaires in general, and

the namespace d: to refer to the elements of the particular example

questionnaire.

q:Answer a owl:Class.
q:Question a owl:Class.
q:optionOf a owl:ObjectProperty;

rdfs:domain q:Answer;
rdfs:range q:Question;
owl:inverseOf q:hasOption.

q:hasOption a owl:ObjectProperty .
q:answerText a owl:DatatypeProperty;

rdfs:domain q:Answer;
rdfs:range xsd:string.

q:questionText a owl:FunctionalProperty,
owl:DatatypeProperty;

rdfs:domain q:Question;
rdfs:range xsd:string.

A particular questionnaire will have questions and answers. For now, we will

start with a simple questionnaire that might be part of the screening for the
helpdesk of a cable television and Internet provider:

What system are you having trouble with?

Possible answers (3): Cable TV, High-Speed Internet, Both

What television symptom(s) are you seeing?

Possible answers (4): No Picture, No Sound, Tiling, Bad Reception

This is shown as follows and graphically in Figure 9-2.

rdfs:domain
rdfs:domain

rdfs:domain

owl:inverseOf

rdfs:range

q:Question q:Answer

q:questionText q:answerText

q:hasOption

q:OptionOf

FIGURE 9-1

Question, answer, and the properties that describe them.
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d:WhatProblem a q:Question;
q:hasOption d:STV, d:SInternet, d:SBoth;
q:questionText "What system are you having trouble with?" .

d:STV a q:Answer;
q:answerText "Cable TV".

d:SInternet a q:Answer;
q:answerText "High-speed Internet".

d:SBoth a q:Answer;
q:answerText "Both".

d:TVsymptom a q:Question;
q:questionText "What television symptoms are you having?";
q:hasOption d:TVSnothing, d:TVSnosound, d:TVStiling,
d:TVSreception .

d:TVSnothing a q:Answer;
q:answerText "No Picture".

d:TVSnosound a q:Answer;
q:answerText "No Sound".

(a)

d:WhatProblem

d:SInternetd:STV

d:hasOption d:hasOption d:hasOption

q:questionText = What system are you...

q:answerText = High-speed Internetq:answerText = Cable TV
d:SBoth

q:answerText = Both

(b)

d:TVsymptom

d:TVSreception

d:hasOption

d:hasOption d:hasOption

d:hasOption

q:questionText = What television symp...

q:answerText = Cable TV

d:TVSTiling d:TVSnothing

q:answerText = Screen shows “tiling... q:answerText = No No TV service

q:answerText = TV picture is OK, bu...

d:TVSnosound

FIGURE 9-2

Some particular questions and their answers.
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d:TVStiling a q:Answer;
q:answerText "Tiling".

d:TVSreception a q:Answer;
q:answerText "Bad reception".

Consider an application for managing a questionnaire in a web portal. This appli-

cation performs a query against this combined data to determinewhat question(s)

to ask next. Then for each question, it presents the text of the question itself and

the text of each answer, with a select widget (e.g., radio button) next to it. We
haven’t yet defined enough information for such an application to work, and we

have made no provisions to determine which questions to ask before any others

or how to record answers to the questions. We start with the latter.

We first define a new property hasSelectedOption, a subproperty of

hasOption:

q:hasSelectedOption a owl:ObjectProperty;
rdfs:subPropertyOf q:hasOption .

When the user who is taking a questionnaire answers a question, a new triple

will be entered to indicate that a particular option for that question has been

selected. That is, if the user selects “Cable TV” from the options of the first ques-

tion d:WhatProblem, then the application will add the triple

d:WhatProblem q:hasSelectedOption d:STV .

to the triple store. Notice that there is no need to remove any triples from the
triple store; the original d:hasOption relationship between d:WhatProblem and

d:STV still holds. As we develop the example, the model will provide ever-

increasing guidance for how the selection of questions will be done.

Adding “Restrictions”

The language construct in OWL for creating new class descriptions based

on descriptions of the prospective members of a class is called the Restric-

tion (owl:Restriction). An owl:Restriction is a special kind of class (i.e.,
owl:Restriction is a rdfs:subClassOf owl:Class). A Restriction is a class

that is defined by a description of its members in terms of existing properties

and classes.

In OWL, as in RDF, the AAA slogan holds: Anyone can say Anything about

Any topic. Hence, the class of all things in owl (owl:Thing) is unrestricted.

A Restriction is defined by providing some description that limits (or restricts)

the kinds of things that can be said about a member of the class. So if we have a

property orbitsAround, it is perfectly legitimate to say that anything orbits-

Around anything else. If we restrict the value of orbitsAround by saying that

its object must be TheSun, then we have defined the class of all things that orbit

around the sun (i.e. our solar system).
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Kinds of Restrictions

OWL provides a number of restrictions, three of which are owl:allValuesFrom,

owl:someValuesFrom, and owl:hasValue. Each describes how the new class is

constrained by the possible asserted values of properties.

Additionally, a restriction class in OWL is defined by the keyword owl:

onProperty. This specifies what property is to be used in the definition of the

restriction class. For example, the restriction defining the objects that orbit

around the sun will use owl:onProperty orbitsAround, whereas the restriction
defining major league players will use owl:onProperty playsFor.

A restriction is a special kind of a class, so it has individual members just like

any class. Membership in a restriction class must satisfy the conditions specified

by the kind of restriction (owl:allValuesFrom, owl:someValuesFrom, or owl:

hasValue), as well as the onProperty specification.

owl:someValuesFrom

owl:someValuesFrom is used to produce a restriction of the form “All individuals

for which at least one value of the property P comes from class C.” In other

words, one could define the class AllStarPlayer as “All individuals for which

at least one value of the property playsFor comes from the class AllStarTeam.”

This is what the restriction looks like:

[ a owl:Restriction;
owl:onProperty :playsFor;
owl:someValuesFrom :AllStarTeam]

Notice the use of the [ . . . ] notation. As a reminder from Chapter 3, this refers

to an anonymous node (a bnode) described by the properties listed here; that is,

this refers to a single bnode, which is the subject of three triples, one per line

(separated by semicolons).

The restriction class defined in this way refers to exactly the class of indivi-

duals that satisfy these conditions on playsFor and AllStarTeam. In particular,

if an individual actually has some value from the class AllStarTeam for the prop-

erty playsFor, then it is a member of this restriction class. Note that this restric-
tion class, unlike those we’ve learned about in earlier chapters, has no specific

name associated with it. It is defined by the properties of the restriction (i.e.,

restrictions on the members of the class) and thus it is sometimes referred to

in the literature as an “unnamed class.”

EXAMPLE Answered Questions

In the questionnaire example, we addressed the issue of recording answers to questions

by defining a property hasOption that relates a question to answer options and a

subproperty hasSelectedOption to indicate those answers that have been selected
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by the individual who is taking the questionnaire. Now we want to address the problem of

selecting which question to ask.

There are a number of considerations that go into such a selection, but one of them is

that (under most circumstances) we do not want to ask a question for which we already

have an answer. This suggests a class of questions that have already been answered.

We will define the set of AnsweredQuestions in terms of the properties we have already

defined. Informally, an answered question is any question that has a selected option.

An answered question is one that has some value from the class Answer for the

property hasSelectedOption. This can be defined as follows:

q:AnsweredQuestion owl:equivalentClass
[ a owl:Restriction;

owl:onProperty q:hasSelectedOption;
owl:someValuesFrom q:Answer ] .

Since

d:WhatProblem q:hasSelectedOption d:STV.

and

d:STV a Answer.

are asserted triples, the individual d:WhatProblem satisfies the conditions defined by the

restriction class. That is, there is at least one value (someValue) for the property

hasSelectedOption that is in the class Answer. Individuals that satisfy the conditions

specified by a restriction class are inferred to be members of it. This inference can be

represented as follows:

d:WhatProblem a [ a owl:Restriction;
owl:onProperty q:hasSelectedOption;
owl:someValuesFrom q:Answer ]

and thus, according to the semantics of equivalentClass,

d:WhatProblem a AnsweredQuestion.

These definitions and inferences are shown in Figure 9-3.

owl:allValuesFrom

owl:allValuesFrom is used to produce a restriction class of the form “the indivi-

duals for which all values of the property P come from class C.” This restriction
looks like the following:

[ a owl:Restriction;
owl:onProperty P;
owl:allValuesFrom C]
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The restriction class defined in this way refers to exactly the class of indivi-

duals that satisfy these conditions on P and C. If an individual x is a mem-

ber of this allValuesFrom restriction, a number of conclusions can follow,

one for each triple describing x with property P. In particular, every value

of property P for individual x is inferred to be in class C. So, if individual

MyFavoriteAllStarTeam (a member of the class BaseballTeam) is a member

of the restriction class defined by owl:onProperty hasPlayer and owl:

allValuesFrom StarPlayer, then every player on MyFavoriteAllStarTeam

is a StarPlayer. So, if MyFavorite AllStarTeam hasPlayer Kaneda and

MyFavoriteAllStarTeam hasPlayer Gonzales, then both Kaneda and Gonzales

must be of type StarPlayer.

There is a subtle difference between someValuesFrom and allValuesFrom.

Since someValuesFrom is defined as a restriction class such that there is at least

one member of a class with a particular property, then it implies that there must

be such a member. On the other hand, allValuesFrom technically means “if

there are any members, then they all must have this property.” This latter does
not imply that there are any members. This will be more important in later

chapters.

EXAMPLE Question Dependencies

In our questionnaire example, we might want to ask certain questions only after particular

answers have been given. To accomplish this, we begin by defining the class of all

selected answers, based on the property hasSelectedOption we have already

q:hasSelectedOption

owl:onProperty

owl:equivalentClass

q:answerText = Cable TV

rdf:type

rdf:type rdf:type

owl:someValuesFrom

q:has Selected Option

q:Answer

q:SelectedAnswer

q:hasSelectedOption some q:AnswerE

q:AnsweredQuestion

q:answerText=What system are you...
d:WhatProblem d:STV

FIGURE 9-3

Definition of q:AnsweredQuestion and the resulting inferences for d:WhatProblem. Since d:WhatProblem

has something (d:STV) of type q:Answer on property q:hasSelectedOption, it is inferred (dotted line)

to be a member of AnsweredQuestion.
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defined. We can borrow a technique from Chapter 4 to do this. First, we define a class

for the selected answers:

q:SelectedAnswer a owl:Class ;
rdfs:subClassOf q:Answer .

We want to ensure that any option that has been selected will appear in this class. This

can be done easily by asserting that

q:hasSelectedOption rdfs:range q:SelectedAnswer .

This ensures that any value V that appears as the object of a triple of the form

? q:hasSelectedOption V .

is a member of the class SelectedAnswer. In particular, since we have asserted that

d:WhatProblem q:hasSelectedOption d:STV .

we can infer that

d:STV a q:SelectedAnswer .

Now that we have defined the class of selected answers, we describe the

questions that can be asked only after those answers have been given. We intro-

duce a new class called EnabledQuestion; only questions that also have type

EnabledQuestion are actually available to be asked:

q:EnabledQuestion a owl:Class.

When an answer is selected, we want to infer that certain dependent questions

restrictionbecome members of EnabledQuestion. This can be done with a

restriction, owl:allValuesFrom.

To begin, each answer potentially makes certain questions available for

asking. We define a property called enablesCandidate for this relationship.

In particular, we say that an answer enables a question if selecting that answer
causes the system to consider that question as a candidate for the next question

to ask:

q:enablesCandidate a owl:ObjectProperty;
rdfs:domain q:Answer ;
rdfs:range q:Question .

In our example, we only want to ask a question about television problems if the

answer to the first question indicates that there is a television problem:

d:STV q:enablesCandidate d:TVsymptom.
d:SBoth q:enablesCandidate d:TVsymptom.
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That is, if the answer to the first question, “What system are you having trouble

with?,” is either “Cable TV” or “Both,” then we want to be able to ask the ques-

tion “What television symptoms are you having?”

The following owl:allValuesFrom restriction does just that: It defines the

class of things all of whose values for d:enablesCandidate come from the class

d:EnabledQuestion:

[ a owl:Restriction;
owl:onProperty q:enablesCandidate;
owl:allValuesFrom q:EnabledQuestion]

Which answers should enforce this property? We only want this for the answers

that have been selected. Howdowe determinewhich answers have been selected?

So far, we only have the property hasSelectedOption to indicate them. That is, for

any member of SelectedAnswer, we want it to also be a member of this restriction

class. This is exactly what the relation rdfs:subClassOf does for us:

q:SelectedAnswer rdfs:subClassOf
[ a owl:Restriction;

owl:onProperty q:enablesCandidate;
owl:allValuesFrom q:EnabledQuestion].

That is, a selected answer is a subclass of the unnamed restriction class.

Let’s watch how this works, step by step. When the user selects the answer

“Cable TV” for the first question, the type of d:STV is asserted to be Selected-

Answer, like the preceding.

d:STV a q:SelectedAnswer.

However, because of the rdfs:subClassOf relation, d:STV is a member of the
restriction class, that is, it has the restriction as its type:

d:STV a
[ a owl:Restriction;

owl:onProperty q:enablesCandidate;
owl:allValuesFrom q:EnabledQuestion].

Any individual who is a member of this restriction necessarily satisfies

the allValuesFrom condition; that is, any individual that it is related to by

d:enablesCandidate must be a member of d:EnabledQuestion. Since

d:STV q:enablesCandidate d:TVsymptom.

we can infer that

d:TVsymptom a q:EnabledQuestion.

as desired. Finally, since we have also asserted the same information for the

answer d:SBoth,

d:SBoth q:enablesCandidate d:TVsymptom.
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We can see this inference and the triples that led to it in Figure 9-4. Restrictions

are shown in the figures using a shorthand called theManchester Syntax (named

after its development at the University of Manchester). The shorthand summarizes

a restriction using the keywords all, some, and has to indicate the restriction

types owl:allValuesFrom, owl:someValuesFrom, and owl:hasValue, respectively.

The restriction property (indicate in triples by owl:onProperty) is printed before

the keyword, and the target class (or individual, in the case of owl:hasValue) is
printed after the keyword.We see an example of an owl:allValuesFrom restriction

in Figure 9-4. It is important to note that this is only a shorthand; all the informa-

tion needed for inferences is expressed in RDF triples.

Since SBoth also enables the candidate TVSymptom, the same conclusion will be

drawn if the user answers “Both” to the first question. If we were to extend the

example with another question about Internet symptoms d:InternetSymptom,

then we could express all the dependencies in this short questionnaire as

follows:

d:STV q:enablesCandidate d:TVsymptom.
d:SBoth q:enablesCandidate d:TVsymptom.

q:EnabledQuestion

q:enablesCandidate

owl:onProperty

rdfs:subClassOf

rdf:type

rdfs:subClassOf

rdf:type rdf:type

owl:allValuesFrom

q:enablesCandidateallq:EnabledQuestionA

q:enablesCandidate

q:SelectedAnswer

q:answerText = Both

q:Answer

q:enablesCandidate

q:answerText = Cable TV
c:STV

q:answerText = What television symp...

c:TVsymptom

c:SBoth

FIGURE 9-4

d:STV enablesCandidate TVSymptom, but it is also a member of a restriction on

the property enablesCandidate, stipulating that all values must come from the

class q:EnabledQuestion. We can therefore infer that d:TVSymptom has type

q:EnabledQuestion.
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d:SBoth q:enablesCandidate d:InternetSymptom.
d:SInternet q:enablesCandidate d:InternetSymptom.

The dependency tree is shown graphically in Figure 9-5.

EXAMPLE Prerequisites

In the previous example,we supposed that whenweanswered one question, itmade all of its

dependent questions eligible for asking. Another way questions are related to one another in

a questionnaire is as prerequisites. If a question has a number of prerequisites, all of them

must be answered appropriately for the question to be eligible.

Consider the following triples that define a section of a questionnaire:

d:NeighborsToo a q:Question;
q:hasOption d:NTY, d:NTN, d:NTDK;
q:questionText "Are other customers in your building also
experiencing problems?" .

d:NTY a q:Answer;
q:answerText "Yes, my neighbors are experiencing the same
problem.".

d:NTN a q:Answer;
q:answerText " No, my neighbors are not experiencing the
same problem.".

q:answerText = Cable TV
c:STV

q:answerText = Both

q:hasOptionq:hasOption
q:hasOption

q:enablesCandidateq:enablesCandidate

q:enablesCandidateq:enablesCandidate

c:SBoth

c:InternetSymptom

q:answerText = What television symp...
c:TVsymptom

q:answerText = High-speed Internet
c:SInternet

q:questionText = What system are you...
c:WhatProblem

FIGURE 9-5

Questions and the answers that enable them.
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d:NTDK a q:Answer;
q:answerText "I don’t know.".

This question makes sense only if the current customer lives in a building with other

customers and is experiencing a technical problem. That is, this question depends on

the answers to two more questions, shown following. The answer to the first question

(d:othersinbuilding) should be d:OYes, and the answer to the second question

(d:whatissue) should be d:PTech:

d:othersinbuilding
a q:Question ;
q:hasOption d:ONo , d:OYes ;
q:questionText

"Do you live in a multi-unit dwelling with other
customers?" .

d:OYes a q:Answer;
q:answerText "Yes." .

d:ONo a q:Answer;
q:answerText " No.".

d:whatIssue
a q:Question ;
q:hasOption d:PBilling , d:PNew, d:PCancel, d:PTech ;
q:questionText

"What can customer service help you with today?".

d:PBilling a q:Answer;
q:answerText "Billing question." .

d:PNew a q:Answer;
q:answerText "New account".

d:PCancel a q:Answer;
q:answerText "Cancel account".

d:PTech a q:Answer;
q:answerText "Technical difficulty".

A graphic version of these questions can be seen in Figure 9-6.

Challenge 22 How can we model the relationship between d:NeighborsToo, d:whatIssue,

and d:othersinbuilding so that we will only ask d:NeighborsToo when we

have appropriate answers to both d:whatIssue and d:othersinbuilding?
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We introduce a new property q:hasPrerequisite that will relate a question

to its prerequisites:

q:hasPrerequisite
rdfs:domain q:Question ;
rdfs:range q:Answer .

q:questionText = Do you live in a mul...
d:Neighbors Too

(a)

(b)

(c)

q:questionText = No.
d:ONo

q:questionText = Yes.
d:OYes

q:hasO
ption

q:hasOption

d:whatIssue

q:h
asO

pti
on

q:hasOpti
on

q:hasOption

q:hasOption

q:questionText = What can customer se...

q:answer = New account
d:PNew

q:answerText = Billing question.

d:PBilling

q:answerText = Cancel account
d:PCancel

q:answerText = Technical difficulty
d:PTech

q:questionText = Are other customers...
d:NeighborsToo

q:questionText = Yes, my neighbors ar...

q:hasOption

q:hasOption

q:has
Optio

n

q:questionText = I don’t Know
d:NTDK

d:NTDK

q:questionText = Yes,my neighbors ar...
d:NTN

FIGURE 9-6

Questions about neighbors have two prerequisite questions.
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We can indicate the relationship between the questions using this property:

d:NeighborsToo q:hasPrerequisite d:PTech, d:OYes .

This prerequisite structure is shown in graphical form in Figure 9-7.

Now we want to say that we will infer something is a d:EnabledQuestion if

all of its prerequisite answers are selected. We begin by asserting that

[ a owl:Restriction ;
owl:onProperty q:hasPrerequisite;
owl:allValuesFrom q:SelectedAnswer ]

rdfs:subClassOf q:EnabledQuestion .

Notice that we can use the restriction class just as we could any other class in

OWL, so in this case we have said that the restriction is a subclass of another

class. Any question that satisfies the restriction will be inferred to be a member

of d:EnabledQuestion by this subclass relation. But how can we infer that some-

thing satisfies this restriction?

For an individual x to satisfy this restriction, we must know that every time

there is a triple of the form

x hasPrerequisite y .

q:questionText = What can customer se...

c:whatIssue

q:hasPrerequisite

q:hasOption q:hasOption

q:hasOption

q:hasPrerequisite

c:NeighborsToo

q:questionText = Are other customers...

q:questionText = Technical difficulty

c:PTech

q:answerText = No, my neighbors ar...

c:NTN

q:answerText = Yes, my neighbors ar...

q:answerText = I don’t know.

c:NTY

c:NTDK

q:questionText = Do you live in a mul...

c:othersinbuilding

q:hasOption

c:OYes

q:answerText = Yes

q:hasOption

FIGURE 9-7

Some questions and their prerequisites.

Restrictions 193



y must be a member of the class d:SelectedAnswer. But by the Open World

assumption, we don’t know if there might be another triple of this form for

which y is not a member of d:SelectedAnswer. Given the Open World assump-

tion, how can we ever know that all prerequisites have been met?

The rest of this challenge will have to wait until we discuss the various meth-

ods by which we can (partially) close the world in OWL. The basic idea is that if

we can say how many prerequisites a question has, then we can know when all

of them have been selected. If we know that a question has only one prerequisite,

and we find one that is satisfied, then it must be the one. If we know that a

question has no prerequisites at all, then we can determine that it is an Enabled-

Question without having to check for any SelectedAnswers at all.

owl:hasValue

The third kind of restriction in OWL is called owl:hasValue. As in the other two

restrictions, it acts on a particular property as specified by owl:onProperty. It is
used to produce a restriction whose description is of the form “All individuals

that have the value A for the property P” and looks as follows:

[ a owl:Restriction;
owl:onProperty P;
owl:hasValue A]

Formally, the hasValue restriction is just a special case of the someValuesFrom

restriction, in which the class C happens to be a singleton set {A}.

Although it is “just” a special case, owl:hasValue has been identified in the

OWL standard in its own right because it is a very common and useful modeling
form. It effectively turns specific instance descriptions into class descriptions.

For example, “The set of all planets orbiting the sun” and “The set of all baseball

teams in Japan” are defined using hasValue restrictions.

EXAMPLE Priority Questions

Suppose that in our questionnaire, we assign priority levels to our questions. First we

define a class of priority levels and particular individuals that define the priorities in the

questionnaire:

q:PriorityLevel a owl:Class .
q:High a q:PriorityLevel .
q:Medium a q:PriorityLevel .
q:Low a q:PriorityLevel .

Then we define a property that we will use to specify the priority level of a question:

q:hasPriority
rdfs:range q:PriorityLevel .
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We have defined the range of q:hasPriority but not its domain. After all, we might

want to set priorities for any number of different sorts of things, not just questions.

We can use owl:hasValue to define the class of high-priority items:

q:HighPriorityItem owl:equivalentClass
[ a owl:Restriction;

owl:onProperty q:hasPriority;
owl:hasValue q:High ] .

These triples are shown graphically in Figure 9-8. Note that where before we defined

subclasses and superclasses of a restriction class, here we use owl:equivalentClass

to specify that these classes are the same. So we have created a named class

(q:HighPriorityItem) that is the same as the unnamed restriction class, and we can

use this named class if we want to make other assertions or to further restrict the class.

We can describe Medium and Low priority questions in the same manner:

q:MediumPriorityItem owl:equivalentClass
[ a owl:Restriction;

owl:onProperty q:hasPriority;
owl:hasValue q:Medium ] .

q:LowPriorityItem owl:equivalentClass
[ a owl:Restriction;

owl:onProperty q:hasPriority;
owl:hasValue q:Low ] .

q:High

owl:equivalentClass

q:hasPriority

q:hasPriority has q:High∋

q:HighPriorityItem≡

owl:hasValue
owl:onProperty

FIGURE 9-8

Definition of a HighPriorityItem as anything that has value High for the hasPriority

property.
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If we assert the priority level of a question, such as the following:

d:WhatProblem q:hasPriority q:High .
d:InternetSymptom q:hasPriority q:Low .

then we can infer the membership of these questions in their respective classes:

d:WhatProblem a q:HighPriorityItem .
d:InternetSymptom a q:LowPriorityItem .

We can also use owl:hasValue to work “the other way around.” Suppose we assert

that d:TVsymptom is in the class HighPriorityItem:

d:TVsymptom a q:HighPriorityItem .

Then by the semantics of owl:equivalentClass, we can infer that d:TVsymptom is a

member of the restriction class and must be bound by its stipulations. Thus, we can

infer that

d:TVsymptom q:hasPriority q:High .

Notice that there is no stipulation in this definition to say that a HighPriorityItem

must be a question; after all, we might set priorities for things other than questions.

The only way we know that d:TVsymptom is a q:Question is that we already asserted

that fact. In the next chapter, we will see how to use set operations to make definitions

that combine restrictions with other classes.

CHALLENGE PROBLEMS

As we saw in the previous examples, the class constructors in OWL can be com-

bined in a wide variety of powerful ways. In this section, we present a series of

challenges that can be addressed using these OWL constructs. Often the appli-

cation of the construct is quite simple; however, we have chosen these chal-

lenge problems because of their relevance to modeling problems that we have
seen in real modeling projects.

Challenge: Local Restriction of Ranges

We have already seen how rdfs:domain and rdfs:range can be used to classify

data according to how it is used. But in more elaborate modeling situations, a
finer granularity of domain and range inferences is needed. Consider the follow-

ing example of describing a vegetarian diet:

:Person a owl:Class .
:Food a owl:Class .
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:eats rdfs:domain :Person .
:eats rdfs:range :Food .

From these triples and the following instance data

:Maverick :eats :Steak .

we can conclude two things:

:Maverick a :Person .
:Steak a :Food .

The former is implied by the domain information, and the latter by the range

information.

Suppose we want to define a variety of diets in more detail. What would this
mean? First, let’s suppose that we have a particular kind of person, called a Veg-

etarian, and the kind of food that a Vegetarian eats, which we will call simply

VegetarianFood, as subclasses of Person and Food, respectively:

:Vegetarian a owl:Class ;
rdfs:subClassOf :Person .

:VegetarianFood a owl:Class ;
rdfs:subClassOf :Food .

Suppose further that we say

:Jen a :Vegetarian ;
:eats :Marzipan .

We would like to be able to infer that

:Marzipan a :VegetarianFood .

but not make the corresponding inference for Maverick’s steak until someone
asserts that he, too, is a vegetarian.

Challenge 23 It is tempting to represent this with more domain and range statements—thus:

:eats rdfs:domain :Vegetarian .
:eats rdfs:range :VegetarianFood .

But given the meaning of rdfs:domain and rdfs:range, we can draw infer-

ences from these triples that we do not intend. In particular, we can infer

:Maverick a :Vegetarian .
:Steak a :VegetarianFood .

which would come as a surprise both to Maverick and the vegetarians of
the world.

How can the relationship between vegetarians and vegetarian food be

correctly modeled with the use of the owl:Restriction?
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SOLUTION

We can define the set of things that only eat VegetarianFood using a restriction,

owl:allValuesFrom; we can then assert that any Vegetarian satisfies this condi-

tion using rdfs:subClassOf. Together, it looks like this:

:Vegetarian rdfs:subClassOf
[ a owl:Restriction;

owl:onProperty :eats ;
owl:allValuesFrom :VegetarianFood] .

Let’s see how it works. Since

:Jen a :Vegetarian .

we can conclude that

:Jen a [ a owl:Restriction;
owl:onProperty :eats ;

owl:allValuesFrom :VegetarianFood] .

Combined with the fact that

:Jen :eats :Marzipan .

we can conclude that

:Marzipan a :VegetarianFood .

as desired. How does Maverick fare now? We won’t say that he is a Vegetarian

but only, as we have stated already, that he is a Person . That’s where the infer-

ence ends; there is no stated relationship between Maverick and Vegetarian , so

there is nothing on which to base an inference. Maverick’s steak remains simply

a Food , not a VegetarianFood.

The entire model and inferences are shown in Figure 9-9.

Challenge: Filtering Data Based on Explicit Type

We have seen how tabular data can be used in RDF by considering each row to

be an individual, the column names as properties, and the values in the table as

values. We saw sample data in Table 3-10, which we repeat on page 200 as Table

9-1. Some sample triples from this data are shown in Table 9-2.

Each row from the original table appears in Table 9-2 as an individual

in the RDF version. Each of these individuals has the same type—namely,
mfg:Product—from the name of the table. This data includes only a limited

number of possible values for the “Product_Line” field, and they are known

in advance (e.g., “Paper machine,” “Feedback line,” “Safety Valve,” etc.).

A more elaborate way to import this information would be to still have one

individual per row in the original table but to have rows with different types
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depending on the value of the Product Line column. For example, the following

triples (among others) would be imported:

mfg:Product1 rdf:type ns:Paper_machine .
mfg:Product4 rdf:type ns:Feedback_line .
mfg:Product7 rdf:type ns:Monitor .
mfg:Product9 rdf:type ns:SafetyValve .

This is a common situation when actually importing information from a table. It

is quite common for type information to appear as a particular column in the

table. If we use a single method for importing tables, all the rows become indi-

viduals of the same type. A software-intensive solution would be to write a more

elaborate import mechanism that allows a user to specify which column should

specify the type. A model-based solution would use a model in OWL and an
inference engine to solve the same problem.

Challenge 24 Build a model in OWL so we can infer the type information for each

individual, based on the value in the “Product Line” field but using just

the simple imported triples described in Chapter 3.

Person Food

rdf:type

rdf:type

rdf:type

rdf:type

rdfs:subClassOf rd
fs
:s
ub
Cl
as
sO
f

rdfs:subClassOf

owl:onProperty

owl:allValuesFrom

eats

eats

Vegetarian

VegetarianFood

Maverick

Jen

Steak

Marzipan

eats

eats all VegetarianFood∀

FIGURE 9-9

Definition of a Vegetarian as a restriction on what the person eats.
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SOLUTION

Since the classes of which the rows will be members (i.e., the product lines) are

already known, we first define those classes:

ns:Paper_Machine rdf:type owl:Class .
ns:Feedback_Line rdf:type owl:Class .
ns:Active_Sensor rdf:type owl:Class .
ns:Monitor rdf:type owl:Class .
ns:Safety_Valve rdf:type owl:Class .

Each of these classes must include just those individuals with the appropriate
value for the property mfg:Product_Product_Line. The class constructor that

achieves this uses an owl:hasValue restriction, as follows:

ns:Paper_Machine owl:equivalentClass
[ a owl:Restriction;

owl:onProperty mfg:Product_Product_Line
owl:hasValue "Paper machine"] .

Table 9-1 Typical Tabular Data for RDF Import

Product

ID
Model
Number Division Product Line

Manufacture
Location SKU Available

1 ZX-3 Manufacturing

support

Paper machine Sacramento FB3524 23

2 ZX-3P Manufacturing

support

Paper machine Sacramento KD5243 4

3 ZX-3S Manufacturing

support

Paper machine Sacramento IL4028 34

4 B-1430 Control

Engineering

Feedback Line Elizabeth KS4520 23

5 B-1430X Control

Engineering

Feedback Line Elizabeth CL5934 14

6 B-1431 Control

Engineering

Active Sensor Seoul KK3945 0

7 DBB-12 Accessories Monitor Hong Kong ND5520 100

8 SP-1234 Safety Safety Valve Cleveland HI4554 4

9 SPX-1234 Safety Safety Valve Cleveland OP5333 14
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ns:Feedback_Line owl:equivalentClass
[ a owl:Restriction;

owl:onProperty mfg:Product_Product_Line
owl:hasValue "Feedback line"] .

ns:Active_Sensor owl:equivalentClass
[ a owl:Restriction;

owl:onProperty mfg:Product_Product_Line
owl:hasValue "Active sensor"] .

ns:Monitor owl:equivalentClass
[ a owl:Restriction;

owl:onProperty mfg:Product_Product_Line
owl:hasValue "Monitor"] .

Table 9-2 Sample Triples

Subject Predicate Object

mfg:Product1 rdf:type mfg:Product

mfg:Product1 mfg:Product_ID 1

mfg:Product1 mfg:Product_ModelNo ZX-3

mfg:Product1 mfg:Product_Division Manufacturing support

mfg:Product1 mfg:Product_Product_Line Paper machine

mfg:Product1 mfg:Product_Manufacture_Location Sacramento

mfg:Product1 mfg:Product_SKU FB3524

mfg:Product1 mfg:Proudct_Available 23

mfg:Product2 rdf:type mfg:Product

mfg:Product2 mfg:Product_ID 2

mfg:Product2 mfg:Product_ModelNo ZX-3P

mfg:Product2 mfg:Product_Division Manufacturing support

mfg:Product2 mfg:Product_Product_Line Paper machine

mfg:Product2 mfg:Product_Manufacture_Location Sacramento

mfg:Product2 mfg:Product_SKU KD5243

mfg:Product2 mfg:Proudct_Available 4

mfg:Product3 rdf:type mfg:Product

mfg:Product4 rdf:type mfg:Product

mfg:Product5 rdf:type mfg:Product . . .
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ns:Safety_Valve owl:equivalentClass
[ a owl:Restriction;

owl:onProperty mfg:Product_Product_Line
owl:hasValue "Safety Valve"] .

Each of these definitions draws inferences as desired. Consider mfg:Product1

(“ZX-3”), for which the triple

mfg:Product1 mfg:Product_Product_Line "Paper machine" .

has been imported from the table. The first triple ensures that mfg:Product1

satisfies the conditions of the restriction for Paper_Machine. Hence,

mfg:Product1 rdf:type [ a owl:Restriction;
owl:onProperty mfg:Product_Product_Line
owl:hasValue "Paper machine" ] .

can be inferred. Since this restriction is equivalent to the definition for mfg:

Paper_Machine, we have

mfg:Product1 rdf:type mfg:Paper_Machine .

as desired.

Furthermore, this definition maintains coherence of the data, even if it came

from a source other than the imported table. Suppose that a new product is

defined according to the following RDF:

os:ProductA rdf:type mfg:Paper_Machine .

The semantics of owl:equivalentClass means that all members of mfg:Paper_

Machine are also members of the restriction. In particular,

os:ProductA rdf:type [ a owl:Restriction;
owl:onProperty mfg:Product_Product_Line
owl:hasValue "Paper Machine" ] .

Finally, because of the semantics of the restriction, we can infer

os:ProductA mfg:Product_Product_Line "Paper Machine" .

The end result of this construct is that regardless of how product information

is brought into the system, it is represented both in terms of rdf:type and
mfg:Product_Product_Line consistently.

Challenge: Relationship Transfer in SKOS

When mapping from one model to another, or even when specifying how one

part of a model relates to another, it is not uncommon to make a statement

of the form “Everything related to A by property p should also be related to B

but by property q.” Some examples are “Everyone who plays for the All Star
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team is governed by the league’s contract” and “Every work in the Collected

Works of Shakespeare was written by Shakespeare.” We refer to this kind of

mapping as relationship transfer, since it involves transferring individuals in

a relationship with one entity to another relationship with another entity.

In Chapter 8, we saw how SKOS provides a framework for describing knowl-

edge organization systems like thesauri, taxonomies, and controlled vocabul-

aries. Not surprisingly, the issue of relationship transfer appears in this system,

as well. We saw a special-purpose rule for managing collections—namely: If
we have triples of the form

X skos:narrower C .
C skos:member Y .

then we can infer the triple

X skos:narrower Y .

In the case in which a collection C is narrower than a concept X, we can say,

“Every member of C is also narrower than X.” That is, the rule that governs the

treatment of skos:narrower in the context of a skos:Collection is a relation-
ship transfer.

Challenge 25 Represent the SKOS rule for propagating skos:narrower in the context of a

skos:Collection, using constructs in OWL. For example, represent the

constraint

IF agro:MilkBySourceAnimal skos:member Y .
THEN agro:Milk skos:narrower Y .

in OWL.

SOLUTION

First, let’s define an inverse for skos:member:

skos:isMemberOf owl:inverseOf skos:member .

We already have an inverse for skos:narrower, which is skos:broader. With

these inverses, we can restate the problem as

IF Y skos:isMemberOf agro:MilkBySourceAnimal .
THEN Y skos:broader agro:Milk .

How do we specify, in OWL, the set of all things Y that are members of agro:

MilkBySourceAnimal? We can use an owl:hasValue restriction for that.

agro:MembersOfMilkSource owl:equivalentClass
[ a owl:Restriction ;

owl:onProperty skos:isMemberOf ;
owl:hasValue agro:MilkBySourceAnimal ] .
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We can also describe the set of all things that have agro:Milk as a broader cate-

gory. We will call it agro:NarrowerThanMilk, since these things are narrower

than Milk (i.e., Milk is broader than they are):

agro:NarrowerThanMilk owl:equivalentClass
[ a owl:Restriction ;

owl:onProperty skos:broader ;
owl:hasValue agro:Milk ] .

Now, to say that all members of one of these classes is in the other, we simply

use rdfs:subClassOf—thus:

ex:MembersOfMilkSource rdfs:subClassOf agro:NarrowerThanMilk .

You can think of this rdfs:subClassOf as something like an IF/THEN relation-

ship: IF something is a member of the subclass, THEN it is a member of the

superclass. In this case, both the subclass and the superclass are restrictions;

when this happens, the IF/THEN takes on more meaning. In this case, it takes

on the meaning IF an individual skos:isMemberOf agro:MilkBySourceAnimal,

then that individual (has) skos:broader (concept) agro:Milk. With the inverses

as just defined, this is equivalent to saying

IF
agro:MilkBySourceAnimal skos:member X
THEN
agro:Milk skos:narrower X

as desired.

RELATIONSHIP TRANSFER IN FOAF

A similar situation arises in FOAF with groups of people. Recall that FOAF pro-

vides two ways to describe members of a group: the foaf:member relation,

which relates an individual member G of foaf:Group to the individuals

who are in that group, and that same group G, which is related to an owl:Class

by the foaf:membershipClass property. We take an example from the life of

Shakespeare to illustrate this.

Suppose we define a foaf:Group for Shakespeares_Children, as follows:

b:Shakespeares_Children
a foaf:Group ;

foaf:name "Shakespeare’s Children" ;
foaf:member b:Susanna , b:Judith , b:Hamnet ;
foaf:membershipClass b:ChildOfShakespeare .

b:ChildOfShakespeare a owl:Class .

204 CHAPTER 9 Basic OWL



FOAF specifies that the following rule should hold:

IF
b:Shakespeares_Children foaf:member ?x

THEN
?x rdfs:type b:ChildOfShakespeare .

Figure 9-10 shows graphically the result of this rule in the case of Shakespeare’s

family. The fine lines represent asserted triples, and the three bold lines repre-

sent the triples that are to be inferred.

Challenge 26 How can we get the inferences shown in Figure 9-10 by using only the

constructs from OWL (i.e., without special-purpose rules)?

SOLUTION

The solution parallels the solution for relationship transfer in SKOS, but in this

case, the relationship we are transferring to is rdf:type. We begin as we did

in that example—by defining an inverse of foaf:member:

b:memberOf owl:inverseOf foaf:member .

rdf:type

rd
f:
ty
pe

rd
f:
ty
pe

rd
f:
ty
pe

foaf:membershipClass

foaf:memberfoaf:member
foaf:member

foaf:Group

Shakespeares_Children

Susanna

Judith

Hamnet

ChildOfShakespeare≡

FIGURE 9-10

Inferences based on membershipClass in FOAF.
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Now we can define ChildOfShakespeare to be (equivalent to) the class of all

individuals who are b:memberOf b:Shakespeares_Children, using an owl:hasVa-

lue restriction:

b:ChildOfShakespeare
a owl:Class ;
rdfs:label "Child of Shakespeare";
owl:equivalentClass

[ a owl:Restriction ;
owl:hasValue b:Shakespeares_Children ;
owl:onProperty b:memberOf
] .

Let’s follow the progression of Shakespeare’s children through this infer-

ence. From Figure 9-10, we begin with three triples:

b:Shakespeares_Children foaf:member b:Hamnet .
b:Shakespeares_Children foaf:member b:Judith .
b:Shakespeares_Children foaf:member b:Susanna .

By the semantics of owl:inverseOf, we can infer

b:Hamnet foaf:memberOf b:Shakespeares_Children .
b:Judith foaf:memberOf b:Shakespeares_Children .
b:Susanna foaf:memberOf b:Shakespeares_Children .

Therefore, all three are also members of the restriction defined previously, so

we can conclude that

b:Hamnet rdf:type b:ChildOfShakespeare .
b:Judith rdf:type b:ChildOfShakespeare .
b:Susanna rdf:type b:ChildOfShakespeare .

Following similar reasoning, we can also turn this inference around back-

ward; if we instead assert that

b:Hamnet rdf:type b:ChildOfShakespeare .
b:Judith rdf:type b:ChildOfShakespeare .
b:Susanna rdf:type b:ChildOfShakespeare .

we can infer that

b:Shakespeares_Children foaf:member b:Hamnet .
b:Shakespeares_Children foaf:member b:Judith .
b:Shakespeares_Children foaf:member b:Susanna .
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Discussion

Just because we can represent something in OWL, it doesn’t necessarily mean

that we have to do so. How do the solutions we’ve proposed compare to those

that were actually taken by the SKOS and FOAF developers?
As we have seen, SKOS uses a special-purpose rule to define the meaning

of skos:narrower in the context of a skos:Concept and a skos:Collection.

This means that a SKOS user can express the relationship between Milk and

MilkBySourceAnimal simply by asserting the triple

agro:Milk skos:narrower agro:MilkBySourceAnimal .

Then the rule takes care of the rest. This is certainly much simpler for the SKOS

user than having to construct the pair of restrictions.

This advantage for the rule-based approach goes even further: SKOS in fact

defines the rule with a bit more generality, as follows:

X P C .
P rdf:type skos:CollectableProperty .
C skos:member Y .

Then we can infer the triple

X P Y .

That is, this rule works for any skos:CollectableProperty, which includes skos:

narrower, skos:broader, and skos:related. A single rule can express the con-

straints for three different properties. To do the same using the OWL relationship

transfer pattern, you would have to repeat the pattern once for each property and

for each concept/collection pair for which you want to specify the relationship.

Seen from this point of view, the rule seems like a far superior solution.

On the other hand, writing a special-purpose rule into the SKOS description

has its own drawbacks. What language should the rules be written in? What pro-
cessor will process the rules? The pragmatic answers are that the rules are writ-

ten in the natural language that the specification is written in and the processing

will be done by each application rather than by a general-purpose inference

engine. This has the drawback that every application developer has to under-

stand the rule from the imprecise natural language description and has to spe-

cially implement the rule. In contrast, the OWL solution (any OWL solution)

can make use of generic software, and it takes advantage of standard semantics.

For better or worse, the SKOS specification, at the time of this writing, has cho-
sen to express this rule in prose, leaving its implementation to each application.

The situation for FOAF is a bit different. Unlike the situation for SKOS, there

is only one property (foaf:membershipClass) that is affected by the transfer

rule. Furthermore, a FOAF user has to assert the triple

b:Shakespeares_Children foaf:membershipClass b:ChildOf
Shakespeare.
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for the transfer rule to come in to play (in contrast to SKOS, this isn’t built into

some other construct like skos:Collection). That is, the FOAF user is already

explicitly indicating at what point the rule is to be invoked.

Furthermore, the ground-up evolutionary strategy of FOAF argues against

putting special-purpose meanings into the specification, since there is a good

chance that these things could be changed or superseded by future versions.

As it stands, any FOAF user can already express (in OWL) the relationship

between a foaf:Group and its foaf:members, or indeed any other class and prop-
erty as needed or desired. This is quite in accord with the AAA slogan and in par-

ticular with the ground-up empowerment of the FOAF user community that is

manifest in the rest of the FOAF project.

Since the SKOS effort is focused and under the control of a single committee,

it is possible to put a few rules into its specification and still keep some control

over how the rules interact. Furthermore, SKOS is not domain-specific; it is

intended to be usable across many domains. As such, SKOS must anticipate that

any number of concept/collection pairs might require this rule.
When modeling in a more vertical domain, some of these conditions may not

hold. Certainly it is not common for most modelers to be seeking W3C recom-

mendation status or some other approval as a standard, which means that

any rules that are put into the model can have possible adverse interactions

with other rules. It is not uncommon when modeling a particular verti-

cal domain to find that there are a few very distinguished instances in which

some part of the model needs to be replicated at another place; The Complete

Works of Shakespeare and the “All Star Team” are examples of this. In these
cases, the relationship transfer is part of the description of these concepts,

and is not something that needs to be repeated an indefinite number of times.

In such cases, it may be just as convenient to describe the relationships using

constructs in OWL. This seems to be the case for group membership in OWL;

the modeler is making a very special statement about a group when they relate

it to its membershipClass. It is not out of the question to have a somewhat

involved way to express this relationship, especially if it can be done without

cluttering up the FOAF model itself.
A final comment about the comparative practice of expressing rules as part

of a standards document versus an explicit representation in a semantic model

has to do with the very nature of modeling as an intellectual pursuit. One reason

to model knowledge about a domain in the first place is to understand the rami-

fications of that model, and to understand when there are conflicts between

one viewpoint of the world and another. When rules are represented as part

of a practice (e.g., encoded into a standard), the rules are not themselves avail-

able for automated analysis. That is, suppose that a rule in FOAF were to have
some adverse interaction with a rule from SKOS. How would we know not to

use these two models together? In the next chapter, we introduce notions of

inconsistency and contradiction and examine how representations that remain
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within the OWL standard can detect such interactions in advance of their appli-

cation to any actual web data.

ALTERNATIVE DESCRIPTIONS OF RESTRICTIONS

In this book, we describe OWL and its semantics with respect to the inter-

pretation of OWL as RDF triples as defined in the W3C OWL documents. Other

characterizations have been used during the history of OWL and even appear

in user interfaces of some tools. Each characterization uses its own vocabulary
to describe exactly the same things. In this section we review some of the

most common language you will encounter when discussing OWL restrictions

and classes, and we also provide a recommendation for best-practice terminology.

The semantics of rdfs:subClassOf and owl:equivalentClass are quite easy

to characterize in terms of the inferences that hold

X rdfs:subClassOf Y .

can be understood as a simple IF/THEN relation; if something is a member of X,

then it is also a member of Y.

X owl:equivalentClass Y .

can be understood as an IF and only IF relation, that is two IF/THEN relations,

one going each way; if something is a member of X, then it is also a member

of Y, and vice versa.

These relations remain unchanged in the case where X and/or Y are restric-
tions. We can see these relationships with examples taken from the solar system.

Consider two classes: one is a named class SolarBody, which we’ll call class A for

purposes of this discussion. The other is the unnamed class defined by a restric-

tion onProperty orbits that it hasValue TheSun, which we’ll call class B. We can say

that all solar bodies orbit the sun by asserting

A rdfs:subClassOf B .

In other words, if something is a solar body, then it orbits the sun.

Other terms are used in the literature for this situation. For example, it is

sometimes described by saying that “orbiting the sun is a necessary condition

for SolarBody.” The intuition behind this description is that if you know that
something is a SolarBody, then it is necessarily the case that it orbits the sun.

Since such a description of the class SolarBody describes the class but does

not provide a complete characterization of it (that is, you cannot determine

from this description that something is a member of SolarBody), then this situ-

ation is also sometimes denoted by saying that “orbiting the sun is a partial

definition for the class SolarBody.”
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If, on the other hand, we say that solar bodies are the same as the set of

things that orbit the sun, we can express this in OWL compactly as

A owl:equivalentClass B .

Now we can make inferences in both directions: If something orbits the sun,

then it is a SolarBody, and if it is a SolarBody, then it orbits the sun. This situa-

tion is sometimes characterized by saying that “orbiting the sun is a necessary

and sufficient condition for SolarBody.” The intuition behind this description

is that if you know something is a SolarBody, then it is necessarily the case that

it orbits the sun. But furthermore, if you want to determine that something is a

SolarBody, it is sufficient to establish that it orbits the sun. Furthermore, since
such a description does fully characterize the class SolarBody, this situation is

also sometimes denoted by saying that “orbiting the sun is a complete definition

for the class SolarBody.”

Finally, if we say that all things that orbit the sun are solar bodies, we can

express this compactly in OWL as

B rdfs:subClassOf A .

That is, if something orbits the sun, then it is a SolarBody. Given the usage of

the words necessary and sufficient, one could be excused for believing that in

this situation one would say that “orbiting the sun is a sufficient condition

for SolarBody.” However, it is not common practice to use the word sufficient

in this way. Despite the obvious utility of such a statement from a modeling per-

spective and its simplicity in terms of OWL (it is no more complex than a

partial or complete definition), there is no term corresponding to partial or

complete for this situation.

Because of the incomplete and inconsistent way words, such as partial, com-

plete, sufficient, and necessary, have been traditionally used to describe OWL, we

strongly discourage their use and recommend instead the simpler and consistent

use of the OWL terms rdfs:subClassOf and owl:equivalentClass.

SUMMARY

A key functionality of OWL is the ability to define restriction classes. The

unnamed classes are defined based on restrictions on the values for particular

properties of the class. Using this mechanism, OWL can be used to model situa-

tions in which the members of a particular class must have certain properties.

In RDFS, the domain and range restrictions can allow us to make inferences
about all the members of a class (such as playsFor relating a baseball player

to a team). In OWL, one can use restriction statements to differentiate the case

between something that applies to all members of a class versus some members,

and even to insist on a particular value for a specific property of all members of

a class.
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When restrictions are used in combination with the constructs of RDFS

(especially rdfs:subPropertyOf and rdfs:subClassOf), and when they are cas-

caded with one another (restrictions referring to other restrictions), they can

be used to model complex relationships between properties, classes, and indivi-

duals. The advantage of modeling relationships in this way (over informal speci-

fication) is that interactions of multiple specifications can be understood and

even processed automatically.

OWL also provides other kinds of restrictions that can be placed on the
members of a class using other kinds of onProperty restrictions. We discuss

these in the next chapter.

Fundamental Concepts

The following fundamental concepts were introduced in this chapter.

owl:Restriction—The building block in OWL that describes classes by

restricting the values allowed for certain properties.

owl:hasValue—A type of restriction that refers to a single value for a

property.

owl:someValuesFrom—A type of restriction that refers to a set from which

some value for a property must come.

owl:allValuesFrom—A type of restriction that refers to a set from which all

values for a property must come.

owl:onProperty—A link from a restriction to the property it restricts.
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CHAPTER

10Counting and Sets
in OWL

Restrictions provide a concise way to describe a class of individuals in terms of

the properties we know that describe the individuals themselves. As we saw in

the previous chapter, we can use this construct to define notions like Vegetar-

ian (describing someone in terms of they type of food that they eat), to sift

information from a table (describing something according to a value of one

property), and to manage groups of people or terms (describe something

based on its membership in a group). The restrictions defined in Chapter 9

are powerful methods for defining classes of individuals.
In this chapter, we see that OWL augments this capability with a full set the-

ory language, including intersections, unions, and complements. These can be

used to combine restrictions together (e.g., the set of planets that go around

the sun and have at least one moon) or to combine the classes we use to define

restrictions (a Vegetarian is someone who eats food that is not Meat). This com-

bination provides a potent system for making very detailed descriptions of

information.

OWL also includes restrictions that refer to cardinalities—that is, referring
to the number of distinct values for a particular property some individual has.

So we can describe “the set of planets that have at least three moons” or “the

teams that contain more than one all-star player.” Reasoning with cardinalities

in OWL is surprisingly subtle. Perhaps not surprising, when one considers that

reasoning is taking place under the Open World assumption and the Non-

Unique Naming assumption.

Perhaps we shouldn’t be surprised that it is difficult to count how many dis-

tinct things there are when one thing might have more than one name (i.e.,
more than one URI), and we never know when someone might tell us about a

new thing we didn’t know about before. These are the main reasons why cardi-

nality inferencing in OWL is quite conservative in the conclusions it can draw.
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UNIONS AND INTERSECTIONS

We begin with the basic logical combinations, which are familiar from set the-

ory. OWL provides a facility for defining new classes as unions and intersections

of previously defined classes. All set operations can be used on any class defini-

tion at all in OWL, including named classes and restrictions. This allows OWL to

express a wide variety of combinations of classes and conditions. The semantics

for the constructors is as one would expect, matching the set operations of the

same name.
Syntactically, they use the list constructs of RDF, as follows:

U1 a owl:Class;
owl:unionOf ( ns:A ns:B . . .) .

I1 a owl:Class;
owl:intersectionOf ( ns:A ns:B . . .) .

The union of two or more classes includes the members of all those classes

combined; the intersection includes the members that belong to every one of

the classes.

The intersection of two (or more) classes is a new class; this can be repre-
sented in OWL/RDF by either naming that class (as just shown) or by defining

an anonymous class (an individual of type owl:Class), which is defined to be

the intersection of other classes using the property owl:intersectionOf (like-

wise owl:unionOf). An anonymous class of this sort can be used again in a

model by naming using owl:equivalentClass, as follows:

bb:MajorLeagueBaseballPlayer owl:equivalentClass
[ a owl:Class;

owl:intersectionOf
( bb:MajorLeagueMember bb:Player bb:BaseballEmployee ) ] .

Although the semantics of intersectionOf and unionOf are straightforward,

they have a particular application to Semantic Web modeling when used in con-

junction with restrictions.

Natural language descriptions of restrictions often have a notion of intersec-

tion built-in. “All planets orbiting the sun” is actually the intersection of all

things that orbit the sun (hasValue restriction) and all planets. The set of major

league baseball players is the intersection of the things that play on a major

league team (someValuesFrom restriction) and baseball players. Intersections
work just as well on restrictions as they do on named classes; we can define

these things directly using intersections:

:SolarPlanet a owl:Class;
owl:intersectionOf (

:Planet
[ a owl:Restriction;
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owl:onProperty :orbits;
owl:hasValue :TheSun

] ) .
:MajorLeagueBaseballPlayer a owl:Class;

owl:intersectionOf (
:BaseballPlayer
[ a owl:Restriction;
owl:onProperty :playsFor;
owl:someValuesFrom :MajorLeagueTeam

] ) .

EXAMPLE High-Priority Candidate Questions

In the previous chapter, we defined a class of candidate questions based on dependencies

of selected answers, and we defined priorities for the questions themselves. We will use

the set constructors to combine these two to form a class of candidate questions of a

particular priority. An application that asks questions and records answers using this

construct would only ask high-priority questions that have been enabled by answers

given so far.

First, let’s revisit the description of SelectedAnswer that classifies dependent questions

as EnabledQuestion:

q:SelectedAnswer rdfs:subClassOf
[ a owl:Restriction;

owl:onProperty q:enablesCandidate;
owl:allValuesFrom q:EnabledQuestion].

We now want to define a class of questions that we are ready to ask, based on two

criteria: First, if they have been enabled by the description above and, second, if they

are high priority. This is done with an intersectionOf contstructor:

q:CandidateQuestion owl:equivalentClass
[ a owl:Class;

owl:intersectionOf
( q:EnabledQuestion q:HighPriorityQuestion ) ] .

With this description of q:CandidateQuestion, only questions with value q:High for the

property q:hasPriority can become candidates.

Alternately, we could make a more relaxed description for candidate questions that

include medium-priority questions:

q:CandidateQuestion owl:equivalentClass
[ a owl:intersectionOf

( q:EnabledQuestion
[ a owl:unionOf
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( q:HighPriorityQuestion
q:MediumPriorityQuestion ) ] ) ] .

Closing the World

A key to understanding how set operations and counting works in OWL is the

impact of the Open World Assumption. Not only does it make counting difficult,

but even the notion of set complement is subtle when you assume that a new

fact can be discovered at any time. Who’s to say that something isn’t a member

of a class when the very next statement might assert that it actually is? Fortu-

nately, there are ways in OWL to assert that certain parts of the world are

closed; in such situations, inferences having to do with complements or count-
ing become much clearer.

Consider, for example, the following bit of dialogue:

RIMBAUD: I saw a James Dean movie last night.

ROCKY: Was it Giant?

RIMBAUD: No.

ROCKY: Was it East of Eden?

RIMBAUD: No.

ROCKY: James Dean only made three movies; it must have been Rebel

Without a Cause.

RIMBAUD: Yes, it was.

This sort of inference relies on the fact that James Dean made only three movies.

In light of the open world assumption, how can we make such a claim? After all,

in an open world, someone could come along at any time and tell us about a
fourth James Dean movie. We will use the example of James Dean’s movies to

illustrate how OWL provides a controlled means for modeling closed aspects

of the world.

Enumerating Sets with owl:oneOf

In the James Dean example, it wasn’t necessary that we reject the open world

assumption completely. We simply needed to know that for a particular class

(James Dean movies), all of its members are known. When one is in a position

to enumerate the members of a class, a number of inferences can follow.

OWL allows us to enumerate the members of a class using a construct called
owl:oneOf, as shown here:

ss:SolarPlanet rdf:type owl:Class;
owl:oneOf ( ss:Mercury ss:Venus ss:Earth

ss:Mars ss:Jupiter ss:Saturn
ss:Uranus ss:Neptune).
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The class SolarPlanet is related via the property owl:oneOf to a list of the mem-

bers of the class. Informally, the meaning of this is that the class SolarPlanet

contains these eight individuals and no others. owl:oneOf places a limit on the

AAA slogan. When we say that a class is made up of exactly these items, nobody

else can say that there is another distinct item that is a member of that class.

Thus, owl:oneOf should be used with care and only in situations in which the

definition of the class is not likely to change—or at least not change very often.

In the case of the solar planets, this didn’t change for 50 years. We can probably
expect that it won’t change again for quite a while.

Although owl:oneOf places a limitation on the AAA slogan and Open World

assumption, it places no limitation on the Nonunique Naming assumption. That

is, owl:oneOf makes no claim about whether, say, Mercury might be the same as

Venus.

When combined with owl:someValuesFrom, owl:oneOf provides a generaliza-

tion of owl:hasValue. Whereas owl:hasValue specifies a single value that a prop-

erty can take, owl:someValuesFrom combined with owl:oneOf specifies a distinct
set of values that a property can take.

Challenge 27 In the dialogue with Rimbaud, Rocky used the fact that James Dean made

only three movies to help determine what movie Rimbaud had seen. How

do we represent this in OWL?

SOLUTION

Since James Dean has been dead for more than 50 years, it seems a sad but safe

bet that he won’t be making any more movies. We can therefore express the
class of James Dean movies using owl:oneOf as follows:

:JamesDeanMovie a owl:Class;
owl:oneOf ( :Giant :EastOfEden :Rebel ).

Informally, this states that the class JamesDeanMovie is made up of only Giant,
EastOfEden, and Rebel. What is the formal meaning of owl:oneOf? As usual,

we define the meaning of a construct in terms of the inferences that can be

drawn from it. In the case of owl:oneOf, there are a number of inferences that

we can draw.

First, we can infer that each instance listed in owl:oneOf is indeed a member

of the class. From our assertion about :JamesDeanMovie, we can infer that each

of these things is a James Dean movie:

:Giant rdf:type :JamesDeanMovie .
:EastOfEden rdf:type :JamesDeanMovie .
:Rebel rdf:type :JamesDeanMovie .

The meaning of owl:oneOf goes further than simply asserting the members of a
class; it also asserts that these are the only members of this class. In terms of
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inferences, this means that if we assert that some new thing is a member of the

class, then it must be owl:sameAs one of the members listed in the owl:oneOf

list. In our James Dean example, if someone were to introduce a new member

of the class—say:

:RimbaudsMovie rdf:type :JamesDeanMovie .

then we can infer that Rebel must be owl:sameAs one of the other movies

already mentioned.

This inference differs from the inferences that we have seen so far. Up to this

point, we were able to express inferences in terms of new triples that can be

inferred. In this case, the inference tells us that some triple from a small set

holds, but we don’t know which one. We can’t assert any new triples, and we

can’t respond to a query any differently.
How do we turn this kind of inference into something from which we assert

a triple? If we compare where we are now with the conversation between

Rocky and Rimbaud, we are right at the point where Rocky has heard from Rim-

baud that he saw a James Dean Movie. Rocky doesn’t know which movie he has

seen, but because of his background knowledge, he knows that it was one of

three movies. How does Rocky proceed? He eliminates candidates until he

can conclude which one it is. To do this in OWL, we must be able to say that

some individual is not the same as another.

Differentiating Individuals with owl:differentFrom

There’s an old joke about the three major influences on the price of a piece of

real estate: location, location, and location. The joke is, of course, that when

you promised to name three influences, any reasonable listener expects you

to give three different influences. Because of the nonunique naming assump-

tion in the Semantic Web, we have to be explicit about these things and name

things that are, in fact, different from one another. OWL provides owl:differ-

entFrom for this. Its use is quite simple: To assert that one resource is different

from another requires a single triple:

ss:Earth owl:differentFrom ss:Mars .

Informally, this triple means that we can rely on the fact that ss:Earth and ss:Mars

refer to different resources when making arguments by counting or by elimi-
nation. Formally, owl:differentFrom supports a number of inferences when

used in conjunction with other constructs like owl:cardinality and owl:

oneOf, as we shall see.

218 CHAPTER 10 Counting and Sets in OWL



Challenge 28 Use OWL to model the dialogue between Rocky and Rimbaud so that OWL

can draw the same inference that Rocky did—namely, that Rimbaud saw
Rebel Without a Cause.

SOLUTION

At the beginning of the dialogue, Rocky knows that the movie Rimbaud saw

was one of the three movies: EastOfEden, Giant, or Rebel. We have already

shown how to represent this using owl:oneOf. But he doesn’t know which

one. He can make a guess: Perhaps it was Giant. If he is right, we can simply

assert that

:RimbaudsMovie owl:sameAs :Giant .

But what if (as was the case in the dialogue) he was wrong, and Rimbaud didn’t

see Giant? We express this in OWL, using owl:differentFrom, as follows:

:RimbaudsMovie owl:differentFrom :Giant .

This narrows things down a bit, but we still don’t know whether Rimbaud

saw East of Eden or Rebel Without a Cause. So Rocky tries again: Was the

movie East of Eden? When the answer is negative, we have another owl:

different From triple:

:RimbaudsMovie owl:differentFrom :EastOfEden .

Now we are in the position that Rocky was in at the end of the dialogue; we
know that there are just three James Dean movies, and we know that

Rimbaud did not see Giant or East of Eden. Just as Rocky was able to con-

clude that Rimbaud saw Rebel Without a Cause, the semantics of owl:oneOf

and owl:differentFrom allow us to infer that

:RimbaudsMovie owl:sameAs :Rebel.

We can see these assertions and the inference in Figure 10-1.

DIFFERENTIATING MULTIPLE INDIVIDUALS

The nonunique naming assumption allowed us to use a new resource—

RimbaudsMovie—to stand in for an indeterminate movie. With appropriate use

of modeling constructs, we were able to get inferences about which movie it

actually was, using owl:sameAs to indicate the answer. The nonunique naming

assumption applies to all resources. For instance, even though we intuitively
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know that ss:Earth and ss:Mars do not refer to the same thing, we need to

state that in our model. We did this before using owl:differentFrom. We also
want to say that ss:Earth is different from ss:Jupiter and ss:Venus, ss:Venus

is different from ss:Mars, and so on.

To simplify the specification of lists of items, all of which are different from

one another, OWL provides owl:AllDifferent and owl:distinctMembers—

two constructs. Using these, we will specify that a list of individuals is distinct

from one another. The list of items is specified as an RDF list. We specify that

this list should be treated as a set of mutually different individuals by refer-

ring to it in a triple using owl:distinctMembers as a predicate. The domain
of owl:distinctMembers is owl:AllDifferent.

It is customary for the subject of an owl:distinctMembers triple to be a

bnode, so the statement that all eight planets are mutually distinct would be

expressed in N3 as

[ a owl:AllDifferent;
owl:distinctMembers (ss:Mercury

ss:Venus
ss:Earth
ss:Mars
ss:Jupiter
ss:Saturn
ss:Uranus
ss:Neptune) ] .

[JamesDean:EastOfEden,
JamesDean:Giant,
JamesDean:Rebel]

Rimbauds movie

East of Eden

Giant

Rebel Without a Cause

JamesDean:JamesDeanMovie

owl:oneOf

owl:differentFrom

owl:differentFrom

owl:sameAs

rdf:type

rdf:type

rdf:type
rdf:type

FIGURE 10-1

Rimbauld’s movie is neither Giant nor East of Eden, so we infer that it is Rebel Without a

Cause.
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Formally, this is the same as asserting the 28 owl:differentFrom triples, one for

each pair of individuals in the list. In the case of James Dean’s movies, we can

assert that the three movies are distinct in the same way:

[ a owl:AllDifferent;
owl:distinctMembers (:EastOfEden

:Giant
:Rebel) ] .

The view of this bit of N3 in terms of triples is shown in Figure 10-2. The movies

are referenced in an RDF list (using rdf:first and rdf:next to chain the entities

together). For longer lists (like the planets), the chain continues for each entity
in the list.

Earlier we saw that the class JamesDeanMovie was defined using owl:oneOf to

indicate that these are the only James Dean movies in existence. Now we have

gone on to say that additionally these three movies are distinct. It is quite

AllDifferent

<bnode>

East of Eden

Giant

Rebel Without a Causenil

[JamesDean:Rebel]

[JamesDean:EastOfEden,
JamesDean:Giant,
JamesDean:Rebel]

[JamesDean:Giant,
JamesDean:Rebel]

rdf:type

rdf:rest

rdf:rest

rdf:rest

rdf:first

rdf:first

rdf:first

owl:disinctMembers

FIGURE 10-2

Using owl:AllDifferent and owl:distinctMembers to indicate that the three James

Dean movies are distinct. The movies are referred to in an RDF list.
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common to use owl:oneOf and owl:allDifferent together in this way to say

that a class is made up of an enumerated list of distinct elements.

CARDINALITY

So far, we have seen restrictions that define classes based on the presence of
certain values for given properties. OWL allows a much finer-grained way to

define classes, based on the number of distinct values a property takes. Such

a restriction is called a cardinality restriction. This seemingly simple idea

turns out to have surprising subtlety when modeling in OWL. Cardinality

restrictions allow us to express constraints on the number of individuals that

can be related to a member of the restriction class. For example, a baseball

team has exactly nine (distinct) players. A person has two (biological) parents.

Cardinality restrictions can be used to define sets of particular interest, like the
set of one-act plays or the set of books that are printed in more than one

volume.

The syntax for a cardinality restriction is similar to that for the other restric-

tions we have already seen. Here is the restriction that defines the class of things

that have exactly five players:

[ a owl:Restriction;
owl:onProperty :hasPlayer;
owl:cardinality 9]

Of course, instead of 9, we could have any nonnegative integer. We can also use

cardinality restrictions to specify upper and lower bounds:

[ a owl:Restriction;
owl:onProperty :hasPlayer;
owl:minCardinality 10]

and

[ a owl:Restriction;
owl:onProperty :hasPlayer;
owl:maxCardinality 2]

These specify the set of things that have at least 10 players and at most 2 players,

respectively. Specifying that the owl:cardinality is restricted to n is the same

saying that both the owl:minCardinality and owl:maxCardinality are restricted

to the same value n. Cardinality refers to the number of distinct values a prop-

erty has; it therefore interacts closely with the nonunique naming assumption

and owl:differentFrom.
The semantics of cardinality restrictions are similar to those of other restric-

tions. If we can prove that a individual has exactly (respectively at least, at most)

n distinct values for the property P, then it is a member of the corresponding
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owl:cardinality (respectively owl:minCardinality, owl:maxCardinality) res-

triction. So a rugby union team (with 17 players) and a soccer team (with 11)

are both members of the restriction class with minimum cardinality 10; a

bridge team (with two players) is not, though it is a member of the restriction

class with max cardinality 2.

Similarly, if we assert that something is a member of an owl:cardinality

restriction, then it must have exactly n distinct values for the property P. So if
we define a baseball team to be a subclass of the restriction class with exact

cardinality 9, we can conclude that a baseball team has exactly nine (distinct)

players. Similar conclusions follow from restrictions on minimum and maximum

cardinality. We will demonstrate the use of cardinality restrictions through a

series of challenge problems based on the James Dean example.

Challenge 29 Rocky and Rimbaud continue their conversation.

RIMBAUD: Do you own any James Dean movies?

ROCKY: They are the only ones I own.

RIMBAUD: Then I guess you don’t own very many movies! No more than

three.

Model these facts in OWL so that Rimbaud’s conclusion follows from

the OWL semantics.

SOLUTION

First we model Rocky’s statement that he owns only James Dean movies. We

will need a property called ownsMovie to indicate that someone owns a movie:

:ownsMovie a owl:ObjectProperty.

In OWL,wemake general statements about an individual by asserting that the indi-

vidual is a member of a restriction class. Sowe can say that Rocky owns only James

Dean movies by using the owl:allValuesFrom restriction from Chapter 9:

:JamesDeanExclusive owl:equivalentClass
[ a owl:Restriction ;

owl:onProperty :ownsMovie ;
owl:allValuesFrom :JamesDeanMovie] .

:Rocky a :JamesDeanExclusive .

Rocky is a member of the class JamesDeanExclusive, which is the class of things

for which all the values of ownsMovie come from the class JamesDeanMovie.

How can we model Rimbaud’s conclusion? We define the class of things that

don’t ownmanymovies (where by “not many,” wemean at most three) as follows:

:FewMovieOwner owl:equivalentClass
[ a owl:Restriction ;
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onProperty :ownsMovie ;
maxCardinality 3] .

Now Rimbaud’s conclusion can be formulated as a triple:

:Rocky a :FewMovieOwner .

This triple can be inferred from the model because all the values of the prop-

erty ownsMovie for Rocky come from the class JamesDeanMovie, and there are

only three of them, and they are all distinct, so Rocky can own at most three

movies. This inference is shown in Figure 10-3.

Challenge 30 Model this situation and conclusion in OWL.

RIMBAUD: How many movies do you own, then?

ROCKY: Three.

RIMBAUD: That’s all of them; so you must own the one I saw last night,

Rebel Without a Cause.

SOLUTION

We assert that Rocky owns exactly three movies by asserting that he is a mem-

ber of an owl:cardinality restriction class for “the set of things that own
exactly three movies”:

:ThreeMovieOwner owl:equivalentClass
[ a owl:Restriction ;

owl:onProperty :ownsMovie ;
owl:cardinality 3 ] .

:Rocky a :ThreeMovieOwner .

Rocky

JamesDeanExclusive

JamesDeanMovie

FewMovieOwner

ownsMovie max 3≤ownsMovie all JamesDeanMovie

A

ownsMovie

rdf:type rdf:type

owl:equivalentClass owl:equivalentClass

owl:onProperty
owl:onProperty

owl:allVauesFrom

FIGURE 10-3

We asserted that Rocky is a JamesDeanExclusive; we infer that he owns only a few movies.
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Since Rocky owns exactly three distinct movies, and all of his movies aremembers

of JamesDeanMovie, and there are just three different JamesDeanMovies, he must

own each of them. In particular, we can infer

:Rocky :ownsMovie :Rebel .

These assertions and inferences can be seen in Figure 10-4.

Small Cardinality Limits

OWL provides the facility to use any natural number as a cardinality. We have

seen how this provides an inference engine with the information needed to

determine membership in a class based on counting the number of distinct indi-

viduals that satisfy some condition. The particular restrictions of cardinalities to

the small numbers 0 and 1 have special modeling utility.

minCardinality 1: The restriction of the minCardinality to 1 indicates the

set of individuals for which some for the specified property is required.

The Restriction onProperty ownsMovie minCardinality 1 explicitly speci-

fies the set of individuals that own at least one movie.

East of Eden

Rocky
Giant

Rebel Without a Cause

ThreeMovieOwner≡ JamesDeanExclusive≡

JamesDeanMovie≡

ownsMovie all JamesDeanMovie∀ownsMovie exactly 3≡

[EastOfEden,
Giant,
Rebel]

ownsMovie

ownsMo
vie

ownsMovieownsMovie

rdf:type

owl:equivalentClassowl:equivalentClass

owl:onProperty owl:onProperty
owl:allValuesFrom

owl:oneOf

rdf:type

FIGURE 10-4

Rimbauld owns three movies, and he owns only James Dean movies, so he must own each

of them.
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maxCardinality 1: The restriction of maxCardinalilty to 1 specifies that a

value is unique (but need not exist). The Restriction onProperty ownsMovie

maxCardinality 1 explicitly specifies the set of individuals who own at most

one movie—in other words, they have limited themselves to a single movie.

minCardinality 0: The restriction of the minCardinality to 0 describes a set

of individuals for which the presence of a value for the onProperty is

optional. In the semantics of OWL, this is superfluous (since properties

are always optional anyway), but the explicit assertion that something is

optional can be useful for model readability. The Restriction onProperty

ownsMovie minCardinality 0 explicitly specifies the set of individuals for

which owning a movie is optional.

maxCardinality 0: The restriction of the maxCardinality to 0 indicates the

set of individuals for which no value for the specified property is allowed.

The Restriction onProperty ownsMovie maxCardinality 0 explicitly specifies

the set of individuals that own no movies.

These four special cases of cardinality are closely related. minCardinality 1

and maxCardinality 0 form a partition of minCardinality 0; that is, minCardinal-

ity1 and maxCardinality0 are disjoint from one another, they are both subclasses
of minCardinality 0, and together (minCardinality 1 union maxCardinality 0)

they make up all of minCardinality 0 (which is equivalent to owl:Thing, the class

of all individuals).

SET COMPLEMENT

The complement of a set is the set of all things not in that set. The same defini-

tion applies to Classes in OWL. The complement of a class is another class

whose members are all the things not in the complemented class. Since a com-

plement applies to a single class, we can define it using a single triple:

ex:ClassA owl:complementOf ex:ClassB .

Although set complements seemquite straightforward, they can be easilymisused,

and OWL (like any formal system) can be quite unforgiving in such situations.

For example, we might be tempted to say that minor league players are the

complement of major league players (asserting that there are just these two

types of players and that nobody can be both).

bb:MinorLeaguePlayer owl:complementOf bb:MajorLeaguePlayer .

From this description, all of the players who are not bb:MajorLeaguePlayers

will be included in bb:MinorLeaguePlayer. However, the complement class

includes everything that is not in the referred class, so in addition to hopeful

rookies, the class bb:MinorLeaguePlayer includes managers, fans, and indeed

anything else in the universe, like movies or planets.
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To avoid such a situation, common practice is not to refer to complementary

classes directly. Instead, it is common practice to combine complement with

intersection.

bb:MinorLeaguePlayer owl:intersectionOf
([ a owl:Class ;

owl:complementOf bb:MajorLeaguePlayer ]
bb:Player ).

That is, a MinorLeaguePlayer is a Player who is not a MajorLeaguePlayer.

Thus, members of bb:MinorLeaguePlayer include only members of the class

bb:Player but does not include players that are included in bb:MajorLeague-

Player. This is much closer to the natural meaning suggested by the name. This

definition makes use of a bnode to specify an anonymous class. There is no need

to name the class that is the complement of bb:MajorLeaguePlayer, so it is spe-

cified anonymously using the bnode notation “[ a owl:Class . . .].”

Challenge 31 Rocky’s friend Paul joins in the discussion.

PAUL: Are you talking about James Dean? I love him! I have all his movies.

RIMBAUD: But you aren’t obsessive, are you? I mean, you have other movies,

too, don’t you?

ROCKY: I’m not obsessive!

PAUL: Of course, I have some movies that aren’t James Dean movies.

ROCKY: You must have at least four movies then!

Model this situation and conclusion in OWL.

SOLUTION

For this challenge, we need to have an inverse for ownsMovie:

:ownedBy owl:inverseOf :ownsMovie .

We can define the class of all the movies that Paul owns as follows:

:PaulsMovie a owl:Class;
owl:intersectionOf

([ a owl:Restriction;
owl:onProperty :ownedBy;
owl:hasValue :Paul]
:Movie ) .

Paul says that he owns every James Dean movie—that is, every JamesDeanMovie

is a PaulsMovie (but possibly not vice versa), so we assert

:JamesDeanMovie rdfs:subClassOf :PaulsMovie .

Paul claims to own other movies, too. We can express that by saying
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:Paul a [ a owl:Restriction ;
owl:onProperty :ownsMovie ;
owl:someValuesFrom

[ owl:complementOf :JamesDeanMovie]].

Let’s look at this one in some detail.

[ owl:complementOf :JamesDeanMovie]

is an anonymous class (bnode) that includes everything that is not a James Dean

movie.

[ a owl:Restriction ;
owl:onProperty :ownsMovie ;
owl:someValuesFrom [ owl:complementOf :JamesDeanMovie]]

is an anonymous class (bnode) of all the things that have some value for ownsMovie

that isn’t a James Dean movie. We claim that Paul is such a thing.

Finally, we define the class of people who own four or more movies, using

owl:minCardinality.

:ManyMovieOwner
owl:equivalentClass

[ a owl:Restriction;
owl:onProperty :ownsMovie;
owl:minCardinality 4] .

Now, Paul owns all of James Dean’s movies (all three of them) and at least one

that isn’t a James Dean movie. That makes (at least) four in all; so we can infer

that Paul qualifies as a member of ManyMovieOwner.

:Paul rdf:type :ManyMovieOwner .

These assertions and conclusion can be seen in Figure 10-5.

DISJOINT SETS

We have seen how we can use owl:complementOf to describe the class that

includes all the individuals that are not in some class. A related idea is that

two sets have no individual in common. When this happens, we say that the

sets are disjoint, and we represent this situation in OWL using owl:disjoint-

With, as follows:

:Man owl:disjointWith :Woman .
:Meat owl:disjointWith :Fruit .
:Fish owl:disjointWith :Fowl .
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For any members of disjoint classes, we can infer that they are owl:different-

From one another—for instance, we might assert that

:Irene a :Woman .
:Ralph a :Man .

we can infer that

:Irene owl:differentFrom :Ralph .

This simple idea can have powerful ramifications when combined with other

constructs in OWL, as we can see in the following challenge problems.

Challenge 32 Our moviegoers continue their conversation:

PAUL: I am a big movie fan. Not only do I own all the James Dean movies,

but I also have movies with Judy Garland, Tom Cruise, Dame Judi

Dench, and Antonio Banderas!

ROCKY: You must own at least seven movies!

PAUL: How do you know that?

ROCKY: Because none of those people played in movies together!

Model this situation and conclusion in OWL.

PaulsMovies≡

JamesDeanMovies≡

ManyMovieOwner≡

ownsMovie min 4≥

ownsMovie some not JamesDeanMovie∃

[Movie,
ownedBy has Paul]

Paul

owl:intersectionOf

rdfs:subClassOf

rdf:type

owl:equivalentClass

rdf:type

FIGURE 10-5

Paul owns every James Dean movie, and he owns some others, so he owns at least four

movies.
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SOLUTION

How do we express, in OWL, that Paul owns a Judy Garland movie? We assert

that Paul is a member of the class of things that own Judy Garland movies. Thus,

the statements that Paul has made about the movies he owns can be modeled in

OWL using an owl:someValuesFrom restriction for each one:

:Paul a [ a owl:Restriction ;
owl:onProperty :ownsMovie ;
owl:someValuesFrom :JudyGarlandMovie ] .

:Paul a [ a owl:Restriction ;
owl:onProperty :ownsMovie ;
owl:someValuesFrom :JudiDenchMovie ] .

:Paul a [ a owl:Restriction ;
owl:onProperty :ownsMovie ;
owl:someValuesFrom :TomCruiseMovie ] .

:Paul a [ a owl:Restriction ;
owl:onProperty :ownsMovie ;
owl:someValuesFrom :AntonioBanderasMovie ] .

We can define the set of people who own seven or more movies using

owl:minCardinality:

:SevenMovieOwner a owl:Restriction ;
owl:onProperty ownsMovie ;
owl:minCardinality 7 .

How do we know that Paul is a member of this class? As Rocky points out in the

dialogue, we don’t know until we know that all the sets of movies he mentioned

are disjoint. That is, we need to know

JamesDeanMovie owl:disjointWith JudyGarlandMovie .
JamesDeanMovie owl:disjointWith TomCruiseMovie .
JamesDeanMovie owl:disjointWith JudiDenchMovie .
JamesDeanMovie owl:disjointWith AntonioBanderasMovie .
JudyGarlandMovie owl:disjointWith TomCruiseMovie .
JudyGarlandMovie owl:disjointWith JudiDenchMovie .
JudyGarlandMovie owl:disjointWith AntonioBanderasMovie .
TomCruiseMovie owl:disjointWith JudiDenchMovie .
TomCruiseMovie owl:disjointWith AntonioBanderasMovie .
JudiDenchMovie owl:disjointWith AntonioBanderasMovie .

Now we know that Paul has three James Dean movies and at least one movie

from each of the other actors named here. Furthermore, none of these movies

appears twice, since all of the sets are disjoint. An inference engine can

confirm that Rocky is justified in counting to seven movies, and

:Paul a :SevenMovieOwner .
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These assertions and inferences can be seen in Figure 10-6.

Notice how owl:someValuesFrom interacts with cardinality; each restriction

of someValuesOf guarantees the existence of one value for the specified prop-

erty. When these values are known to be distinct, we can count (at least) one

per someValuesOf restriction.

Just as we had owl:AllDifferent as a way to specify that several individuals
are mutually distinct, we could have something like owl:AllDisjoint to indicate

that a set of classes are mutually disjoint. As it happens, the OWL standard did

not include such a construct, though some proposals for extensions to OWL

include such a facility.

PREREQUISITES REVISITED

We have already explored how prerequisites can be modeled in OWL using

owl:allValuesFrom. At that point, we had a problem with the Open World

Assumption—namely, how can we tell that all prerequisites have been satisfied

if we have to assume that someone can come along and set new prerequisites at

any time? We’ll use prerequisites to demonstrate a number of ways we can close

the world.

As a reminder from Chapter 9, we modeled the fact that something that has

all its prerequisites satisfied (i.e., selected) is an EnabledQuestion as follows:

q:hasPrerequisite a owl:ObjectProperty .

[ a owl:Restriction ;
owl:onProperty hasPrerequisite;
owl:allValuesFrom q:SelectedAnswer ]

rdfs:subClassOf q:EnabledQuestion .

∃ owsMovie some JudiDenchMovie

∃ ownsMovie some JudyGarlandMovie

∃ ownsMovie some AntonioBanderasMovie

∃ ownsMovie some TomCruiseMovie

≡ Seven movie owner

Antonio Banderas movie

Judy Garland movie
Paul

rdf:type
rdf:type

owl:someValuesFrom

owl:disjointWith
owl:someValuesFrom

rdf:type

rdf:type

rdf:type

FIGURE 10-6

Paul owns three James Dean movies (Figure 10-5), plus one each from other actors, making

seven (or more) in total.
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If something satisfies the restriction (all its values are members of Selected-

Answer), then it is also a member of EnabledQuestion.

No Prerequisites

Let’s start with the simple situation in which we know that there are no prere-

quisites at all. If something has no prerequisites, then there are no conditions to

be checked, so it should be an EnabledQuestion. How can we know that some-

thing has no prerequisites?

We can assert the number of distinct values that an individual has for some

property by using the cardinality restrictions. In particular, if we say that

c:WhatProblem a [ a owl:Restriction ;
owl:onProperty q:hasPrerequisite ;
owl:cardinality 0 ] .

Then we know that there are no triples of the form

c:WhatProblem q:hasPrerequisite ? .

That is, WhatProblem has no prerequisites. Therefore it satisfies the restriction

c:WhatProblem a [ a owl:Restriction ;
owl:onProperty hasPrerequisite;
owl:allValuesFrom q:SelectedAnswer ].

hence

c:WhatProblem a q:EnabledQuestion .

The interpretation of owl:allValuesFrom in such a situation—that is, when we

know that there are no values from the indicated class (or even no values at
all!) can be a bit confusing. If there are no values at all, how can all of them

be members of some class? The correct way to think about owl:allValuesFrom

is as something that sets prerequisites, regardless of the name of the restricted

property. Let’s take a simple example: If a person has no children, then all of

their children are boys.

First we define the set of people all of whose children are boys, with an

allValuesFrom restriction:

:ParentOfBoysOnly owl:equivalentClass
[ a owl:Restriction ;

owl:onProperty :hasChild ;
owl:allValuesFrom :Boy ] .

How do we decide about membership in this class? Each triple with predicate

hasChild places a prerequisite for its subject to be a member of the class. So
the triple

:ElizabethII :hasChild :Charles .
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places a prerequisite for ElizabethII to be a member of ParentOfBoysOnly—

namely, that Charles must be a Boy. In this case, the prerequisite is

satisfied.

But in order for ElizabethII to be a member of ParentOfBoysOnly, all prere-

quisites must be satisfied. In particular, if we assert that

:ElizabethII :hasChild :Anne .

we have a prerequisite that isn’t satisfied, so we won’t be able to infer that

ElizabethII is a member of ParentOfBoysOnly.

How can we ever know in the face of the Open World Assumption that all

prerequisites will be satisfied? One way is if we assert that there are none. For
instance, Elizabeth’s famous ancestor, ElizabethI, was famous for having died

childless. We can assert this in OWL by asserting her membership in a restric-

tion class of cardinality 0, thus:

:ElizabethI a [ a owl:Restriction ;
owl:onProperty :hasChild ;
owl:cardinality 0].

Now we know that there are no prerequisites on ElizabethI, so we can infer

:ElizabethI a :ParentOfBoysOnly.

Many people find this result counterintuitive—that someone with no children

would have all of their children be boys. This conclusion is much more intuitive

if you think of owl:allValuesFrom as working with prerequisites; it is intuitive to

say that something that has no prerequisites is satisfied. In the semantics of

OWL, this is the appropriate interpretation of owl:allValuesFrom.

Counting Prerequisites

Another way to determine that something has satisfied all of its prerequisites is

to count how many of them there are. Just as we have done with counting

James Dean movies, we can count prerequisites. Suppose we know that some-

thing has exactly one prerequisite:

TvSymptom a [ a owl:Restriction ;
owl:onProperty hasPrerequisite ;
owl:cardinality 1 ] .

and that, furthermore, we actually know one prerequisite, and its type:

TvSymptom q: hasPrerequisite d:STV .

d:STV a q:SelectedAnswer .

We know that one of the prerequisites is a member of the class q:Selected-

Answer. We also know that there aren’t any others (since the cardinality says
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there is just one of them). So we know that all of the prerequisites are members

of the class q:SelectedAnswer:

c:TVSymptom a [ a owl:Restriction ;
owl:onProperty hasPrerequisite ;
owl:allValuesFrom q:SelectedAnswer ] .

Just as in the James Dean examples, we can make inferences from larger

counts if we know that all the entities are different. If we know, for example,

that

c:TVTurnedOn a [ a owl:Restriction ;
owl:onProperty hasPrerequisite ;
owl:cardinality 2 ] .

c:TVTurnedOn q:hasPrerequisite c:TVSnothing .
c:TVTurnedOn q:hasPrerequisite c:STVSnosound .
c:TVSnothing owl:differentFrom c:STVSnosound .

c:TVSnothing a q:SelectedAnswer .
c:STVSnosound a q:SelectedAnswer .

we can infer that

c:TVTurnedOn a [ a owl:Restriction ;
owl:onProperty hasPrerequisite ;
owl:allValuesFrom q:SelectedAnswer ] .

since there are only two prerequisites, and we know which two they are.

Guarantees of Existence

The issue of prerequisites revealed a subtlety in the interpretation of owl:

allValuesFrom—namely, that the membership of an individual A in an

allValuesFrom restriction on property P does not guarantee that any triple of
the form

A P ? .

exists at all. What should be the corresponding situation in the case of someVa-

luesFrom? That is, if we say that an individual A is a member of a restriction

onProperty P someValuesFrom another class C, should we insist that there is some

triple of this form?

A P ? .

The interpretation of someValuesFrom is that we do know that there is a pair of

triples of the form

A P X .
X rdf:type C .
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Evidently, if we have both of these triples, then we certainly have a triple of the

desired form. That is, in contrast to allValuesFrom, someValuesFrom does guar-

antee that some value is given for the specified property.

The case for hasValue is even more evident than that for someValuesFrom.

Not only does hasValue guarantee that there is such a triple, but it even speci-

fies exactly what it is. That is, if A is a member of the restriction onProperty P

hasValue X, we can infer the triple

A P X .

CONTRADICTIONS

Challenge 33 Model this situation and conclusion in OWL.

ROCKY : You’re a Judy Garland fan? I have a couple of her movies, too!

RIMBAUD: Wait a minute! That can’t be right! You said that you own only

James Dean movies, and now you say you have a Judy Garland

movie. They weren’t in any movie together!

SOLUTION

This solution requires us to introduce a new aspect of inferencing in OWL. The

simplest form of inferencing we have seen was where we inferred new triples

based on asserted ones. With the more advanced notions beyond RDFS-Plus,

we saw how some inferences could not themselves be represented as triples

but could result in new triples when combined with other assertions. But in this

example, there are no new triples to be inferred at all.

Rimbaud does not make any new assertions about Rocky. Instead, he brings

into question the validity of something that Rocky has asserted. In OWL terms,
we say that Rimbaud has found a contradiction in what Rocky has said.

In this case, the contradiction arose because Rocky has made the following

statements:

:JamesDeanExclusive owl:equivalentClass
[ a owl:Restriction ;

owl:onProperty :ownsMovie ;
owl:allValuesFrom :JamesDeanMovie] .

:Rocky a :JamesDeanExclusive .

:Rocky a [ a owl:Restriction ;
owl:onProperty :ownsMovie ;
owl:someValuesFrom :JudyGarlandMovie] .

:JudyGarlandMovie owl:disjointWith :JamesDeanMovie .
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The owl:someValuesFrom restriction guarantees that Rocky owns some Judy Gar-

land movie (though we don’t know which one), and the owl:allValuesFrom

restriction tells us that this movie must also be a James Dean movie. Although

such a movie would have undoubtedly been very popular, unfortunately we also

know from the owl:disjointWith triple that there is no such movie; somewhere

in this model there is a contradiction.

These assertions are shown in Figure 10-7; no inferences are shown, since

the model contains a contradiction.

The OWL semantics can tell us that there is a contradiction in this example,

but it cannot tell us which assertion is wrong. The validity of an assertion has

nothing to do with the OWL standard or its semantics; it has to do with the

domain that is being modeled. Did Rocky lie about owning only James Dean

movies? Or is he lying now about owning Judy Garland movies? Or, perhaps

we are mistaken, and there is a Judy Garland/James Dean collaboration out there
that nobody knows about (that is, we were mistaken when we said that these

two classes were disjoint). There is no way to know which of these statements

is incorrect. But OWL can tell us that their combination results in a

contradiction.

The notion of contradiction gets to the heart of what we mean by modeling.

A model is a description of the world and can be mistaken; that is, the model

may not actually correspond to the actual state of affairs. The tools that sur-

round OWL models help us to determine the nature of our models. If they are
logically inconsistent, then we know that either our model is defective or our

understanding of how it relates to the world is mistaken.

Rocky

ownsMovie some JudyGarlandMovie∃ JamesDeanExclusive≡

JamesDeanMovie≡

Judy Garland movie≡ ownsMovie all JamesDeanMovie∀

rdf:type

owl:someValuesFrom owl:equivalentClass

owl:allValuesFromowl:disjointWith

rdf:type

FIGURE 10-7

All of Rocky’s films are James Dean films, but some of them are Judy Garland films.
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UNSATISFIABLE CLASSES

A contradiction arises when the assertions that have been made simply cannot

all be true. There is a fundamental disagreement in the asserted statements.

A similar situation can arise when we define a class in an inconsistent way.

A slight variation on the previous example shows how this can happen. First,

suppose we define the class of people who own Judy Garland movies that

Rocky claims to be a member of:

:JudyGarlandMovieOwner owl:equivalentClass
[ a owl:Restriction ;

owl:onProperty :ownsMovie ;
owl:someValuesFrom :JudyGarlandMovie] .

Now, instead of claiming that Rocky is a member of both this class and James-

DeanExclusive, let’s define the class of such people:

:JDJG owl:intersectionOf
( :JudyGarlandMovieOwner :JamesDeanExclusive ) .

Rocky has claimed to be a member of this class; this claim led to a contradiction.

We can define this class without asserting that Rocky is a member of it.

Although this does not lead to a contradiction, the same argument that showed
that Rocky cannot (consistently) be a member of this class can be used to show

that nothing can be a member of this class, or that this class is empty. When we

can prove that a class is empty, we say that the class itself is unsatisfiable.

Although a contradiction indicates that some statement in the model is in con-

flict with others, an unsatisfiable class simply means that there can be no indi-

viduals who are members of that class. Of course, if we go on to assert that

some individual is a member of an unsatisfiable class (as Rocky did, when he

claimed to be a member of JDJG), and then the model contains a contradiction.
Figure 10-8 shows these assertions and the conclusions that follow. JDJG is a

subclass of both JudyGarlandMovieOwner and JamesDeanExclusive, since it is

defined as the intersection of these two classes. But it is also inferred to be sub-

class of owl:Nothing. This indicates in OWL that it can have no members, since

owl:Nothing is the class that corresponds to the empty set.

Propagation of Unsatisfiable Classes

Once a model contains an unsatisfiable class, it is easy for other class definitions

to be unsatisfiable as well. Here are a few of the simpler ways in which this can

happen:

subclass: A subclass of an unsatisfiable class is itself unsatisfiable. If the sub-
class could (without contradiction) have an individual member, then so

could the superclass.
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someValuesFrom: A restriction (on any property) with owl:someValuesFrom an

unsatisfiable class is itself unsatisfiable, since owl:someValuesFrom requires

that there be some value that the property can indicate.

domain and range: If a property has an unsatisfiable domain or range, then

the property becomes basically unusable. Any someValuesFrom restriction

on that property is unsatisfiable. If any triple is asserted using that prop-

erty as predicate, then the model results in a contradiction.

intersection of disjoints: The owl:intersectionOf two disjoint classes is

unsatisfiable. The intersection of any class with an unsatisfiable class is

unsatisfiable.

Some operations do not propagate unsatisfiable classes; the union of an unsatis-
fiable class and another class can be satisfiable. A restriction owl:allValuesFrom

an unsatisfiable class can still be satisfiable (but none of its members can have

any value for the property specified by owl:onProperty in the restriction).

These rules seem intuitive enough in isolation; their usefulness in modeling

comes in during analysis of the results of an inference engine. Many inference

engines will report on unsatisfiable classes, but in the face of several such clas-

ses, it can be difficult to tell just what is going on. Although some engines have

tools to assist the modeler in tracking this, the use of these tools requires some
understanding of how unsatisfiable classes can arise. This short list is not

exhaustive, but it covers most of the common cases.

INFERRING CLASS RELATIONSHIPS

In the previous discussion, most of the inferences we drew were about indivi-

duals: Wenger is an Analyst, Jupiter is a Solar Planet, Kaneda is a Star Player,

or Shakespeare married Anne Hathaway. In this chapter, we have begun to draw

conclusions about classes—for example, JDJG is unsatisfiable. OWL allows us to

owl:Nothing

≡ JDJG

≡ JudyGarlandMovieOwner ≡ JamesDeanExclusive

JudyGarlandMovieOwner and
JamesDeanExclusive
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FIGURE 10-8

JDJG is the intersection of people who only own James Dean movies and people who

own Judy Garland movies.
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draw a wide range of conclusions about classes. We can, in some circumstances,

infer that one class is a subclass of another or that a class is the domain (or

range) of a property. There are countless possibilities for how this can happen,

but there are a few common patterns that are worth calling out. We’ll return to

our descriptions of baseball teams for examples:

Intersection and subclass: The intersection of two (or more) classes is a

subclass of each intersected class. If AllStarBaseballTeam is the intersec-

tion of AllStarTeam and BaseballTeam, then it is also rdfs:subClassOf

each of those classes.

Union and subclass: The union of two (or more) classes is a superclass of

each united class. If JBallTeam is the union of PacificLeagueTeam and

CentralLeagueTeam, then PacificLeagueTeam and CentralLeagueTeam are

both rdfs:subClassOf JBallTeam.

Complement and subclass: Complement reverses the order of subclass. For

example, if AllStarBaseballTeam is a subclass of BaseballTeam, then the
complement of BaseballTeam is a subclass of the complement of

AllStarBaseballTeam.

Subclass propagation through restriction: The subclass relationships pro-

pagate through restrictions. If AllStarBaseballTeam is a subclass of Base-

ballTeam, then the restriction (on any property—say, playsFor) owl:

allValuesFrom AllStarBaseballTeam is a subclass of the restriction (on

the same property playsFor) owl:allValuesFrom BaseballTeam. If we

call the first restriction AllStarBaseballPlayer and the second restriction

BaseballPlayer (both are reasonable names for these restrictions),

then this pattern says that AllStarBaseballPlayer is a subclass of

BaseballPlayer. The same propagation principle holds for any property

and also for owl:someValuesFrom; If AllStarBaseballTeam is a subclass of

BaseballTeam, then the restriction on property playsFor some values from
AllStarBaseballTeam is a subclass of the restriction on property playsFor

some values from BaseballTeam.

hasValue, someValuesFrom, and subClassOf: Propagation for owl:has

Value works a bit differently from the way it works for owl:allValuesFrom

or owl:someValuesFrom, since owl:hasValue refers to an individual, not a

class. Suppose that the individual TokyoGiants is a member of class
BaseballTeam; the restriction on property playsFor owl:hasValue Tokyo

Giants is a subclass of the restriction on property playsFor owl:some

ValuesFrom BaseballTeam.

Relative cardinalities: Subclass relations between cardinality restrictions

arise from the usual rules of arithmetic on whole numbers. For example,

if a ViableBaseballTeam must have at least nine players on its roster
(owl:minCardinality 9), and a FullBaseballTeam has exactly 10 players

on the roster (owl:cardinality 10), then FullBaseballTeam is a subclass

of ViableBaseballTeam.
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owl:someValuesFrom and owl:minCardinality: If we say that something

has some value from a particular class, then we can infer that it has at least

one such value. So if BaseballTeam has some pitcher (i.e., BaseballTeam is

a subclass of the restriction owl:onProperty hasPlayer owl:someValuesFrom

Pitcher), we can infer that it has at least one pitcher (i.e., BaseballTeam is a
subclass of the restriction owl:onProperty hasPlayer owl:minCardinality

1). Note that the same conclusion does not hold for owl:allValuesFrom;

in short, someValuesFrom guarantees that there is some value; allValuesFrom

makes no such guarantee.

The ability in OWL to infer class relationships is a severe departure from Object

Oriented modeling. In OO modeling, the class structure forms the backbone of

the model’s organization. All instances are created as members of some class,

and their behavior is specified by the class structure. Changes to the class structure

have far-reaching impact on the behavior of the system. In OWL, it is possible for

the class structure to change as more information is learned about classes or

individuals.

These aspects of OWL are not the result of whimsical decisions on the part of the

OWL designers; they are a direct consequences of the basic assumptions about the

web—that is, the AAA slogan, the Open World nature of the web, and the fact that

names on the web are not unique. A strict data model (like an object model) is useful

when there is top-down governance of the system (as is the case when building a

software system), but it doesn’t work in an open, free system like the Web. Our

understanding of the structure of knowledge will change as we discover more

things—we cannot escape that! OWL at least provides a consistent and systematic

way to understand those changes.

The logic underlying OWL goes beyond these propagation rules and encom-

passes inferences about subclasses regarding cardinalities. The technical details

of the logic are beyond the scope of this book. In short, any class relationship
that can be proven to hold, based on the semantics of restrictions, unions, inter-

sections, and so on, will be inferred. The propagation patterns presented here

don’t cover all the possible class relationship inferences, but they are the most

common patterns that appear in semantic models.

The ability in OWL to infer class relationships enables a style of modeling in

which subclass relationships are rarely asserted directly. Instead, relationships

between classes are described in terms of unions, intersections, complements

and restrictions, and the inference engine determines the class structure.
If more information is learned about a particular class or individual, then more

class structure can be inferred. Subclass relationships are asserted only in that

the members of one class are included in another.
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The baseball model demonstrates this principle at work-we summarize the

statements about baseball players and their teams in Table 10-1.

In Table 10-1, we write � if the class in the left column is defined as equiva-

lent to the expression in the right column, and � if the class is a subclass of the

expression in the right column. Notice that the only direct subclass assertion

(i.e., one class is a subclass of another) is for JBallTeam, which is asserted to

be a subclass of BaseballTeam. All other assertions in the model either refer
to logical combinations (intersections or unions) or to restrictions. Thus, the

class tree as asserted is shown in Figure 10-9.

We can infer a number of subclass relationships from the definitions of the

model in Table 10-1 and the subclass inferencing patterns we have seen.

n Since AllStarBaseballTeam is the intersection of BaseballTeam and

AllStarTeam, then AllStarBaseballTeam is a subclass of BaseballTeam and

AllStarTeam.

n Both AllStarBaseballPlayer and AllStarPlayer are someValuesFrom restric-

tions on the same property, playsFor, referencing AllStarBaseballTeam

and AllStarTeam, respectively. The fact that AllStarBaseballTeam is a

subclass of AllStarPlayer can be propagated, so we can infer that

Table 10-1 Overview of Entities in the Baseball Model

AllStarBaseballPlayer � playsFor some AllStarBaseballTeam

AllStarBaseballTeam � BaseballTeam
T

AllStarTeam

AllStarPlayer � playsFor some AllStarTeam

AllStarTeam � Employs some AllStarPlayer

BaseballPlayer � playsFor some BaseballTeam

BaseballTeam � employs some BaseballPlayer

JballTeam � PacificLeagueTeam [ CentralLeagueTeam �
BaseballTeam

CarpPlayer � playsFor hasValue Carp (the Carp is the name of the

baseball team from Hiroshima)

CentralLeagueTeam � oneOf Carp, Giants, BayStars, Tigers, Dragons, Swallows

PacificLeagueTeam � oneOf Lions, Hawks, Fighters, BlueWave, Buffaloes,

Marines

Player domain of playsFor

Team range of playsFor

playsFor Inverse of employs
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AllStarBaseballPlayer is a subclass of AllStarPlayer. Similar reasoning

allows us to infer that AllStarBaseballPlayer is a subclass of

BaseballPlayer.

n Since JBallTeam is the union of PacificLeagueTeam and CentralLeague-

Team, we can conclude that PacificLeagueTeam and CentralLeagueTeam

are subclasses of JBallTeam.

n Since the Hiroshima Carp is a CentralLeague team, it is also a JBallTeam

and thus a BaseballTeam. A CarpPlayer is a hasValue restriction on the

Carp; thus, we can infer that CarpPlayer is a subclass of BaseballPlayer.

n The domain of playsFor is also used to make class inferences. Since All-

StarPlayer is equivalent to the someValuesFrom restriction onProperty

playsFor, any individual member of AllStarPlayer playsFor some team.

But the domain of playsFor is Player, so that individual must also be a

Player. We have just shown that any AllStarPlayer must be a Player; thus,

AllStarPlayer is a subclass of Player.

n Even the range information gets into the act; since an AllStarTeam employs

some AllStarPlayer, and since employs is the inverse of playsFor,

that means that some person playsFor any AllStarTeam. But the range of
playsFor is Team, so AllStarTeam must be a team, as well.

We can see the inferred class structure in Figure 10-10. Notice that every class is

involved in some class inferencing pattern so that in contrast to the asserted

model, the inferred model has considerable depth to its class tree.

≡
≡
≡

≡

≡

≡

≡

owl:Thing

AllStarBaseballPlayer

AllStarBaseballTeam

AllStarPlayer

AllStarTeam

BaseballPlayer
BaseballTeam

JbellTeam

CarpPlayer

CentralLeagueTeam

owl:Nothing

PacificLeagueTeam
Player

Team

FIGURE 10-9

Class tree for the baseball ontology, as asserted.
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REASONING WITH INDIVIDUALS AND WITH CLASSES

From an RDF perspective, inferencing about individuals and inferencing

about classes is very similar. In both cases, new triples are added to the model

based on the triples that were asserted. From a modeling perspective, the

two kinds of reasoning are very different. One of them draws specific conclu-

sions about individuals in a data stream, while the other draws general con-

clusions about classes of individuals. These two kinds of reasoning are
sometimes called A-box reasoning (for individuals) and T-box reasoning (for

classes). The curious names A-box and T-box are historical and no longer have

any relevance.

The utility of reasoning about individuals in a Semantic Web context is clear,

and we have seen a number of examples of it throughout this book. We inferred

things about the wife of Shakespeare, which movies belong to which people,

and what terms are broader than others. All of these things are examples of

reasoning about an individual. Information specified in one information source
is transformed according to a model for use in another context. Mappings from

one context to the next are specified using constructs like rdfs:subClassOf,

rdfs:subPropertyOf, and various owl:Restrictions. Data can then be trans-

formed and processed according to these models and the inferences specified

in the RDFS and OWL standards for each of them.

The utility of reasoning about classes is more subtle. It can take place in the

absence of any data at all! Class reasoning determines the relationships between

classes of individuals. It determines how data are related in general. In advance

–
–

–

–

–

–

–

–

≡
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≡
≡
≡

≡

≡
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≡

owl:Thing
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JballTeam

AllStarPlayer
AllStarBaseballPlayer

AllStarBaseballPlayer

AllStarTeam

BaseballTeam
AllStarBaseballTeam

AllStarBaseballTeam

CentralLeagueTeam
PacificLeagueTeam

CarpPlayer

BaseballPlayer

FIGURE 10-10

Inferred structure of the Baseball model.
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of seeing any data about the Pacific League, we can determine that any team in

that league is a baseball team. There is no need to process all the particular

teams, or indeed any of them. We can guarantee that this is the case. Even if

new teams join the league, we know that this will still be true. In this sense,

class reasoning is similar to a compilation of the model. Whereas individual

reasoning processes particular data items as input, Class reasoning deter-

mines general relationships among data and records those relationships with

rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, or rdfs:range. Once these
general relationships have been inferred, processing of individual data can be

done much more easily.

When we use individual and class reasoning together in a single system, we

have a powerful system that smoothly integrates general reasoning with specific

data transformations. This allows us to smoothly manage information based on

whatever information we come across, generic or specific.

SUMMARY

At each level of our exposition of the Semantic Web languages from RDF to

RDFS to the various levels of OWL, we have introduced new notions of how

to understand a model. For RDF, the fundamental aspect of the model had to

do with data sharing and federation. RDF answers the question “How do I get

all the information I know about a single thing in one place?” For RDFS, we

introduced the notion of inference, answering the question “Given that I know

certain things about my data, what else can I figure out?” RDFS-Plus and the

basic use of OWL gave us more comprehensive capabilities to infer new infor-
mation from old. As we move on to the advanced features OWL, we are still

working within the paradigm of inferencing as the source of meaning of our

models, but we expand the sort of inferencing we can make to include infer-

ences not just about our data but also about the model itself.

Up to this point, we could, for the most part, ignore the ramifications of the

Open World Assumption of the Semantic Web. With the advanced constructs

of OWL, where we can draw conclusions based on arguments of enumeration

and elimination (as well as arguments based on properties and types, as we
did with RDFS and RDFS-Plus), the impact of the open world becomes more

apparent.

Armed with the concepts and constructs OWL from this chapter, we are

now in a position to examine some more comprehensive OWL models. We

can see how a modeler can use the constructs of OWL to describe how data

from different sources will be federated on the Semantic Web. Just as we saw

for RDFS-Plus, a model can mediate information from sources that have not

yet been examined. Advanced OWL provides more powerful and complete ways
to make this happen.
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Fundamental Concepts

The following fundamental concepts were introduced in this chapter:

owl:unionOf, owl:intersectionOf, owl:complementOf—Basic set
operations applied to classes. Each of these is used to create a new class,

based on the specified set operation applied to one or more defined

classes.

Open World Assumption—This idea was introduced in Chapter 1, but strate-
gies for closing the world for certain purposes were introduced here.

owl:oneOf—Specifies that a class consists just of the listed members

owl:differentFrom—Specifies that one individual is not owl:sameAs

another. This is particularly useful when making counting arguments.

owl:disjointWith—Specifies that two classes cannot share a member. This

is often used as a sort of wholesale version of owl:differentFrom.

owl:cardinality, owl:minCardinality, owl:maxCardinality—Cardi-

nality specifies information about the number of distinct values for some

property. Combinedwith owl:oneOf, owl:differentFrom, owl:disjointWith,

and so on, it can be the basis of inferences based on counting the number of

values for a property.

Contradiction—With the advanced constructs of OWL, it is possible for a

model to express a contradiction—that is, for a model to be logically

inconsistent.

Satisfiability (unsatisfiability)—With the advanced constructs of OWL, it is

possible to infer that a class can have no members, so such a class is

unsatisfiable.
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CHAPTER

11Using OWL
in the Wild

OWL provides a wide variety of modeling capabilities for relating information in

flexible and powerful ways. We have seen a number of examples of how these

constructs can be combined to represent complex relationships among various

data sources. In this chapter, we delve into two detailed examples of how OWL

can be used in real-world modeling situations.

Our examples feature applications from two government ontologies: one

for modeling enterprise architectures and one in the life sciences. In both

cases, the semantic model provides a set of reference concepts to be used as
a basis for other work. In the first case, the model provides guidance for a

description of the enterprise architecture of a government agency. The model

has to mediate the simultaneous challenges of providing centralized advice

for the development and maintenance of an enterprise architecture (after all,

this is the government), while allowing a degree of autonomy for the agencies.

We will see how a combination of RDF and OWL can be used to satisfy

these requirements. In the life sciences case, the model provides a central

repository for a controlled vocabulary. In this case, the challenge is to build
and maintain a model that can serve the needs of a widely differentiated com-

munity, while still providing some degree of unity in their operation. When

you read this chapter, you will not learn a lot about enterprise architecture

or cancer research.

This chapter is not about solving the problems essential to these fields but

rather about how they can use Semantic Web modeling to bring the advantages

of a Web solution to their practice. For example, the value of explicit, execut-

able enterprise architecture is controversial in many circles; we will not resolve
this issue here. Once you accept (as the U.S. government has) that executable

enterprise architecture is valuable, there still remains the problem of how

hundreds of semiautonomous agencies working in a federated way can achieve

the value of a distributed representation of their architecture. Allowing each

agency the autonomy it needs, while respecting the central commonality

required by participation in a single government, is a key challenge to instituting

an executable federal enterprise architecture. 247



In contrast to an executable enterprise architecture, the value of cancer

research is not usually contested. But this field also has requirements having

to do with distribution of information and work. Each research team around

the world has its own approach and methodology for pursuing its research.

How can each team have the autonomy it needs to make its advances yet

still participate in a worldwide community so that efforts from various teams

can be used synergistically? The Semantic Web is about enabling the net-

work effect in these efforts. The purpose of the models described here is to
achieve an effective balance between federation (commonality) and autonomy

(variability).

In both of these cases, we find once again that a little bit of OWL goes a

long way. Most of the value in the federal enterprise architecture case comes

from the use of RDF to describe how a centralized model can be extended

by multiple agencies. But in addition to the use of RDF to extend the model,

there are some constraints on the enterprise architecture that can be

described using a little bit of OWL. There is no need for elaborate recombining
models, only a handful of modeling patterns are used again and again. In the

case of the cancer research ontology, a centralized model has been created

in which OWL is used to describe how the various concepts related to

research in the genetic basis of cancer are related to one another. These defini-

tions, maintained in an ongoing effort by the U.S. National Cancer Institute,

provide a common reference point for research teams from around the world

to coordinate their results.

THE FEDERAL ENTERPRISE ARCHITECTURE
REFERENCE MODEL ONTOLOGY

The federal government in the United States determined that some coherence

was necessary among numerous government agencies in terms of information

systems, their form, and their content. Toward this end, the government insti-

tuted an ongoing effort called the Federal Enterprise Architecture. The idea of

an Enterprise Architecture is that it should be possible to describe, in a coher-

ent, formal and machine-readable way, the information systems, components,

and information content of a government agency. Even once the agencies
represent their enterprise architecture in such a way, there is no guarantee that

the decisions made by various agencies will be consistent. For this reason, the

government defined the Federal Enterprise Architecture Reference Model

(FEA-RM). The idea behind a reference model is that it is not an enterprise archi-

tecture itself but is a starting point for someone who plans to design an enter-

prise architecture. If every agency uses the same reference model as a starting

point for its own enterprise architecture, then the hope is that we can guaran-

tee, or at least encourage, some degree of consistency among the architectures
of the various agencies.
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The first edition of the Federal Enterprise Architecture was delivered as a

series of documents written in natural language with an assortment of diagrams.

Although the documents were very well organized, it was still possible for

an enterprise architect in any particular agency to simply pay lip service to

the federal reference model by “spinning” a story about why a nonconformant

model is conformant to the reference model. It was felt that a more effective

way to deliver the model would be in a formal, machine-readable (and, as far

as possible, automatically verifiable) form.

REFERENCE MODELS AND COMPOSABILITY

Toward this end, the U.S. government sponsored a project to cast the FEA-RM

into OWL (FEARMO). The FEARMO project chose RDF as the data modeling lan-

guage to support the composability that is required by a reference model. The

reference model itself is represented as an RDF graph; each agency customi-
zation is represented as a set of triples, which is merged with this graph. This

ensures that each agency has a core structure (based on the FEA-RM) on which

they all agree, but at the same time, each agency can add its own extra structure

as it sees fit. For example, consider the fragment of the FEARMO shown in

Figure 11-1.

The FEA-RM defines a business area called Management of Government

Resources. In the original FEA document, components in the model are said
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FIGURE 11-1

Sample business areas from the FEARMO.
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to “comprise” one another or to be “comprised of” one another. Figure 11-1

shows that this business area is comprised of five components. Components

at this level are called Lines of Business. The line called SupplyChainManagement

consists of four other components, called subfunctions.

The RDF representation of the FEARMO followed the modularity of the

textual FEA-RM by defining a number of distinct namespaces for the various

parts of the FEA-RM. Although these namespaces are used consistently in

the published models, we will take some liberties for the sake of simplicity
of diagrams and triples in this description by leaving out the particulars of

the namespaces.

An agency can extend the FEA-RM by adding new lines of business in a busi-

ness area, or new subfunctions to a line of business. Figure 11-2 shows such

an extension, in which an agency has added an extra subfunction called Fleet-

Management to the SupplyChainManagement line of business. This extension is

expressed with the single triple:

:SupplyChainManagement :isComprisedOf :FleetManagement.

So far, the FEARMO has not used any feature of OWL at all, only basic RDF. Even

at this level, the model provides a valuable service in that it expresses how an

agency can extend the model, and it provides a compact way for the agency

to express just its extensions.

Management of Government Resources
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An agency extension to Figure 11-1. This agency has an additional subfunction of SupplyChainManagement

for FleetManagement.
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RESOLVING AMBIGUITY IN THE MODEL:
SETS VERSUS INDIVIDUALS

The bulk of the FEA-RM is made up of tree structures of this sort, in which a

number of components are described as consisting of other components. There

are four sections to the FEA-RM: the Performance Reference Model, the Business

Reference Model (of which a small excerpt was shown in Figure 11-1), the

Service Component Reference Model, and the Technology Reference Model.

The original FEA-RM was expressed in English. One of the challenges of

recasting an informal model (expressed in natural language) into a formal model
(e.g., expressed in OWL) is sorting out the ambiguities in the informal model.

One recurring source of ambiguity in the FEA-RM is the distinction between sets

of components and components. For example, in Figure 11-1, should we view

SupplyChainManagement as a set of four subfunctions, or should we see it as a

component in its own right, with properties of its own (e.g., a responsible party

or a budget line item)? Both of these viewpoints are viable and useful in the

model. How do we deal with this?

In the FEARMO, this ambiguity is dealt with by noticing that in a graph like
the one in Figure 11-1, we can view every node as a component but still

acknowledge that there is utility in explicitly naming “the set of all things that

ManagementOfGovernmentResources is comprised of.” Fortunately, it is a simple

matter to express such a class using a hasValue restriction, as shown in

Figure 11-3. We need to define an inverse for isComprisedOf to make the

restriction; comprises is an obvious name for this property.

 Management of Government Resources Line of Business

comprises has ManagementOfGovernmentResources∋

comprises

iscomprisedOf

Management of Government Resources

owl:equivalentClass

owl:onProperty

owl:inverseOf

owl:hasValue

FIGURE 11-3

OWL definition of “the set of all things that ManagementOfGovernmentResources is

comprised of.”
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This pattern should be familiar by now; we saw similar uses of hasValue in

Chapter 10, where we defined “The children of Shakespeare” and “the terms

narrower than Milk.” The hasValue restriction gives us a simple way to move

from an individual (like ManagementOfGovernmentResources, Milk, or

Shakespeare) to the set of individuals related to it by some given property.

When we combine Figures 11-2 and 11-3 and show the inferences entailed

by OWL, we get the set of triple shown in Figure 11-4. The owl:hasValue restric-

tion ensures that the members of the class LOB_ManagementOfGovernment-

Resources are exactly the individuals that comprise the line of business

ManagementOfGovernmentResources. Since these relationships are inferred, they

will be maintained even when new members of the class ManagementOfGovern-

mentResources are asserted, or if we learn of a new subfunction that comprises

ManagementOfGovernmentResources.

There are ample opportunities in the FEARMO to use this pattern; in fact, at

each point in any of the FEA-RM trees, we can refer to the set of components

of which some other component is comprised. Since the FEARMO is intended
to be a reference model, any of these sets are likely to be used in some

agency extension. The FEARMO therefore includes definitions like the one

shown in Figure 11-3 for every intermediate node in any tree. (This design
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After inferencing. The members of the class LOB_ManagementOfGovernmentResources are exactly the

individuals that comprise ManagementOfGovernmentResources.
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pattern is a special case of the relationship transfer pattern we saw previously.)

In this case, the pattern transfers a relationship to some individual (in this exam-

ple, the relationship comprises for ManagementOfGovernmentResources) to the

rdf:type relation for a specified class (in this example, LOB_ManagementOf-

GovernmentResources). This particular use of the relationship transfer pattern

is so specific and pervasive that we give it its own name. Since it defines a

class whose membership tracks a property of an individual, we call it the

Class-Individual Mirror pattern.

CONSTRAINTS BETWEEN MODELS

The FEA-RM describes several layers of components in the four reference mod-

els: for Business, Performance, Service Components, and Technology. This is in

itself a remarkable undertaking, since these models identify hundreds of spe-

cific entities that can play a role in the enterprise architecture of an agency.

But the FEA-RM goes even further to describe constraints between these

models.
For example, one level of the Performance Reference Model describes a

number of Measurement Categories. Instead of specifying all the things that

each measurement category is comprised of (as we saw for the Business Refer-

ence Model in Figure 11-1), for certain measurement categories, the Perfor-

mance Reference Model stipulates that they are comprised of things that

come from the Business Reference Model.

Let’s look at a specific example. The Performance Reference Model defines a

Measurement Area called the Mission and Business Results Measurement Area
(this is called MA_MissionAndBusinessResults in the FEARMO). Rather than list-

ing the components that comprised it, the PRM stipulates that the things that

comprise it are exactly the lines of business that comprise three specific busi-

ness areas, including the Management of Government Resources business area

outlined in Figures 11-1 through 11-4. To state this as a constraint in natural

language, we have

Anything that comprises ManagementOfGovernmentResources should also

comprise MA_MissionAndBusinessResults.

How can this be modeled in OWL?

Fortunately, since the FEARMO already uses the Class-Individual Mirror

pattern throughout the model, there is a simple way to express this relation-

ship directly in OWL. That is, it already has a definition (through Class-Individual

Mirror) of “the set of all individuals that comprise ManagementOfGovernment-

Resources” (in FEARMO, that class is called LOB_ManagementOfGovernment-

Resources). It also already has a definition of “the set of all individuals that
comprise MA_MissionAndBusinessResults” (in FEARMO, this class is called

prm:LineOfBusinessMeasurementCategory). Given that these two classes have
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already been defined, and recalling that the type propagation rule of rdfs:sub-

ClassOf means that members of one class will be inferred to also be members

of the other, FEARMO can model the constraint that all individuals that com-

prise ManagementOfGovernmentResources should also comprise MA_MissionAnd-

BusinessResults with the single triple

LOB_ManagementOfGovernmentResources rdfs:subClassOf
prm:LineOfBusinessMeasurementCategory.

Let’s have a closer look at how this works.

First, we look at the definition of prm:LineOfBusinessMeasurementCategory

in Figure 11-5. This is defined with the same pattern as the one in Figure 11-3.

Any individual that comprises prm:MA_MissionAndBusinessResults is a member

of this class, and vice versa.

Now suppose we have a new individual that comprises ManagementOf-

GovernmentResources. The chain of inferences is shown in Figure 11-6. Reading

counterclockwise from the bottom of the figure, we have the new line of busi-

ness that comprises ManagementOfGovernmentResources. Because of the Class-

Individual Mirror pattern for LOB_ManagementOfGovernmentResources (detailed

in Figure 11-3 and summarized here in Figure 11-6), we can infer that the new

line of business is a member of (i.e., has rdf:type) LOB_ManagementOfGovern-

mentResources. Since we just asserted that LOB_ManagementOfGovernment-

Resources is rdfs:subClassOf prm:LineOfBusinessMeasurementCategory, we
can infer that the new line of business is also a member of prm:LineOfBusiness-

MeasurementCategory. Now we can use the Class-Individual Mirror pattern again

but this time to infer that the new line of business comprises MA_MissionAnd-

BusinessResults, as desired.

MA_MissionAndBusinessResults

owl:equivalentClass

rdf:type

owl:hasValue owl:onProperty

comprises

owl:Restriction

≡ A34

LineOfBusinessMeasurementCategory

FIGURE 11-5

LineOfBusinessMeasurementCategory is defined using the Class-Individual Mirror

pattern. The Class is called LineOfBusinessMeasurementCategory; the individual is

MA_MissionAndBusinessResults. The Restriction is an anonymous class, shown

here as a formulaic node A34.
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OWL AND COMPOSITION

As a reference model, one of the main values of the FEARMO is the capability to

combine it with agency models in a modular way. As a complex document, the

original FEA-RM was already divided into four sections, each of which has its

own value but also have a value as an integrated whole. This is not an unusual
situation in software deployment. Most software languages have features for

managing modularity of this sort. OWL is no different in this regard, and it has

language features for modularizing semantic models. These language features

have no semantics for the model (they allow no new triples to be inferred),

but they help us, as humans, to organize a model in a modular way.

owl:Ontology

OWL provides a built-in class whose members correspond to modular parts of a

semantic model. It is customary for the URI of an Ontology to correspond to the

URL of the file on the web where the ontology is stored. This makes use of a

slightly different syntax in N3 than we have used so far. It is possible to spell

out a URI by enclosing it in angle brackets:

<http://www.workingontologist.com/Examples/ch14/shakespeare.
owl> a owl:Ontology.

owl:hasValue

owl:equivalentClass

owl:equivalentClass

owl:hasValue

rdfs:subClassOf

comprises

comprises

rdfP:type

rdfP:type

MA_MissionAndBuisnessResults

NewLineOfBuisness ManagementOfGovernmentResources

LineOfBuisnessMeasurementCategory

LOB_ManagementOfGovernmentResources

A34

comprises has ManagementOfGovernmentResources

FIGURE 11-6

Inferences for a new LineOfBusiness that comprises ManagementOfGovernment

Resources.
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Unlike the other constructs in OWL, the meaning of membership in owl:Ontol-

ogy is not given by inference. In fact, one could say that it has no formal mean-

ing at all. Informally, an instance of owl:Ontology corresponds to a set of RDF

triples. In particular, it corresponds to exactly the triples that are stored in the

file that is found at the URL specified by the URI of the Ontology instance. There

is no connection in the model between an instance of owl:Ontology and

the triples to which it corresponds.

Although such an individual has no significance from the point of view of
model semantics, it can be quite useful when specifying modularity of semantic

models. The primary way to specify modularity is with the property owl:

imports.

owl:imports

This is a property that connects two instances of the class owl:Ontology. Just as

is the case with owl:Ontology itself, no inferences are drawn based on owl:

imports. But the meaning in terms of modularity of models is clear: When any

system loads triples from the file corresponding to an instance of owl:Ontology,

it can also find any file corresponding to an imported ontology and load that as

well. This load can, in turn, trigger further imports, which trigger further loads,

and so on. There is no need to worry about the situation in which there is a

circuit of imports (e.g., prm imports brm imports fea imports prm). A simple
policy of taking no action when a file is imported for a second time will guaran-

tee that no vicious loops will occur. The resulting set of triples is the union of

all triples in all imported files.

In the case of FEARMO, there is a somewhat elaborate import structure, as

shown in Figure 11-7. The four main divisions of FEARMO are called srm,

prm, brm, and trm. The rdfs:subClassOf triples that connect the PRM to the

owl:
impo

rts

owl:imports

owl:imports

owl:imports
owl:imports owl:imports

owl:imports

owl:imports
owl:imports

srm:

brm:

PRM:

feac:

BRM2PRM:

trm:

FIGURE 11-7

Import structure of FEARMO.
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BRM, as illustrated in Figure 11-6, are included in a model called BRM2PRM,

which, naturally enough, imports brm and prm. The srm imports brm

and prm, and everything imports some common triples from a module called

feac. Any part of this structure can be referenced independently; all the neces-

sary modules can then be found by tracing the owl:imports links from one

ontology to the next.

Although owl:imports is the workhorse of model modularity, OWL includes

a handful of properties for version control. They also have no meaning for the
inference semantics of OWL and so have no significance in terms of modeling,

but they are useful to OWL as a computer language. (Note that only minimal

support for these constructs is provided in most OWL tools, and they are not

widely used.)

These are, for the most part, self-explanatory:

versionInfo: An annotation property for specifying version information,

either human readable or for use by other version control systems.

priorVersion: Refers one ontology to another ontology that is a prior

version.

backwardCompatibleWith: Like priorVersion but further states the new
ontology is backward compatible with the previous one.

incompatibleWith: Like priorVersion but further states that the new ontol-

ogy is incompatible with the previous one.

DeprecatedClass and DeprecatedProperty: Used to specify that a class

or property, respectively, is deprecated in a particular version (and should

no longer be used).

ADVANTAGES OF THE MODELING APPROACH

The inferences in Figure 11-6 follow from the OWL standard and can be done

automatically by any OWL inference engine. What is the advantage of modeling

the enterprise architecture like this?

To see the advantages of modeling in this way, we need to examine the alter-

natives. How else might the constraints between the performance and busi-

ness reference models be maintained? One way to maintain this relationship is
through work practice. Whenever a new line of business is established that

comprises ManagementOfGovernmentResources, a person could be given the task

to make a corresponding update to the MA_MissionAndBusinessResults mea-

surement area. This solution requires documentation of that work practice and

a reliance that it will continue to be done in the same way, even if personnel in

the organization change. This is difficult to achieve in practice.
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Another way to maintain the relationship would be to write a special-pur-

pose program that watches for additions to the business model and makes

corresponding changes to the performance model. It is easier to keep such a

system working in the face of new personnel, but it has the disadvantage that

because the solution is written in general-purpose program code, it is difficult

to maintain and evolve the software or to make certain that the process is done

the same way throughout the work flow. The relationship between the business

and performance models is not explicitly stated anywhere, and it is difficult for
future personnel to maintain software they don’t understand.

In the presence of an inference engine, the modeling solution given by the

FEARMO is very similar to the programmatic solution. The inference engine plus

the model together constitute a program that takes the appropriate action.

Whenever a new line of business is established, a corresponding measurement

area is also updated. The difference is that the FEARMO makes explicit the rela-

tionship between the business and reference models in a way that is separate

from any other processing around the enterprise architecture.
The code that supports this constraint is not embedded in a general-purpose

language with the rest of the processing of data or user interfaces, or any other

aspect of an agency’s information system. The constraint is maintained by a stan-

dard inference engine. The relationship is expressed, in this case, in a single

statement whose meaning is given by standard semantics.

This advantage is especially meaningful in the context of a reference model

like FEA-RM. The utility of a reference model lies in its extensibility. When an

agency makes an addition to the model (e.g., by adding a new line of business,
which might just comprise ManagementOfGovernmentResources), it should make

a corresponding addition to the performance measurement areas. How can this

stipulation be unambiguously communicated and enforced? Custom code is not

a solution to this problem at all—no single piece of code specified centrally

(i.e., by the federal government) can be expected to run in the context of every

agency’s systems. A semantic model can make such a specification and can do

it unambiguously because of the standard meaning of the constructs in OWL.

An agency can choose to enforce it in any way that it likes, as long as it respects
the formal meaning of the model. Thus, one agency might choose to use,

say, an Oracle implementation of OWL, while another might use some other

OWL reasoner built by a custom contractor, but the semantic model of OWL

guarantees interoperability between them. A special-purpose program does

not provide this capability.

THE NATIONAL CANCER INSTITUTE ONTOLOGY

The NCI Thesaurus is a public domain terminology produced by the U.S. National

Cancer Institute (one of the National Institutes of Health). It is currently released
in a number of forms, including OWL encoding. OWL is a natural model for
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this vocabulary, as we shall see, because it provides a means for specifying in a

formal and unambiguous way the relationships between terms.

The need for a comprehensive NCI-wide terminology arose because NCI staff

require access to timely and accurate information about activities related to the

scientific mission of the Institute. The collection, storage, and retrieval of data

related to NCI research programs are necessary to analyze, manage, and report

about these activities. Although centralized coding of NCI-supported research-

related activities met some of these needs, supplementary data coding had
become common. This coding was assigned independently within various

components of the Institute and was frequently based on locally developed term

lists or other informal vocabulary, making it difficult to find and combine

information across programs.

The NCI source vocabulary within the NCI ontology encompasses the termi-

nology used by the various offices and divisions within the Institute, with the

goal of providing a common vocabulary to increase the interoperability of infor-

mation systems. The NCI vocabulary provides not only an initial Institute-wide
integrated vocabulary but also rich mappings of NCI terminology to numerous

other biomedical vocabularies.

The NCI ontology itself does not take advantage of the distributed nature of

the Semantic Web in that it is stored and published in the form of one very large

file, with all the class and property definitions within it. This has the advantage

that it makes it easier to keep the ontology consistent and to do version control

(a new version is released monthly), but it comes with some cost. At present,

the NCI employs several full-time workers to maintain the ontology and uses
a complex work flow control system to manage the builds.

The NCI ontology primarily provides class definitions (and relationships

between classes) that can be used by others to link their data. By the middle of

2007, the ontology had over 50,000 class definitions, and it has been growing

by several thousands of classes a year over the past few years.

REQUIREMENTS OF THE NCI ONTOLOGY

Cancer research draws on a number of disciplines in the life sciences, including

genetics, chemistry, and biology (among many others). Research in each of
these fields includes a wide variety of specialized terminology. For this research

to yield actionable results, some connection among the various fields must be

made in a systematic way. But because of the complexity of each field, it is diffi-

cult to track what information in one field is relevant in another.

A small example of the situation is shown in Figure 11-8. The figure shows

fragments of the terminology hierarchies for Genes, Species, and Biological Pro-

cesses. In addition to listing terms in each of these areas, the NCI ontology also

specifies that the special case of Gene called Oncogene occurs only in the spe-
cies Human, as opposed to a number of other possible species in which other
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FIGURE 11-8

Parts of the NCI ontology and a few relationships between them. The meaning of each link depends on the particular taxonomies that are being

linked—for example, an Oncogene occurs in species Human.



genes may occur. Furthermore, the genes in the more specific class called

Oncogenes_Protein_Kinase have functions Protein_Phosphorylation and

Signal_Transduction. Finally, the even more specific Oncogene_ErbB2 is asso-

ciated with the disease Adenocarcinoma. In managing this ontology, it is impor-

tant to note that there are tens of thousands of terms from several different

disciplines and it is quite a daunting task to track all of these associations.

Simple lists of corresponding terms cannot effectively address this problem.

In the example in Figure 11-8, it isn’t only the termOncogene that is associatedwith
the speciesHumanbut indeed every termbelow it in the terminology tree. The tree

structure of each terminology space, aswell as the ability to link the spaces together,

is essential for the effective management of terminology for cancer research.

UPPER-LEVEL CLASSES

The NCI ontology is organized into several high-level classes that correspond to

the various kinds of things that it describes. Each of these high-level classes is

called a Kind. Each kind is defined as an OWL class that can be used to organize
many subclasses. Some of the kinds are related to the biological aspects of

oncology—for example:

NCI:Organism_Kind a owl:Class.
NCI:Gene_Kind a owl:Class.

and others. In addition, there are more general properties that are used for clas-

sifying treatments and processes in cancer care—for example:

NCI:Chemicals_and_Drugs_Kind a owl:Class.
NCI:Clinical_or_Research_Activity_Kind a owl:Class.
NCI:Chemotherapy_Regimen_Kind a owl:Class.

and finally, some that are used for classifying things used in cancer research or

treatment, such as:

NCI:Equipment_Kind a owl:Class.
NCI:Technique_Kind a owl:Class.

There’s also a kind for those things that don’t really fit into other kinds or

which are specific to NCI research:

NCI:NCI_Kind a owl:Class.

The kinds are linked to each other by a set of properties and their domains and

ranges—for example:

NCI:Gene_In_Chromosomal_Location a rdf:Property,
rdfs:domain NCI:Gene_Kind,
rdfs:range NCI:Anatomy_Kind.

to assert that chromosomal locations link genes to parts of the anatomy.
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As we saw in Figure 11-8, the primary use of ontology is to define more

specific classes and to put constraints on how each property can relate

classes in one tree to classes in another. How are the relationships shown in

Figure 11-8 expressed in OWL? Let’s take a closer look at the example of

Oncogene_ErbB2:

NCI:Oncogene_ErbB2 a owl:Class;
rdfs:subClassOf NCI:Gene_Kind;
rdfs:subClassOf

[a owl:Restriction;
owl:onProperty NCI:Gene_Found_In-Organism;
owl:someValuesFrom NCI:Human];

rdfs:subClassOf
[a owl:Restriction;

owl:onProperty NCI:Gene_In_Chromosomal_Location;
owl:someValuesFrom NCI:_17q21_1];

rdfs:subClassOf
[a owl:Restriction;

owl:onProperty NCI:Gene_Has_Function;
owl:someValuesFrom NCI:Protein_Phosorylation];

rdfs:subClassOf
[a owl:Restriction;

owl:onProperty NCI:Has_Function;
owl:someValuesFrom NCI:Signal_Transduction];

rdfs:subClassOf
[a owl:Restriction;

owl:onProperty NCI:Gene_is_Biomarker_Type;
owl:someValuesFrom NCI:Tumor_Marker];

rdfs:subClassOf
[a owl:Restriction;

owl:onProperty NCI:Gene_Associated_With_Disease;
owl:someValuesFrom NCI:Adenocarcinoma].

The triples in this example are shown graphically in Figure 11-9. In this way, the

primary classification hierarchy is used to specify classes and the restrictions on

the properties between them.

The pattern we see six times in Figure 11-9 (using rdfs:subClassOf and owl:

someValuesFrom) occurs roughly 50,000 times in the NCI thesaurus; that’s

roughly once per class. This is the predominant modeling pattern in this ontol-
ogy. So what does it mean in this context, and how is it used?

To see how this pattern is used in the NCI ontology, let’s have a close look

at a small part of the ontology: a pair of mappings from the Gene_Kind to the

Biological_Process_Kind (see Figure 11-10). In this case, we are looking

at two applications of the design pattern that maps one tree to another.

In Figure 11-10, we see something of an odd situation: a Cancer_Gene has

function Tumorigenesis, while an Oncogene has function Oncogenesis. This

seems odd because although Cancer_Gene is more general than Oncogene,
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Tumorigenesis, it is less general than Oncogenesis. When we draw it in a dia-

gram, the mappings cross one another.
Just how odd is this? Is it something to worry about? What should be done

about it? One value that OWL brings to a modeling effort like the NCI is clarity

of the logical meaning of mappings of this sort. When we model this situation in

OWL, we give it a formal meaning. More important, we can use that formal mean-

ing to understand just what, if anything, is odd about the situation in which the

mappings cross as they do in this case. More precisely, the formalism allows us

to determine a formal description of the situation so that we have a clear under-

standing of what informally could only be understood as vaguely “odd.”
In the NCI ontology, each of these mappings was represented with owl:some-

ValuesFrom in a manner similar to what we see in Figure 11-9. Figure 11-11 shows

a closer look at the Oncogene/Cancer_Gene situation and how it was modeled

in OWL.

rdf:subClassOf

rdf
:su

bCl
ass

Of

rdf:s
ubCla

ssOf

rdf:subClassOf

rdf:subClassOf

rdf:subClassOf

rdf:subClassOf

Gene_kind

rGene_Found_In_Organism some Human

Onconegene ErbB2

rGene_In_Chromosomal_Location some_17q21_1

rGene_Has_Function some Protein_Phosphorylation

rGene_Has_Function some signal_Transduction

rGene_is_Biomarker_Type some Tumor_Marker

rGene_Associated_With_Disease some Adnocarcinoma

FIGURE 11-9

Definition of Oncogene_ErbB2. Each owl:Restriction class is shown here as a single

node with a label in the Manchester syntax. Each one is a someValuesFrom restriction

class, restricting a property to values from a particular class.

Cancer_Gene (Cancer Gene)−

Oncogene (Oncogene)

Oncogenesis (Oncogenesis)

Tumorigenesis (Tumorigenesis)+

−

+

FIGURE 11-10

Mapping from the Gene_Kind to the Biological_Process_Kind. The links correspond

to the Has_Function property in the ontology. Notice that the mapping “crosses levels,”

a higher-level Gene class is mapped to a lower-level process class.
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Each of the gene classes is defined to be a subclass of a restriction class

on the property Gene_Has_Function. Notice that the subclass relationship
between the biological processes points in the opposite direction from the

one between the genes; the more general gene is mapped to the more specific

process.

What conclusions can we draw from this diagram? If we think this looks odd,

perhaps it is because the model is inconsistent and there is an unsatisfiable

class. As it happens, this model has none of these problems. Every class in

Figure 11-11 is satisfiable, and the model is consistent. To see this, consider a

single Oncogene that has a single Tumorigenesis function; both gene classes
are nonempty (they contain the gene), the two genesis classes are nonempty

(they contain the function), and every member of each restriction class is

known to satisfy the restriction. The model is in fine shape.

Let’s investigate a bit more closely. What else can we see from this model?

We know that the subClassOf relationship can propagate through a someVa-

luesFrom restriction. In this case, since Tumorigenesis is a subclass of Oncogen-

esis, we can conclude that one of the restriction classes is actually a subclass

of the other, as shown in Figure 11-12.

rdfs:subClassOf

Owl:someValuesFrom

Owl:someValuesFromrdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

NCI:Gene_Has_Function some NCI:Tumorigenesis

NCI:Cancer_Gene

NCI:Oncogene

NCI:Tumorigenesis

NCI:Oncogenesis

NCI:Gene_Has_Function some NCI:Oncogenesis

FIGURE 11-11

Representation of Figure 11-10 in OWL, NCI Ontology v. 3.09d.

NCI:OncogenesisNCI:Gene_Has_Function some NCI:Oncogenesis

NCI:Gene_Has_Function some NCI:Tumorigenesis

NCI:Cancer_Gene

NCI:Oncogene

Owl:someValuesFrom

Owl:someValuesFrom

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

NCI:Tumorigenesis

FIGURE 11-12

The subclass relation between Tumorigenesis and Oncogenesis propagates to the

corresponding restrictions (dashed line).
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What can we infer from this situation? It has already been asserted that

Oncogene is a subclass of Cancer_Gene, which is a subclass of the Tumorigenesis

restriction class, which is a subclass of the Oncogenesis restriction class.

According to the type propagation rule for subclass (see Chapter 5), we already

know that Oncogene is a subclass of the Oncogenesis restriction class. That is,

the assertion in Figure 11-11 that Oncogene is a subclass of the Oncogenesis

restriction class is redundant.

Redundancy in a model is not problematic; after all, any query or infer-
ence engine will treat an inferred triple the same as an asserted triple.

Since the NCI ontology acts as a record of terminology decisions made by

the NCI ontology committee, a situation like this does make you wonder if

there might be a mistake somewhere. Why did someone feel the need to

assert a (redundant) connection between Oncogene and Oncogensis? Were

they unaware that it was redundant? Is it a mistake that this was a redundant

assertion? Did they intend something more specific but were unable to

express it in the current model?
We now have a better handle on our vague notion of “odd”—someone

asserted something that could have been easily inferred. This could indicate

an error in thinking or communication that could have an impact on the model.

Now we have some idea what to investigate.

The resolution of questions of this sort, like the resolution of questions of

consistency or satisfiabilty, cannot be done with OWL itself but must be consid-

ered by the authors and intended users of the model. In this case, a more recent

version of the NCI ontology shows that indeed this situation has been rectified,
as shown in Figure 11-13.

Owl:someValuesFrom
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rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

Cancer_Gene

Oncogene

Gene_Plays_Role_In_Process some Turmoigenesis

Turmoigenesis

Pathogenesis

Oncogenesis

Gene_Plays_Role_In_Process some Oncogenesis

FIGURE 11-13

Newer version of Oncogene fragment of the NCI ontology, v. 7.05e, ca. 2007.
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The relationship between Oncogene and Cancer_Gene is unchanged from the

previous version, as are the subclass relationships with the restriction classes.

But the relationships of the target classes Tumorigenesis and Oncogenesis have

changed. Neither is now a subclass of the other, but they are both subclasses of

the common superclass Pathogenesis. This resolves the redundancy from the

earlier version while making a more specific statement about the relationships

between the terms.

A further relationship between Tumorigenesis and Oncogenesis appears in
the new version (but is not shown in Figure 11-13), in which the process

Tumorigenesis is described as part of the process Oncogenesis, preserving

the intended relationship between these two processes. The new model still

uses two occurrences of the mapping pattern from a class in the Gene tree

to a class in the Process tree, but in the new version, the anomaly of the cross-

ing mappings has been resolved. Because of the semantics of OWL, we know

exactly what aspects of the model were changed between the earlier and later

versions.

DESCRIBING CLASSES IN THE NCI ONTOLOGY

Many of the classes in the NCI ontology correspond to genes (in particular, cer-

tain subclasses of the Gene_Kind class). Because of their importance in the life
sciences, genes have been identified by a number of classification systems like

Swiss_Prot and the GeneBank. It is essential for the interoperability of the NCI

ontology that these identifiers be associated with the genes in the ontology

whenever they are known. The obvious solution to this is to assert triples of

the form such as

:FABP3_Gene a :Gene_Kind ;
:Swiss_Prot "P05413" .

What inferences should we expect from such a statement? Since FABP3_Gene is a

class, it could have subclasses. Would they or should they share the Swiss_Prot

number of FABP3_Gene? The answer is certainly not! The Swiss_Prot number is
supposed to be an identifier of a particular gene.

In Chapter 13 we will discuss the logical details of making assertions of

this sort about classes, but at this point all we need to observe is that it is inten-

tionally not desired that the property Swiss_Prot take part in any inferencing.

In OWL, we can indicate that a property is not to be used for inferencing by

asserting that it is an AnnotationProperty, thus:

:Swiss_Prot a owl:AnnotationProperty.
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By making this declaration, we inform readers of the model as well as inference

engines that this property is intended to add extra information to a class without

having any impact on inferencing.

INSTANCE-LEVEL INFERENCING
IN THE NCI ONTOLOGY

The combination of rdfs:subClassOf and owl:someValuesFrom is pervasive
in the NCI ontology, but it does not entail any inferences about individual

members of classes. Figure 11-14 shows an example of why this is the case.

Suppose we were to assert membership of two instances: Gene_001 in Gen-

e_Kind and Patient001 in Human, as shown. Since there is some value in the class

Human on the property Gene_Found_In-Organism for Gene_001, an OWL inference

engine would infer that it is indeed a member of the restriction class as shown

with the dashed line in Figure 11-14. But that is as far as the inferencing

can go; no inference rules apply at this point. In particular, the type propagation
rule for subclass does not apply. So far, we have inferred that Gene_001 is a

member of the superclass; the type propagation rule only applies if we know

that it is a member of the subclass.

Perhaps it is not surprising that no useful instance-level inferences follow

from the structure of the NCI ontology, since the NCI ontology was built as

a way of managing terminology in cancer research and not the progress of indi-

vidual patients. Nevertheless, more recent work on the NCI ontology has

refined certain definitions to allow for more specific, instance-level inferencing.

NCI:Gene_Found_In-Organism

rdfs:type
rdfs:type

rdfs:subClassOf

rdfs:type

NCI:Gene_Kind NCI:Gene_Found_In-Organism some NCI:Human

NCI:Oncogene_ErbB2

NCI:Human

NCI:Patient001

NCI:Gene_001

FIGURE 11-14

Potential instance level assertions in the NCI Ontology. Solid lines are asserted triples;

dotted lines are inferred triples.
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For instance, the definition of the Oncogene ErbB2 in the newer version of NCI

is given by

:Oncogene_ErbB2 owl:equivalentClass
[a owl:Class;
owl:intersectionOf

(:ERB_Oncogene_Family
[a owl:Restriction;

owl:onProperty:Allele_In_Chromosomal_Location;
owl:someValuesFrom :_17q21_1 ]

[a owl:Restriction ;
owl:onProperty :Gene_Found_In_Organism ;
owl:someValuesFrom :Human ]

[a owl:Restriction ;
owl:onProperty :Gene_Plays_Role_In_Process ;
owl:someValuesFrom :Cell_Proliferation ]

[a owl:Restriction ;
owl:onProperty :Gene_Plays_Role_In_Process ;
owl:someValuesFrom :Tyrosine_Phosphorylation ]

[a owl:Restriction ;
owl:onProperty :Gene_Plays_Role_In_Process ;
owl:someValuesFrom :Receptor_Signaling ]

[a owl:Restriction ;
owl:onProperty :Gene_Is_Biomarker_Type ;
owl:someValuesFrom :Tumor_Marker ]

[a owl:Restriction ;
owl:onProperty :Gene_Associated_With_Disease ;
owl:someValuesFrom :Adenocarcinoma ]

)
].

If we contrast this with the definition of ErbB2 in the earlier version of the NCI

ontology, we see that ErbB2 is still a subclass of seven restriction classes (since

the intersection of all the restriction classes is a subclass of each of them). Now

ErbB2 is defined as being equivalent to the intersection of all those restriction

classes. This means that should there be an instance that satisfies all of them

(that is, a member of ERB_Oncogene_Family with an allele in chromosome loca-
tion _17q21_1 found in organism Human, etc.), then an inference engine would

conclude that it is a member of Oncogene_ErbB2. In this version of NCI, such

capabilities are only beginning to be explored.

There are a number of aspects of the NCI ontology that could be criticized as

being misleading or even, in some cases, incorrect. For instance, what is the sig-

nificance of naming something Gene_Kind instead of just Gene? Why does the

model provide class-level inferences but no instance-level inferences? Is this

really a problem or not? We have seen an example of how a particular issue with
the NCI ontology (crossing mappings) has been resolved in later versions and

how certain instance-level inferencing is being treated in current research.
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In Chapter 12, we will explore some basics of ontology engineering and

design, which suggest that some requirements be spelled out in advance of begin-

ning the construction of a model. In the case of an ongoing project like the

NCI ontology, the requirements are likely to shift as the project matures and is

used by more and more people. We see evidence of that shift in the current move

to include the definitions needed for inferencing about individuals as well as

classes.

SUMMARY

On the face of it, the Federal Enterprise Architecture Reference Model Ontology

and the NCI Ontology serve very different functions. The FEARMO is intended

to be a starting point for several agencies, each of which will extend it. As such,

it is specifically designed for distributed maintenance. The NCI ontology, on the

other hand, is managed by a single body as a centralized controlled vocabulary.

If we look a bit more deeply, we see that these differences are superficial.

In both cases, the important aspect of the model is that it can be used by many

different people who have two conflicting needs: On the one hand, they need
to have some commonality among their work. In the case of the agencies and

their enterprise architecture, the federal government wants some unity among

the agencies. In the case of the NCI, researchers around the world want to be

able to correlate their results. On the other hand, each user of the models has

some independent needs; the agencies have their own lines of business to

pursue, and the researchers have their own methodologies and agendas.

Each ontology mediates these conflicting needs by providing a formal, unam-

biguous, and reusable model of the constraints between the concepts in the
respective domains. Core concepts that are shared among the stakeholders are

represented in a core model. Constraints that hold between these core concepts

are also represented. In the case of FEARMO, these constraints govern what hap-

pens when the model is extended. In the NCI case, these constraints help to dis-

ambiguate terms and to keep track of which term is used in what way. Both

Ontologies take advantage of the formal semantics of OWL to balance their

conflicting requirements.

Another similarity between these two ontologies is found in their design.
Each of these ontologies repeats a particular ontology design pattern over and

over again. In the case of the NCI ontology, it is the owl:someValuesFrom pattern

that links classes in one tree to classes in another. In the case of FEARMO, it is

an owl:hasValue pattern that gathers up all the entities that comprise another

into a class. In FEARMO, the pattern is repeated over 200 times. In the NCI

Ontology, its pattern is repeated over 50,000 times! What role does such

repetition play in ontology design?

In both cases, the respective pattern reveals an underlying pattern of how
information is organized in the domain that the ontology describes. FEARMO

Summary 269



is concerned with managing the composition of systems: What components are

combined to form a system? What higher-level system do these systems partici-

pate in? The repetition of this pattern in the domain (systems composition) is

reflected as repetition of a pattern in the model. Similarly, the terminology space

that the NCI Ontology describes has many facets. Certain terms in each facet

have known relationships to terms of another facet. The relationship between

each pair of classes is the same—that is, how we can find our way through

the terminology space.
From the point of view of model maintenance, these repeated patterns give

future modelers a chance of understanding how the models work and what

could be done to modify them. No single person can understand a model of

50,000 classes all at once. If there were 50,000 distinct logical relationships,

understanding what inferences result from the model would be a similarly

daunting task. Inference engines can, of course, compute the inferences, but

understanding at a high level exactly what is going on is still a challenge for

someone who wants to maintain or modify a model. Repetition of modeling pat-
terns simplifies this task, making model maintenance possible.

Fundamental Concepts

The following fundamental concepts were introduced in this chapter:

owl:imports—Allows one ontology to refer explicitly to another. Triples from

the imported ontology are available for inferencing in the importing

ontology.

Versioning—OWL provides a number of resources for tracking changes in

model versions and the dependencies between them.

Annotation—Properties in OWL that do not participate in inferencing. The

versioning properties are examples of annotations.

Ontology Design Patterns—Repeated modeling idioms that provide coher-

ence and unity to a large model.
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CHAPTER

12Good and Bad
Modeling Practices

In preceding chapters, we reviewed the constructs from RDF, RDFS, and OWL

that go into a good model. We provided examples of successful models from a

number of different backgrounds. Even after reaching this point, the prospect

of creating a new model from scratch can seem daunting. Where should you

begin? How do you tell a good model from a bad one?

Unlike the examples in the previous chapters, many of the examples in this

chapter should not be used as templates or examples of good practice in build-

ing your own models. We indicate these examples with the label “antipattern”
to indicate patterns that should not be emulated in your models.

GETTING STARTED

Often the first step of a journey is the most difficult one. How can you start the

construction of a useful semantic model? Broadly speaking, there are three ways

to get started, and the first comes directly from the nature of a web. Why build

something if it is already available on the Web? One of the easiest ways to begin

a modeling project is to find models on the Web that suit your needs. The second

way is to leverage information assets that already have value for your organization.

It is not uncommon for an organization to have schemas, controlled vocabul-

aries, thesauri, or other information organization artifacts that can provide an
excellent source of vetted information for a semantic model. The third way is

to engineer a model from scratch. In this case, certain standard engineering

practices apply, including the development of requirements definitions and test

cases.

Regardless of the manner in which a model was acquired, you must

answer this question: Is this model, or some part of it, useful for my pur-

poses? This poses two issues for the modeler: How do I express my intended

purpose for a model? How do I determine whether a model satisfies some
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Know What You Want

How can we express our intentions for the purpose of a model? In the case

where we are engineering a model from scratch, we can express requirements

for the model we are creating. One common practice for semantic models usu-

ally starts with the notion of “competency questions.” Begin the modeling

process by determining what questions the model will need to answer. Then

construct the model so that these questions can be answered, and, to the extent

possible, model no further than necessary to answer them.
Although competency questions provide a reasonable start for specifying the

purpose of a model, they have some limitations in the context of modeling in

the Semantic Web. The first drawback is that for models that have been found

on the Web, or for other information artifacts that we have used as a basis

for a new model, competency questions typically will not have been provided.

It is not uncommon for a modeler to find themselves in a position of determin-

ing what a model can do, based simply on an examination of the model.

A more serious limitation stems from the observation that a model in the
Semantic Web goes beyond the usual role of an engineered artifact with system

requirements. On the Semantic Web, it is expected that a model will be merged

with other information, often from unanticipated sources. This means that the

design of a semantic model must not only respond to known requirements

(represented with competency questions) but also express a range of variation

that anticipates to some extent the organization of the information with which

it might be merged.

Although this seems like an impossible task (and in its full generality, of
course, it is impossible to anticipate all the uses to which a model might be

applied), there are some simple applications of it, in light of the other guide-

lines. You model ShakespeareanWork as a class not only when you have a corre-

sponding competency question (e.g., “What are the works of Shakespeare?”)

but also whenever you anticipate that someone else might be interested in

that competency question. You model ShakespeareanWork as a subclass of

ElizabethanWork not just in the case when you have a competency question

of that form, (e.g., “What are all the kinds of Elizabethan works?”) but also if
you anticipate that someone might be interested in Shakespearean works and

someone else might be interested in Elizabethan works, and you want the

answers to both questions to be consistent (i.e., each ShakespeareanWork is also

an ElizabethanWork).

This idea gets to the crux of how modeling in the Semantic Web differs from

many other engineering modeling practices. Not only do you have to model for

a particular engineering setting but for a variety of anticipated settings, as well.

We have already seen examples of how this acts as a driving force behind our
models in the wild. The NCI model is structured as it is, not primarily because

a single stakeholder needs to understand the organization of the terminology

of the life sciences but because members of a community of stakeholders with
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different goals need answers to a variety of questions, which must all be

answered consistently. Similarly, the design decisions in FEARMO are not moti-

vated by the needs of any single stakeholder but by the anticipated needs of a

variety of agencies, each of which can or does organize information differently

but all of which require a consistent source of information.

Inference Is Key

It is fine to talk about stakeholders, variation, and competency questions, but

even when we do have a specific understanding of the intent of a model, how

can we even determine whether the model, as constructed, meets that inten-

tion? We can appeal to the intuition behind the names of classes and properties,

but this is problematic for a number of reasons. First is the issue known as
“wishful naming.” Just because someone has named a class ElizabethanWork

doesn’t mean that it will contain all or even any works that might deserve

that name. Second is the issue of precision. Just what did the modeler mean

by ElizabethanWork? Is it a work created by Queen Elizabeth or one that was

created during her reign? Or perhaps it is a work created by one of a number

of prominent literary figures (the ElizabethanAuthors), whose names we can

list once and for all. To determine whether a model satisfies some intent, we

need an objective way to know what a model means and, in the case of com-
petency questions, how a model can answer questions.

There are two ways a Semantic Web model answers questions. The first is

comparable to the way a database answers question: by having the appropriate

data indexed in a way that can be directly accessed to answer the question.

If we answer the question “What are the Elizabethan literary works?” this way,

we would do so by having a class called, say, ElizabethanWork and maintain a

list of works as members of that class.

This method for answering questions is fundamental to data management; at
some point, we have to trust that we have some data that are correct or that are

at least correct enough for our purposes. The special challenge of semantic

modeling comes when we need to model for variability. How do we make sure

that our answer to the question “What are the Shakespearean works?” is consis-

tent with the answer to “What are the Elizabethan works?” (and how does

this relate to the answer to the question “Who are the Elizabethan authors?”).

This brings us to the second way a semantic model can answer questions:

through the use of inferencing.
We can determine a model’s answer to a particular question (or query)

through an analysis of inferencing. What triples can we infer based on the

triples that have already been asserted? If we require every ShakespeareanWork

to be an ElizabethanWork, we can either build or find a model that asserts

that ShakespeareanWork is a subclass of ElizabethanWork. If instead we want an

ElizabethanWork to be one that was created or performed by an Elizabethan-

Author and that Shakespeare is one of these authors, we build or find a model that
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will support the corresponding inferences (e.g., using owl:someValuesFrom).

In all these cases, the consistency of the answers to the various questions is

expressed and maintained through inferencing.

MODELING FOR REUSE

One of the principle drivers in the creation of a semantic model is that it will be
used by someone other than its designer in a new context that was not fully

anticipated. If you are designing a model, you must consider the challenges

the people using your model might face. How can you make this job easier

for them?

Insightful Names Versus Wishful Names

When you are reusing a model that you found on the Web, you’d like to know
the intent of the various components of the model (classes, properties, indivi-

duals). The support that a model provides for question answering is given for-

mally by the inferences that the model entails. As far as an inference engine is

concerned, entities in the model could have any name at all, like G0001 or

Node97. But names of this sort are of little help when perusing a model to

determine whether it can satisfy your own goals. Putting the shoe on the other

foot, when you build a model, you are also selecting names for those who will

want to link to your model and need to know what is in it, as well as for those,
including yourself at a later date, who may have to maintain or extend the

model. There’s a fine line between good naming and wishful thinking, but

keeping in mind that your model will be “read” by others is always good

practice.

A closely related issue to naming is the use of annotations like rdfs:label,

rdfs:comment, and rdfs:seeAlso. Even if you choose a name for a resource that

you understand, and even one that is understood by the community you par-

ticipate in, there could well be another community who will find that usage
meaningless or even misleading. We have seen an example of this before with

skos:broader. For someone with a background in thesaurus management, it is

understood that skos:broader is used to connect a narrow term to a broader

term, such as:

:cheese skos:broader :dairy.

That is, skos:broader should be read as “has broader term.” Other readers might

expect this to be read “cheese is broader than dairy,” and they would either be

confused by the use of skos:broader or, worse, would misuse it in their own

models. Judicious use of rdfs:label can alleviate this issue, as follows:

skos:broader rdfs:label "has broader term" .
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In addition to the selection of meaningful names and quality naming, some simple

conventions can contribute to the understandability of a model. The conventions

listed next have grownup as de facto standardways to name entities on the Semantic

Web, and are followed by the W3C itself as well as throughout this book.

Name resources in CamelCase: CamelCase is the name given to the style of

naming in which multiword names are written without any spaces but with

each word written in uppercase. We see this convention in action in

W3C names like rdfs:subClassOf and owl:InverseFunctionalProperty.

Start class names with capital letters: We see this convention in the W3C

class names owl:Restriction and owl:Class.

Start property names with lowercase letters: We see this convention in

the W3C property names rdfs:subClassOf and owl:inverseOf. Notice

that except for the first letter, these names are written in CamelCase.

Start individual names with capital letters: We see this convention
at work in the lit:Shakespeare and ship:Berengaria examples in this

book.

Name classes with singular nouns: We see this convention in the W3C
class names owl:DatatypeProperty and owl:SymmetricProperty and in

the examples in this book: lit:Playwright.

Keeping Track of Classes and Individuals

One of the greatest challenges when designing a semantic model is determining

when something should be modeled as a class and when it should be modeled

as an individual. This issue arises especially when considering a model for reuse
because of the distributed nature of a semantic model. Since a semantic model

must respond to competency questions coming from different stakeholders, it is

quite possible that one work practice has a tradition of considering something

to be a class, whereas another is accustomed to thinking of it as an instance.

As a simple example, consider the idea of an endangered species. For the

field zoologists who are tracking the number of breeding pairs in the world

(and in cases where the numbers are very small, give them all names), the spe-

cies is a class whose members are the individual animals they are tracking. For
the administrator in the federal agency that lists endangered species, the species

is an instance to be put in a list (i.e., asserted as a member of the class of

endangered species) or removed from that list. The designer of a single model

who wants to answer competency questions from both of these stakeholder

communities is faced with something of a challenge.

We have seen exactly this situation in FEARMO, where some stakeholders are

interested in viewing a LineOfBusiness as an instance (to make assertions of

the form “The General Services Agency is in the line of business of Management
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of Government Resources”). Other stakeholders view a particular line of busi-

ness as a set of operations (called subfunctions in FEARMO) and so want

to make assertions of the form “Supply chain management is an instance of

Management of Government Resources.” As was the case in FEARMO, this

situation can often be modeled effectively using the Class-Individual Mirror

pattern from Chapter 11.

Another source of difficulty arises from the flexibility of human language

when talking about classes and instances. We can say that Shakespeare is an
Elizabethan author or that a poem is a literary work. In the first sentence, we

are probably talking about the individual called Shakespeare and his member-

ship in a particular class of authors. In the second, we are probably talking

about how one class of things (poems) relates to another (literary works). Both

of these sentences us the words is a(n) to describe these very different sorts of

relationships. In natural languages, we don’t have to be specific about which

relationships we mean. This is a drawback of using competency questions

in natural language: The question “What are the types of literary works?”
could be interpreted as a request for the individuals that are members of the

class LiteraryWork, or it could be asking for the subclasses (types) of the class

LiteraryWork. Either way of modeling this could be considered a response to

the question.

Although there is no hard and fast rule for determining whether something

should be modeled as an instance or a class, some general guidelines can help

organize the process. The first is based on the simple observation that classes

can be seen as sets of instances. If something is modeled as a class, then there
should at least be a possibility that the class might have instances. If you cannot

imagine what instances would be members of a proposed class, then it is a

strong indication that it should not be modeled as a class at all. For example,

it is unlikely, according to this guideline, that we should use a class to refer to

the literary figure known as Shakespeare. After all, given that we usually under-

stand that we are talking about a unique literary figure, what could possibly be

the instances of the class Shakespeare? If there are none, then Shakespeare

should properly be modeled as an instance.
If you can imagine instances for the class, it is a good idea to name the

class in such a way that the nature of those instances is clear. There are some

classes having to do with Shakespeare that one might want to define. For exam-

ple, the works of the Bard, including 38 plays, 254 sonnets, 5 long poems,

and so on could be a class of interest to some stakeholder. In such a case, the

name of the class should not simply be Shakespeare but instead something

like ShakespeareanWork. Considerable confusion can be avoided in the design

phase by first determining what it is that is to be modeled (the Bard himself,
his works, his family, etc.), then deciding if this should be a class or an instance,

and then finally selecting a name that reflects this decision.

The second guideline has to do with the properties that describe the thing to

be modeled. Do you know (or could you know) specific values for those
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properties or just in general that there is some value? For instance, we know in

general that a play has an author, a first performance date, and one or more pro-

tagonists, but we know specifically about The Tempest that it was written by

William Shakespeare, was performed in 1611, and has the protagonist Prospero.

In this case, The Tempest should be modeled as an instance, and Play should be

modeled as a class. Furthermore, The Tempest is a member of that class.

Model Testing

Once we have assembled a model—either from designed components, reused

components, or components translated from some other source—how can we

test it? In the case where we have competency questions, we can start by

making sure it answers those. More important, in the distributed setting of the

Semantic Web, we can determine (by analyzing the inferences that the model

entails) whether it maintains consistent answers to possible competency ques-

tions from multiple sources. We can also determine test cases for the model.
This is particularly important when reusing a model. How does the model per-

form (i.e., what inferences can we draw from it?) when it is faced with informa-

tion that is not explicitly in the scope of its design? In the analysis to follow,

we will refer generally to model tests—ways you can determine if the model

satisfies its intent.

COMMON MODELING ERRORS

In light of the AAA slogan (Anybody can say Anything about Any topic), we

can’t say that anything is really a modeling error. In our experience teaching

modeling to scientists, engineers, content managers, and project managers,

we have come across a handful of modeling practices that may be counterpro-

ductive for the reuse goals of a semantic model. We can’t say that the models

are strictly erroneous, but we can say that they do not accomplish the desired

goals of sharing information about a structured domain with other stakeholders.
We have seen each of the antipatterns described following in a number of

models. Here, we describe each one in turn and outline its drawbacks in terms

of the modeling guidelines just given. We have given each of them a pejorative

(and a rather fanciful) name as a reminder that these are antipatterns—common

pitfalls of beginning modelers. Whenever possible, we will also indicate good

practices that can replace the antipattern, depending on a variety of possible

desired intents for the model.

Rampant Classism (Antipattern)

A common reaction to the difficult distinction between classes and instances is
simply to define everything as a class. This solution is encouraged by most
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modeling tools, since the creation of classes is usually the first primitive opera-

tion that a user learns. The temptation is to begin by creating a class with the

name of an important, central concept and then extend it by creating more clas-

ses whose names indicate concepts that are related to the original. This practice

is also common when a model has been created by automatic means from some

other knowledge organization source, like a thesaurus. A thesaurus makes much

less commitment about the relationship between terms than does a semantic

model between classes or between classes and individuals.
As an example, someone modeling Shakespeare and his works might begin

by defining a class called Shakespeare and classes called Plays, Poems, Poets,

Playwrights, and TheTempest. Then, define a property (an owl:ObjectProperty)

called wrote and assert that Shakespeare wrote all of these things by asserting

triples like the following:

:Playwrights :wrote :Plays .
:Poets :wrote :Poems .
:Shakespeare :wrote :Plays .
:ModernPlays rdfs:subClassOf :Plays .
:ElizabethanPlays rdfs:subClassOf :Plays .
:Shakespeare :wrote :TheTempest .
:Shakespeare :wrote :Poems .

and perhaps even

:TheTempest rdfs:subClassOf :Plays .

This seems to makes sense because, after all, TheTempest will show up next to
Plays in just about any ontology display tool. The resulting model is shown in

Figure 12-1.

Playwrights owl:Class
rdf:type

rdf:type

rdf:type

rdf:type
rdf:type

rdf:type

rdf:type

rdf:type

wrote

wrote

wrote

wrote

wrote

Plays

rdfs:subClassOf

rdfs:subClassOf

ElizabethanPlaywrights

ElizabethanPlays

ModernPlays

TheTempest

Shakespeare

Poems

Poets

rdfs:subClassOf

rdfs:subClassOf

FIGURE 12-1

Sample model displaying rampant classism. Every node in this model has rdf:type owl:

Class.
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Given the AAA slogan, we really can’t say that anything in this set of triples is

“wrong.” After all, anyone can assert these triples. But we can start by noting

that it does not follow the simple syntactic conventions in that the class names

are plurals.

This model reflects a style typical of beginning modelers. The triples seem

to translate into a sensible sentence in English: “Shakespeare wrote poems”;

“Shakespeare wrote The Tempest.” If you render rdfs:subClassOf in English as

is a, then you have “The Tempest is a plays,” which aside from the plural at
the end, is a reasonable sentence in English. How can we evaluate whether this

model satisfies the intent of the modeler or of someone who might want to

reuse this model? We’ll consider some tests that can tell us what this model

might be useful for.

Let’s start with some simple competency questions. This model can certainly

answer questions of the form “Who wrote The Tempest?” The answer is avail-

able directly in the model. It can also answer questions like “What type of thing

writes plays? What type of thing writes poems?” Again, these answers are repre-
sented directly in the model.

Suppose we want to go beyond mere questions and evaluate how the model

organizes different points of view. It seems on the face of it that a model like this

should be able to make sure that the answer to a question like “What type of

thing wrote Elizabethan plays?” would at the very least include the class of play-

wrights, since playwrights are things that wrote plays and Elizabethan plays are

plays. Can this model support this condition? Let’s look at the relevant triples

and see what inferences can be drawn:

:Playwrights a owl:Class ;
:wrote :Plays .

:ElizabethanPlays rdfs:subClassOf :Plays.

None of the inference patterns we have learned for OWL or RDFS apply here. In

particular, there is no inference of the form

:Playwrights :wrote :ElizabethanPlays .

Another test criterion that this model might be expected to pass is whether it

can distinguish between plays and types of plays. We do have some plays and

types of plays in this model: The Tempest is a play, and Elizabethan play

and modern play are types of plays. The model cannot distinguish between

these two cases. Any query that returns The Tempest (as a play) will also return

modern plays. Any query that returns Elizabethan play (as a type of play) will

also return The Tempest. The model has not made enough distinctions to be

responsive to this criterion.
If we think about these statements in terms of the interpretation of classes as

sets, none of these results should come as a surprise. In this model, playwrights

and plays are sets. The statement “Playwrights wrote plays” makes no state-

ments about individual playwrights or plays; it makes a statement about the sets.
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But sets don’t write anything, whereas playwrights and poets do. This statement,

when made about sets, is nonsense. The OWL inference semantics bear this

out: The statement has no meaning, so no inferences can be drawn. TheTempest

is modeled here as a class, even though there is no way to imagine what its

instances might be; it is a play, not a set. Plays are written by people (and have

opening dates, etc.), not sets.

Similar comments can be made about a statement like “Poets wrote poems.”

If triples like:

:Poets :wrote :Poems .

aren’t meaningful, how should we render the intuition reflected by the sen-
tence “Poets wrote poems”? This consideration goes beyond the simple sort

of specification that we can get from competency questions. We could respond

to questions like “Which people are poets?” or “Which things are poems?” with

any model that includes these two classes. If we want the answers to these two

questions to have some sort of consistency between them, then we have to

decide just what relationship between poems and poets we want to represent.

We might want to enforce the condition “If someone is a poet, and he wrote

something, then it is a poem.” When we consider the statement in this form,
it makes more sense (and a more readable model) if we follow the convention

that names classes with singular nouns (“a poet,” “a poem”) rather than plurals

(poets, poems).

We have already seen an example of how to represent a statement of this

form. If something is an AllStarTeam, then all of its players are members of

StarPlayer. Following that example, we can represent this same thing about

poets and poems as follows:

:Poet rdfs:subClassOf [ a owl:Restriction ;
owl:onProperty :wrote ;
owl:allValuesFrom :Poem ] .

If we specify an instance of poet—say, Homer—and something he wrote—say,

The Iliad—then we can infer that The Iliad is a poem, thus:

:Homer :wrote :TheIliad .
:Homer a :Poet .
:TheIliad a :Poem .

This definition may work fine for Homer, but what happens if we press the

boundaries of the model a bit and see what inferences it can made about some-

one like Shakespeare

:Shakespeare :wrote :TheTempest .
:Shakespeare a :Poet .
:TheTempest a :Poem .

The conclusion that The Tempest is a poem is unexpected. Since it is common

for poets to write things that don’t happen to be poems, probably this isn’t
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what we really mean by “Poets wrote poems.” This is an example of a powerful

method for determining the scope of applicability of a model. If you can devise a

test that might challenge some of the assumptions in the model (in this case, the

assumption that nobody can be both a poet and a playwright), then you can

determine something about its boundaries.

What other results might we expect from the statement “Poets wrote

poems”? We might expect that if someone is a poet, then they must have writ-

ten at least one poem. (We have already seen a number of examples of this using
owl:someValuesFrom.) In this case, this definition looks like this:

:Poet rdfs:subClassOf [ a owl:Restriction ;
owl:onProperty :wrote ;
owl:someValuesFrom :Poem ] .

The inferences we can draw from this statement are subtle. For instance, from

the following fact about Homer

:Homer a :Poet .

we can infer that he wrote something that is a poem, though we can’t necessar-

ily identify what it is.

When we say, “Poets wrote poems,” we might expect something even stron-

ger: that having written a poem is exactly what it means to be a poet. Not only
does being a poet mean that you have written a poem, but also, if you have writ-

ten a poem, then you are a poet. We can make inferences of this sort by using

owl:equivalentClass as follows:

:Poet owl:equivalentClass [a owl:Restriction ;
owl:onProperty :wrote ;
owl:someValuesFrom :Poem ] .

Now we can infer that Homer is a poet from the poem that he wrote

:Homer :wrote :TheIliad .
:TheIliad a :Poem .
:Homer a :Poet .

In general, linking one class to another with an object property (as in Poets

wrote poems in this example) does not support any inferences at all. There is

no inference that propagates properties associated with a class to its instances,

or to its subclasses, or to its superclasses. The only inferences that apply to

object properties are those (like the inferences having to do with rdfs:domain

and rdfs:range, or inferences from an owl:Restriction) that assume that

the subject and object (Shakespeare and poems in this case) are instances,

not classes.

This illustrates a powerful feature of OWL as a modeling language. The con-
structs of OWL make very specific statements about what the model means,

based on the inference standard. A sentence like “Poets wrote poems” may have

some ambiguity in natural language, but the representation in OWL is much
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more specific. The modeler has to decide just what they mean by a statement

like “Poets wrote poems,” but OWL allows these distinctions to be represented

in a clear way.

Exclusivity (Antipattern)

The rules of RDFS inferencing say that the members of a subclass are necessarily

members of a superclass. The fallacy of exclusivity is to assume that the only
candidates for membership in a subclass are those things that are already known

to be members of the superclass.

Let’s take a simple example. Suppose we have a class called City and a sub-

class called OceanPort, to indicate a particular kind of city

:OceanPort rdfs:subClassOf :City .

We might have a number of members of the class City, for example:

:Paris a :City .
:Zurich a :City .
:SanDiego a :City .

According to the AAA assumption, any of these entities could be an OceanPort,

as could any other entity we know about—even things we don’t yet know are
cities, like New York or Rio de Janeiro. In fact, since Anyone can say Anything

about Any topic, someone might assert that France or The Moon is an Ocean-

Port. From the semantics of RDFS, we would then infer that France or The

Moon are cities.

In a model that commits the error of exclusivity, we assume that because

OceanPort is a subclass of City, the only candidates for OceanPort are those

things we know to be cities, which so far are just Paris, Zurich, and San Diego.

To see how the exclusivity fallacy causes modeling problems, let’s suppose we
are interested in answering the question “What are the cities that connect to an

ocean?” We could propose a model to respond to this competency question as

follows:

:OceanPort rdfs:subClassOf :City .

:OceanPort owl:equivalentClass
[ a owl:Restriction ;

owl:onProperty :connectsTo ;
owl:someValuesFrom :Ocean ] .

These triples are shown graphically in Figure 12-2.

This model commits the fallacy of exclusivity; if we assume that only cities
can be ocean ports, then we can answer the question by querying the members

of the class OceanPort. But let’s push the boundaries of this model. What infer-

ences does it draw from some boundary instances that might violate some

assumptions in the model? In particular, what if we consider something that is
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not a city but still connects to an ocean? Suppose we have the following facts in

our data set:

:Zurich :connectsTo :RiverLimmat .
:Zurich :locatedIn :Switzerland .
:Switzerland :borders :France .
:Paris :connectsTo :LaSeine .
:Paris :locatedIn :France .
:France :connectsTo :Mediterranean .
:France :connectsTo :AtlanticOcean .
:SanDiego :connectsTo :PacificOcean .
:AtlanticOcean a :Ocean .
:PacificOcean a :Ocean .

and so on.

From what we know about SanDiego and the PacificOcean, we can con-

clude that SanDiego is an OceanPort, as expected

:SanDiego :connectsTo :PacificOcean .
:PacificOcean a :Ocean .
:SanDiego a :OceanPort .

Furthermore, since

:OceanPort rdfs:subClassOf :City .

we can conclude that

:SanDiego a :City .

So far, so good, but let’s see what happens when we look at France.

:France :connectsTo :AtlanticOcean .
:AtlanticOcean a :Ocean

Therefore, we can conclude that

:France a :OceanPort .

City

owl:equivalentClass

rds:subClassOf

connectsTo some Ocean

EOceanPort

FIGURE 12-2

Eronneous definition of OceanPort as a city that connects to an Ocean.
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and furthermore,

:France a :City .

This is not what we intended by this model, and it does not respond correctly to

the question. The flaw in this inference came because of the assumption that

only things known to be cities can be ocean ports, but according to the AAA

assumption, anything can be an ocean port unless we say otherwise.

This fallacy is more a violation of the AAA slogan than any consideration of

subclassing itself. The fallacy stems from assumptions that are valid in other

modeling paradigms. For many modeling systems (like object-oriented program-

ming systems, library catalogs, product taxonomies, etc.) a large part of the
modeling process is the way items are placed into classes. This process is usu-

ally done by hand and is called categorization or cataloguing. The usual way

to think about such a system is that something is placed intentionally into a class

because someone made a decision that it belongs there. The interpretation of a

subclass in this situation is that it is a refinement of the class. If someone wants

to make a more specific characterization of some item, then they can catalogue

it into a subclass instead of a class.

If this construct does not correctly answer this competency question, what
model will? We want something to become a member of OceanPort just if it is

both a City and it connects to an Ocean. We do this with an intersection as

shown in Figure 12-3.

Now that we have defined an OceanPort as the intersection of City and a

restriction,we can infer that OceanPort is a subclass of City. Furthermore, only indi-

viduals that are known to be cities are candidates for membership in OceanPort, so

anomalies like the previous one for France cannot happen.

≡ OceanPort
owl:equivalentClass

owl:intersectionOf

City

[connectsTo some Ocean,
City]

(connectsTo some Ocean) and 
City

rdfs:sutClassOf

FIGURE 12-3

Correct model for an OceanPort as a City that also connects to an Ocean.
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The Class Exclusivity fallacy is a common error for anyone who has experi-

ence with any of a number of different modeling paradigms. Semantic Web mod-

eling takes the AAA assumption more seriously than any other common

modeling system. Fortunately, the error is easily remedied by using the intersec-

tion pattern shown in Figure 12-3.

Objectification (Antipattern)

One common source of modeling errors is attempting to build a Semantic Web

model that has the same meaning and behavior as an object system. Object sys-

tems, however, are not intended to work in the context of the three Semantic

Web assumptions: AAA, Open World, and Nonunique Naming. In many cases,

these differences in assumptions about the modeling context result in basic

clashes of modeling interpretation.

A fundamental example of this kind of clash can be found in examining the

role of a class in a model. In object modeling, a class is basically a template from
which an instance is stamped. It makes little or no sense to speak of multiple

classes (stamped out of two templates?) or of having a property that isn’t in

the class (where do you put it if there wasn’t a slot in the template for it?).

In Semantic Web models, the AAA and the Open World assumptions are

incompatible with this notion of a class. Properties in Semantic Web models

exist independently of any class, and because of the AAA slogan, they can be

used to describe any individual at all, regardless of which classes it belongs to.

Classes are seen as sets, so membership in multiple classes is commonplace.
Let’s consider a simple but illustrative example of how the intent of an

object model is incompatible with modeling in the Semantic Web. Suppose

an object model is intended to reflect the notion that a person has exactly

two parents who are also people. These are the requirements an object model

must satisfy:

1. A value for the property hasParent can be specified only for members of

the Person class.

2. We will recognize as a mistake the situation in which only one value for

hasParent is specified for a single person.

3. We recognize as a mistake the situation in which more than two values
for hasParent are specified for a single person.

Before we even look at an OWL model that attempts to satisfy these conditions,

we can make some observations about the requirements themselves. In particu-

lar, many of these requirements are at odds with the fundamental assumptions
of Semantic Web modeling, as described by the AAA, Open World, and Non-

unique Naming assumptions. Let’s look at the requirements in turn.

Requirement 1 is at odds with the AAA slogan. The AAA slogan tells us that

we cannot keep anyone from asserting a property of anything, so we can’t
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enforce the condition that hasParent can only be specified for particular indivi-

duals. The Open World assumption complicates the situation even further:

Since the next thing we learn about a resource could be that its type is Person,

we can’t even tell for sure whether something actually is a person.

Requirement 2 is at odds with the Semantic Web assumptions. In this case,

the Open World assumption again causes problems. Just because we have not

asserted a second parent for any individual does not mean that one doesn’t

exist. The very next Semantic Web page we see might give us this information.
Thus, regardless of how we model this in OWL, there cannot be a contradiction

in the case where too few parents have been specified.

Requirement 3 is not directly at odds with the Semantic Web assumptions, but

the Nonunique Naming assumption makes this requirement problematic. We can

indeed say that there should be just two parents, so if more than two parents are

specified, a contradiction can be detected. This will only happen in the case

where we know that all the (three or more) parents are distinct, using a construct

like owl:differentFrom, owl:allDifferent, or owl:disjointWith.
The discrepancy between these requirements and an OWL model doesn’t

depend on the details of any particular model but on the assumptions behind

the OWL language itself. An object model is designed for a very different pur-

pose from an OWL model, and the difference is manifest in many ways in these

requirements.

Despite this mismatch, it is fairly common practice to attempt to model these

requirements in OWL. Here, we outline one such attempt and evaluate the infer-

ence results that the model entails. Consider the following model, which is a fairly
common translation of an OO model that satisfies these requirements into OWL:

:Person a owl:Class .
:hasParent rdfs:domain :Person .
:hasParent rdfs:range :Person .

[ a owl:Restriction ;
owl:onProperty :hasParent ;
owl:Cardinality 2 ]

This model was created by translating parts of an object model directly into
OWL, as follows:

1. When a property is defined for a class in an OO model, that class is listed

as the domain of the property in OWL. The type of the property in the
OO model is specified as the range in OWL.

2. Cardinality limitations in the object model are represented by defining a

restriction class in OWL.

We have already seen that this model cannot satisfy the requirements as stated.

How far off are we? What inference does this model support? What inferences

does it not support?
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According to the stated intent of this model, if we assert just the following

fact:

:Willem :hasParent :Beatrix .

The model should signal an error, since only a Person can have a parent, and we

have not asserted that Willem is a Person. If we fix this by asserting that

:Willem a :Person .

then the model should still indicate an error; after all, Willem must have two

parents, not just one. If we also assert more parents for Willem:

:Willem :hasParent :Claus .
:Willem :hasParent :TheQueen .

then the model should again signal an error, since now Willem has three parents

rather than two.

Now let’s see what inferences can actually be made from these assertions

according to the inference patterns of OWL. From the very first statement

:Willem :hasParent :Beatrix .

along with the rdfs:domain information, we can infer that

:Willem a :Person .

That is, there is no need to assert that Willem is a Person before we can assert
who his parent is. This behavior is at odds with the first intent; that is, we

allowed Willem to have a parent, even though we did not know that Willem

was a person.

What about the cardinality restriction? What can we infer from that? Three

issues come into play with this. The first is the Open World assumption. Since

we don’t know whether Willem might have another parent, who simply

has not yet been specified, we cannot draw any inference about Willem’s mem-

bership in the restriction. In fact, even if we assert just one more parent for
Willem (along with Beatrix, bringing the total of asserted parents to exactly

two) that

:Willem :hasParent :Claus .

we still do not know that Willem really does have exactly two parents. After all,

there might be yet a third parent of Willem whom we just haven’t heard about.

That’s the Open World assumption.

The second issue has to do with unique naming. Suppose we now also assert

that

:Willem :hasParent :TheQueen .

Surely, we can now infer that Willem cannot satisfy the restriction, since we

know of three parents, right? Even if there are more parents lurking out there
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(according to the Open World assumption), we can never get back down to just

two. Or can we?

The Nonunique Naming assumption says that until we know otherwise, we

can’t assume that two different names refer to different individuals. In particu-

lar, the two names TheQueen and Beatrix could (and in fact, do) refer to the

same individual. So even though we have named three parents for Willem,

we still haven’t disqualified him from being a member of the restriction. We

haven’t named three distinct parents for Willem.
The third issue transcends all the arguments about whether Willem does

or does not satisfy the cardinality restriction. Look closely at the definition

of the restriction: It is defined, as usual, as a bnode. But the bnode is not

connected to any other named class in any way. That is, the restriction is

not owl:equivalentClass to any other class, nor is it rdfs:subClassOf any other

class (or vice versa).

What does this mean for inferences involving this restriction? On the one

hand, even if we were to establish that Willem satisfies the restriction, still no
further inferences could be made. Further inferences would have to be based

on the connection of the restriction to some other class, but there is no such

connection. On the other hand, if we could independently establish that Willem

is a member of the restriction, then we could possibly draw some conclusions

based on that. Since the restriction is not connected to any other class, there

is no independent way to establish Willem’s membership in the restriction class.

Either way, we can draw no new inferences from this restriction. The AAA slo-

gan keeps us from saying that this model is “wrong,” but we can safely say that it
does not support the inferences that were intended by the modeler. Unlike the

case of the other antipatterns, we are not in a position to “fix” this model;

the requirements of the model are simply at odds with the assumptions of

modeling in the Semantic Web.

Managing Identifiers for Classes (Antipattern)

In the NCI ontology, we saw a need for identifiers for classes: The Swiss_Prot

number for a gene or enzyme was listed at the class level:

:FABP3_Gene a owl:Class ;
rdfs:subClassOf :Gene_Kind ;
:Swiss_Prot "P05413" .

This is a direct response to the competency question “What is the Swiss Prot

number for the class FABP3?” This is a common requirement of models in very

formal settings: that various entities (classes, individuals, even properties) have

some sort of index number that we would like to record alongside the entity in

the model.
Strictly speaking, the use of a property to describe a class in this way risks

confusion about whether we are describing a class or an individual. FABP3_Gene
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is a class because of the type triple that declares it a class, but because it has a

property, it seems to be an individual. We suggested previously that this sort of

ambiguity of classes and individuals should be avoided, but it seems natural to

use a direct triple in this way to satisfy such a competency question.

As we shall see in Chapter 13, this distinction is not simply one of style

(should we represent a class also as an individual?), but it can have ramifications

in terms of the decidability of the logic. Fortunately, OWL provides a simple

answer to this issue. A property can be declared as an AnnotationProperty, indi-
cating that its use in such a context has no meaning in terms of the logic, and

thus does not make any statement about whether a subject is a class, individual,

or property.

:Swiss_Prot a owl:AnnotationProperty .

Earlier ontology languages did not support this solution, so modelers had to

improvise another solution. For each class for which annotation was desired,

there was a distinguished individual member of the class that would stand in

for the class for the purpose of annotations. For example, one could define

the following:

:FABP3_Gene a owl:Class ;
rdfs:subClassOf :Gene_Kind .

:PABP3_StandIn a :FaBP3 ;
:Swiss_Prot "P05413" .

This solution provides an answer to the competency question “Which gene is

labeled with Swiss Prot number PO5413?” (by following the rdf:type link from
the stand-in back to the class), but it introduces another problem. It makes it

difficult to answer, “What are all the members of the class FABP3_Gene?” because

there is now one individual that is a member of that class that should not be con-

sidered in answering this question. With the advent of owl:AnnotationProperty,

it is no longer necessary to use this method for annotating classes, but some

models with this pattern will still be used for some time to come.

Creeping Conceptualization (Antipattern)

In most engineered systems, designing for reuse is enhanced by keeping things

simple. In software coding, for example, the best APIs try to minimize the num-

bers of calls they provide. In physical systems, the number of connections is

minimized, and most common building materials aim for a minimally constrain-

ing design so as to maximize the ways they can be combined. On the Semantic

Web, the same idea should apply, but all too often the idea of “design for reuse”

gets confused with “say everything you can.” Thus, for example, when we
include ShakespeareanWork and ElizabethanWork in our model, we are tempted

to further assert that ElizabethanWork is a subclass of Work, which is a subclass

of IntangibleEntity.
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Of course, having included IntangibleEntity, you will want to include

TangibleEntity and some examples of those and some properties of those

examples and, well, ad infinitum. After all, you might think that modeling for

reuse is best done by anticipating everything that someone might want to use

your model for, and thus the more you include the better. This is a mistake

because the more you put in, the more you restrict someone else’s ability to

extend your model instead of just use it as is. Reuse is best done, as in other

systems, by designing to maximize future combination with other things, not
to restrict it.

This kind of creeping conceptualization may seem like an odd thing to have

to worry about. After all, isn’t it a lot of extra work to create more classes? Econ-

omists tell us that people minimize the amount of unrewarded work they do.

However, in practice, it often turns out that knowing when to stop modeling

is harder than deciding where to start. As humans, we tend to have huge

connected networks of concepts, and as you define one class, you often think

immediately of another you’d “naturally” want to link it to. This is an extremely
natural tendency, and even the best modelers find it very difficult to know when

to finish, but this way lies madness.

A relatively easy way to tell if you are going too far in your creation of con-

cepts is to check classes to see if they have properties associated with them,

and especially if there are restricted properties. If so, then you are likely saying

something useful about them, and they may be included. If you are including

data (instances) in your model, then any class that has an instance is likely to

be a good class. On the other hand, when you see lots of empty classes, espe-
cially arranged in a subclass hierarchy, then you are probably creating classes

just in case someone might want to do something with them in the future,

and that is usually a mistake. The famous acronym KISS (Keep It Simple, Stupid)

is well worth keeping in mind when designing Web ontologies.

SUMMARY

The basic assumptions behind the Semantic Web—the AAA, Open World, and

Nonunique Naming assumptions—place very specific restrictions on the model-

ing language. The structure of RDF is in the form of statements with familiar
grammatical constructs like subject, predicate, and object. The structure of

OWL includes familiar concepts like class, subClassOf, and property. But

the meaning of a model is given by the inference rules of OWL, which incor-

porate the assumptions of the Semantic Web. How can you tell if you have built

a useful model, one that conforms to these assumptions? The answer is by

making sure that the inferences it supports are useful and meaningful.

According to the AAA slogan, we cannot say that any of the practices in this

chapter are “errors” because Anyone can say Anything about Any topic. All of
these models are valid expressions in RDF/OWL, but they are erroneous in
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the sense that they do not accomplish what the modeler intended by creating

them. In each case, the mismatch can be revealed through careful examination

of the inferences that the model entails. In some cases (like the objectifica-

tion error), the requirements themselves are inconsistent with the Semantic

Web assumptions. In other cases (like the exclusivity error), the requirements

are quite consistent with the Semantic Web assumptions and can be modeled

easily with a simple pattern.

Fundamental Concepts

The following concepts were introduced or elaborated in this chapter:

The Semantic Web Assumptions—AAA (Anyone can say Anything about Any

topic), Open-World, and Nonunique Naming.

Inferencing—In OWL, inferencing is tuned to respect the Semantic Web

assumptions. This results in subtleties that can be misleading to a novice
modeler.

Competency Questions—Questions that scope the requirements for a model.

Modeling for Variability—The requirement (characteristic of Semantic Web

modeling) that a model describe variation as well as commonality.

Modeling for Reuse—The craft of designing a model for uses that cannot be

fully anticipated.

Wishful Naming—The tendency for a modeler to believe that a resource sig-

nifies more than the formal semantics of the model warrants, purely on

the basis of the resource’s name.

Model Testing—A process by which the boundaries of a model are stressed to

determine the nature of the boundaries of the inferences it can entail.
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CHAPTER

13OWL Levels and
Logic

This book is about modeling in the context of the Semantic Web—in particular,

using the W3C languages RDF, RDFS, and OWL to build and distribute those

models. The meaning of these models is given by the inferences that each of

these languages defines for the models. RDFS provides rudimentary inferencing

about types based on class membership and properties. OWL provides a wide

array of more advanced modeling features to describe how data can be related.

In Chapter 7, we introduced a subset of OWL that we called RDFS-Plus.

There are a number of reasons why someone might define a subset of a lan-
guage like OWL. In the case of RDFS-Plus, we were interested in a subset of

the language that has considerable utility for semantic modeling but does not

place a large burden on either a modeler or someone trying to understand a

model. RDFS-Plus includes features that are similar to what can be found in

familiar data representation systems like relational database and object-oriented

systems. Researchers, implementers, and product developers have defined a

number of subsets based on modeling expressivity, computational complexity,

and, often, on what parts of the OWL language can best be handled by whatever
inferencing system is already in place.

In the initial OWL specification, the W3C identified three particular variants

(or “species”) of OWL, which they called OWL Lite, OWL DL, and OWL Full.

The distinction between OWL DL and OWL Full is particularly subtle, and it is

the topic of much of this chapter. We will examine the motivations behind these

variants and the ramifications these motivations have in terms of technology and

modeling style.

Any language will grow as it is used, especially a SemanticWeb language. Realiz-
ing this, the W3C processes encourage the evolution of languages to provide new

functionality while maintaining backward compatibility. As we shall see, there are

a number of useful modeling idioms that are clumsy or impossible in the current

definition of OWL. This chapter outlines the particular features that are being

considered in the ongoing process in the W3C for the OWL recommendation.1

1Progress and status of the OWL recommendation is documented at http://www.w3.org/2004/OWL. 293



OWL DIALECTS AND MODELING PHILOSOPHY

Normally, when we refer to different subsets of a language, we can list the

language structures in one subset that are not found in the other. For instance,

RDFS has rdfs:domain, rdfs:range, rdfs:subPropertyOf, and so on, whereas

RDFS-Plus has all of those, plus some new language features like owl:inverseOf

and owl:TransitiveProperty. We can define how these two languages are simi-

lar or different, based on which language terms are available in each one.

In the case of OWL Full and OWL DL, the situation is more subtle. Both OWL
Full and OWL DL use exactly the same set of modeling constructs. That is, if we

were to list all the properties and classes that make up OWL Full and then com-

pile the same list for OWL DL, the lists would be exactly the same. In fact, it

would be the list of OWL features that you have been reading about in this

book. Everything you have learned so far applies equally well to OWL Full and

OWL DL.

So what is the difference? What was so important that the W3C saw fit to

make two distinct standards if they have the same language constructs and
the same meanings? The distinction between these two variants—or “species,”

as they are often called—of OWL has to do with how the language constructs

are used. The differences in allowed usage are motivated by a difference in

the basic philosophy of why one builds models for the Semantic Web. We will

outline these two basic philosophies—one in which the emphasis is placed

on having provable models and one in which the emphasis is placed on making

executable models. We examine each in turn, along with the intuitions that

motivate them.

Provable Models

An important motivation for formal modeling (as opposed to informal modeling)

is to be precise about what our models mean. In the context of the Semantic

Web, this tells us precisely and without doubt when concepts from two differ-

ent sources refer to the same thing. Does my notion of a James Dean movie cor-
respond to yours? A formal description can help us determine whether or not

this is the case. My definition of a “James Dean movie” is one that stars James

Dean, but your definition of a “James Dean movie” might be movies about

James Dean or movies with the words James Dean in the title. How can we tell

if we have the name “James Dean movie” as the only indication of these

definitions? A formal model makes these distinctions clearer. Then it becomes

a simple matter of automation to decide whether two classes are the same, if

one subsumes the other, or if they are unrelated.
It is this aspect of modeling that motivates a logical definition of OWL. Each

construct in OWL is a statement in a formal logic. The particular logical system

of OWL DL is called Description Logic. As the name suggests, Description Logic
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is a logical system with which formal descriptions of classes, individuals, and the

relationships between them can be made. The inferences in OWL that have

formed the basis of the bulk of this book are formally defined by a model theory

based on Description Logic.

Using logic as the foundation of a modeling language makes perfect sense;

we can draw upon decades, or even centuries, of development work in logical

formalism. The properties of various logical structures are well understood.

Logic provides a framework for defining all of the inferences that our modeling
language will need. But there is one fly in the ointment: In a computational

setting, we would like our logic to be processed automatically by a computer.

Specifically, we want a computer to be able to determine all of the inferences

that any given model entails. So, if we want to be able to automatically deter-

mine whether my notion of a James Dean movie is exactly the same as yours,

we must show the set of all facts true in one are true in the others, and all facts

untrue are untrue.

It is at this point that the details of the logic become important. What does it
mean for our modeling formalism if we base it on a logic for which this kind of

automation cannot, in principle, exist? That is, what happens if we can’t exactly

determine whether my notion of a James Dean movie is the same as yours? If we

view this sort of provable connection as essential to the nature of modeling,

then we have failed. We simply cannot tolerate a logic in which this kind of

question cannot be answered by automated means in some finite amount

of time.

In the study of formal logic, this question is called decidability. Formally, a
system is decidable if there exists an effective method such that for every for-

mula in the system the method is capable of deciding whether the formula is

valid (is a theorem) in the system or not. If not, then the system is undecidable.

It is not our intention in this book to go into any detail about the mathematical

notion of decidability, but a few comments on its relevance for modeling are in

order.

The first thing to understand about decidability is also the most surprising:

how easy it is for a formal system to be undecidable. Given the formal nature
of logic, it might seem that, with enough patience and engineering, a program

could be developed to correctly and completely process any formal logic. One

of the most influential theorems that established the importance of the notion

of decidability shows that even very simple logical systems (basically, any sys-

tem that can do ordinary integer arithmetic) are undecidable. In fact, it is actu-

ally quite challenging to come up with a logical system that can represent

anything useful that is also decidable.

This bit of tightrope walking is the impetus behind the OWL DL sublanguage.
OWL DL is based on a particular Description Logic. This means that it is possible

to design an algorithm that can take as input any model expressed in OWL DL and

determine which classes are equivalent to other classes, which classes are sub-

classes of other classes, and which individuals are members of which classes.
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The most commonly used algorithm for this problem is called the Tableau

Algorithm. It works basically by keeping track of all the possible relations

between classes, ruling out those that are inconsistent with the logical statements

made in the model. The Tableau Algorithm is guaranteed to find all entailments of

a model in OWL DL in a finite (but possibly quite long!) time. Furthermore, it is

possible to determine automatically whether a model is in fact in OWL DL so that

a program can even signal when the guarantees cannot be met.

Modeling in OWL DL supports the intuition that a model must be clear,
unambiguous, and machine-processable. The Tableau Algorithm provides the

machinery by which a computer system can make determinations about

equivalence of classes.

Executable Models

A different motivation for modeling in the Semantic Web is to form an integrated

picture of some sort of domain by federating information from multiple sources.
If one source provides information about the places where hotel chains have

hotels and another describes what hotels appear at a particular place, a formal

model can tell us that we can merge these two sources together by treating

them as inverses of one another. The model provides a recipe for adding new

information to incomplete information so it can be federated with other

sources.

Seen from this point of view, a model is similar to a program. It provides a

concise description of how data can be transformed for use in other situations.
What is the impact of decidability in such a situation? Standard programming

languages like FORTRAN and Java are undecidable in this sense. The undecid-

ability of these languages is often demonstration with reference to the Halting

Problem. It is impossible in principle to write a computer program that can take

another arbitrary computer program as input, along with input for that pro-

gram, and determine whether that program will halt on that input. Even though

these languages are undecidable, they have proven nevertheless to be useful

engineering languages. How can we write programs in these languages if we
can’t automatically determine their correctness or, in some sense, even their

meaning? The answer to this question in these cases is what programming is

all about. Even though it is not possible in general to determine whether

any program will terminate, it is usually possible to determine that some particu-

lar program will terminate and, indeed, with what answer. The skill of engineer-

ing good computer programs is to write programs that not only will terminate

on all input but will actually perform well on particularly interesting input.

Seen from this point of view, decidability is not a primary concern. Models
are engineered in much the same way as programs. If a model behaves poorly

in some situation, then an engineer debugs the model until it performs cor-

rectly. Since we are not concerned with decidability, we don’t need the guaran-

tee that any algorithm will find all possible inferences. This opens up the choice
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of processor for OWL to a much wider range of algorithms, including algorithms

like Forgy’s RETE algorithm that have enjoyed considerable popularity as pro-

cessors for rule-based languages.

It’s also the case that, in many Web applications, the size of datasets we

would like to analyze are quite huge, dynamic, or not well represented. The

question could be asked as to whether one needs a 100 percent correct model

to analyze data that is itself scraped from the Web by some heuristic program

that is not perfect. On the Web, people use Google because it can find good
answers a lot of the time, even if it can’t find perfect answers all the time. Some

Semantic Web systems are targeted at this rough-and-tumble Web application

space, and thus provable correctness, as opposed to efficient computation,

may not be a key goal.

This executable style of modeling is the primary motivation behind the OWL

Full standard. The meaning of a modeling construct in OWL Full is given in

much the same way as the meaning of a construct in a programming language.

Just as the meaning of a statement in a procedural programming language is
given by the operation(s) that a machine will carry out when executing that

statement, the meaning of an executable model is given by the operation(s)

that a program (i.e., an inference engine) carries out when processing the

model. Information federation is accomplished because the model describes

how information can be transformed into a uniform structure.

OWL FULL VERSUS OWL DL

So far, we have described the motivation behind OWL Full and OWL DL without

actually describing what the differences are in terms of the actual language. The
first thing to understand about OWL DL and OWL Full is that they use exactly

the same constructs. Every modeling construct you have learned in this book

can be used for both. The inferences that you can draw from them are also

the same, with the understanding that in the case of OWL Full, it might not

be possible for an automated system to draw all correct conclusions, while in

OWL DL it may not be possible to use every feature in every way.

The difference between the languages lies in the usage. Describing these

differences is also problematic, since the determination of the precise bound-
ary between OWL Full and OWL DL is a popular topic for Description Logic

researchers. Many of the restrictions that were originally defined for OWL

DL have since been proven to be too harsh. Inclusion of these usages has been

shown not to damage the decidability of the model. For this reason, it is more

important to understand the decidability-based motivation of the distinction

than any particular usage distinction. Here we will outline the major kinds

of restrictions on the modeling language that are enforced by OWL DL.

The details of these may continue to change as research in description
logic proceeds.
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Class/Individual Separation

In OWL DL, classes and individuals are completely separate; that is, a model can-

not specify that some resource is both a class and a member of a class. Recalling

an example from Chapter 6, we defined a number of ranks as classes:

ship:Captain rdfs:subClassOf ship:Officer .

ship:Commander rdfs:subClassOf ship:Officer .
ship:LieutenantCommander rdfs:subClassOf ship:Officer .
ship:Lieutenant rdfs:subClassOf ship:Officer .
ship:Ensign rdfs:subClassOf ship:Officer .

We can specify the rank of an individual using membership in one of these

classes:

:Warwick rdf:type ship:Captain .

By virtue of their use in rdfs:subClassOf triples, all of the entities mentioned

here are classes. In another context, we might want to express what we

know about these ranks—for instance, these ranks have a particular order, by

which Captain outranks Commander, which in turn outranks LieutenantComman-

der, and so on. We could express this relationship in RDF using a series of

triples:

ship:Captain ship:outranks ship:Commander .
ship:Commander ship:outranks ship:LieutenantCommander .
ship:LieutenantCommander ship:outranks ship:Lieutenant .
ship:Lieutenant ship:outranks ship:Ensign .

We represent the use of ship:outranks with domain and range specifications as
well:

ship:outranks rdfs:domain ship:Rank .
ship:outranks rdfs:range ship:Rank .

Although this seems like a natural thing to do, it violates the separation of class

and individual in OWL DL. Each rank is a class (with members who hold that

rank), but the domain and range information of ship:outranks makes each rank
also a member of the class rank, so they are individuals. In OWL Full, there is

no condition forbidding this usage.

InverseFunctional Datatypes

In Chapter 7, we learned that owl:InverseFunctionalProperty is an important

construct for data federation. Whenever two individuals share a value for an

InverseFunctionalProperty, we can infer that they are the same individual.
Things like social security number, employee number, driver’s license number,

serial number, and so on are commonly used this way. In Chapter 8 we saw that

FOAF uses foaf:mbox this way.
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Unfortunately, OWL DL has a condition that outlaws exactly these uses. It sti-

pulates that an InverseFunctionalProperty must not also be a DatatypeProp-

erty—that is, it cannot refer to a string, date, number, and so on. In other

words, exactly the things that make up social security numbers, e-mail

addresses, and dates of birth are forbidden from InverseFunctionalProperties.

This is a stringent restriction and one that is quite often responsible for placing a

model into OWL Full instead of OWL DL.

OWL LITE

Along with OWL Full and OWL DL, the original OWL specification identified a

subset of OWL DL with the intention that it would be easier to implement

and would accelerate the adoption of OWL. As OWL implementations mature,

the significance of OWL Lite is fading. Many implementations have skipped over

OWL Lite entirely and gone directly into support of OWL Full or OWL DL or,
more commonly, proceeded to supporting a proprietary subset of OWL. The

simplifications in OWL Lite include the following.

Limited Cardinality Restrictions: Cardinality restrictions are limited in

OWL Lite to the integers 0 and 1, but, as we have seen in Chapter 10, car-
dinality restrictions to 0 or 1 have natural and common interpretations.

Most cardinality restrictions in real models use 0 or 1 anyway.

No oneOf constructs: OWL Lite does not include owl:oneOf constructs. This
is in line with a simplified model of cardinality.

No hasValue restrictions: OWL Lite does not include any of the owl:hasValue

restrictions.

OTHER SUBSETS OF OWL

OWL Full, OWL DL, and OWL Lite are the only sublanguages defined in the OWL

specification, but they’re certainly not the only ones in use. As different compa-

nies implement OWL tools, they can decide which parts of OWL to implement.

Similarly, for different modeling needs, different subsets may prove useful.

We’ve already seen an example in this book—RDFS-Plus is defined earlier as
being useful in modeling and is being implemented in some systems; however,

it is not an “official” OWL language. Many other such OWL fragments have been

designed and explored based on issues such as scalability and efficiency, as well

as on decidability.

There is an important thing to note, however, in the use of these dialects.

If the subsets use the restrictions of OWL DL, then they are in OWL DL (or

OWL Lite if they use its restrictions). On the other hand, if the restrictions of
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DL are not followed, then the models technically are in OWL Full. So an ontol-

ogy defined in RDFS-Plus could be in OWL DL or in OWL Full depending on

the details. If the RDFS-Plus model includes a property that is both an

InverseFunctionalProperty as well as a DatatypeProperty, for example, then

it is technically in OWL Full even though it does not use many of the OWL lan-

guage terms.

In general, users working with some particular subset of OWL are usually

doing so based on using a particular tool, or trying to meet a particular need.
In these cases, it often doesn’t really matter whether the ontology is in OWL

Full, OWL DL, or OWL Lite.

BEYOND OWL 1.0

Web languages, like applications, often go through a versioning process. As new

users come along with new needs, the languages evolve. Eventually, new stan-

dardization efforts can create new versions of the language. OWL is currently

in a relatively early stage of its development, and thus there is an expectation

that it will be extended in the future. To this end, some have taken to referring
to the current OWL specification as OWL 1.0, in anticipation of future releases.

In this chapter, we discuss some of the extensions that Semantic Web develo-

pers are exploring that go beyond OWL 1.0.

Metamodeling

Metamodeling is the name commonly given to the practice of using a model to

describe another model as an instance. One feature of metamodeling is that it
must be possible to assign properties to classes in the model. But as we have

just seen, putting properties on classes typically violates the separation of class

and individual that allows a model to be described in OWL DL.

A number of motivations for metamodeling exist. One such motivation is

that a model often needs to play more than one role in an application: A par-

ticular concept should be viewed as a class in one role but as an instance

in another role. If we are modeling animals, we might say that BaldEagle is

an endangered species, thereby referencing BaldEagle as an individual. In
another application, we could view BaldEagle as a class, whose members

are the particular eagles in the zoo. Similarly, wine connoisseurs speak of indi-

vidual wines in terms of vintage. For them, the vintage is an individual, but for

a wine merchant who is calculating how many bottles he has sold, the bottles

themselves are individual members of the class that are indicated by

the vintage.

We have already seen a number of examples of this kind of metamodeling in

this book. In Chapter 8, we saw how a foaf:Group is an individual that corre-
sponds to a class of all the members of the group. In Chapter 11, we saw
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how the Class-Individual Mirror pattern allowed us to view a line of business

either as an individual or as a class of all the subfunctions that comprise it.

In Chapter 13, we saw how military ranks can be seen as both classes and

individuals.

Another purpose of metamodeling is to imitate capabilities of other model-

ing systems (like object-oriented modeling) in which the value for some prop-

erty can be specified for all members of a class at once. Metamodeling in itself

is not an issue in OWL Full, since there is no restriction against using the same
resource as an individual and as a class. The formal issues really arise only when

trying to achieve the results of metamodeling in OWL DL. Although there is

no formal issue with overloading a single resource to refer to a class and an

individual, currently it is often best to keep these things separate, even in

OWL Full. There really is a difference between a species and the set of animals

of that species; there is a difference between Shakespeare’s family and the set of

people in it. These distinctions could be important to someone who wants

to reuse a model. Keeping them distinct in the first place will often enhance
the model’s utility.

Fortunately, there are a number of possible approaches to doing metamodel-

ing in OWL (either OWL DL or OWL Full). For most situations, we recommend

the Relationship Transfer pattern from Chapter 9 or the Class-Individual Mirror

pattern from Chapter 11.

Recent Description Logic research has determined that in certain cases, the

Class-Individual separation constraint can be relaxed without any danger to

the decidability of the logic. Thus, it is possible to have a new version of OWL
DL in which metamodeling of the sort we have described here can be done as

easily in OWL DL as in OWL Full. Whether or not such a proposal reaches fru-

ition in the OWL standard, we still recommend using one of the patterns in this

book whenever possible instead of resorting to overloading resource usage.

Multipart Properties

In RDFS, we have seen how properties can relate to one another using rdfs:

subPropertyOf. This establishes a hierarchy of properties: Any relations that

hold lower in the hierarchy also hold higher in the hierarchy. There are other

ways in which properties can relate to one another. A common example is

the notion of uncle: A is the uncle of B only if A is the brother of someone

who is the parent of B. This is called a multipart property—that is, the property

uncle is made up of two parts (in order): parent and brother.

When multipart properties are used with other RDFS and OWL constructs,

they provide some powerful modeling facilities. For instance, we can model the
constraint “A child should have the same species as its parent” by stating

that the multipart predicate made up of hasParent followed by hasSpecies

(denoted as :hasParent þ :hasSpecies) is rdfs:subPropertyOf hasSpecies. Let’s

see how this works. Suppose we have the following triples:
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:Elsie :hasParent :Lulu .
:Lulu :hasSpecies :Cow .

Now we can infer

:Elsie :hasParent þ :hasSpecies :Cow .

But since the multipart predicate :hasParent þ :hasSpecies is a rdfs:

subPropertyOf :hasSpecies, we can infer that

:Elsie :hasSpecies :Cow .

One reason that multipart predicates were not included in OWL was that they

were thought to cause undecidability, and thus could only have been available in

OWL Full, not OWL DL. To add these to the language, new vocabulary terms were

needed, and that would have meant that the parallel between OWL Full and OWL

DL would have been changed. Recently, however, it has been shown that under

certain conditions it is possible to represent multipart properties in OWL in such

a way that they do not endanger the decidability of OWL DL.

Qualified Cardinality

Cardinality restrictions in OWL allow us to say how many distinct values a prop-

erty can have for any given subject. Other restrictions tell us about the classes of

which those values can or must be members. But these restrictions work inde-

pendently of one another; we cannot say how many values from a particular class

a particular subject can have. A simple example of qualified cardinality is a model

of a hand: A hand has five fingers, one of which is a thumb.

Qualified cardinalities may seem like a needless modeling detail, and in fact,
a large number of models get by quite fine without them. But models that want

to take advantage of detailed cardinality information often find themselves in

need of such detailed modeling. This happens especially when modeling the

structure of complex objects.

For example, when modeling an automobile, it might be useful to say that a

properly equipped automobile includes five tires, four of which must be regular

road-worthy tires and a fifth that is a designated spare tire which might not

have all the properties of a regular tire. Structural models of this sort often
make extensive use of qualified cardinalities. Qualified cardinalities also will

require syntactic extensions to OWL; in this case, however, they do work within

the decidability constraints of OWL DL and thus they are likely to be added in a

future version of OWL.

Multiple Inverse Functional Properties

Inverse functional properties can be used to determine the identity of indivi-

duals based on the values of the properties that describe them. If two people
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share the same social security number, then we can infer that they are actually

the same person. This kind of unique identifier is indispensable when merging

information from multiple sources.

Unfortunately, anyone who has done a lot of such integration knows that this

kind of merging only scrapes the surface of what needs to be done. Far more

common is the situation in which some combination of properties implies

the identity of two or more individuals. For instance, two people residing at

the same residence with the same first and last names should be considered to
be the same person. Two people born in the same hospital on the same day

and at the same time of day should be considered to be the same person. Exam-

ples of this kind of multiple identifiers are much easier to come by than single

identifiers, as required for an InverseFunctionalProperty.

To further complicate matters, in real information federation situations, it is

often the case that even these combinations of properties cannot guarantee

the identity of the individuals. Two people at the same address with the same

name are very likely to be the same person (but not for certain—a father could
live with his son of the same name). OWL has no facility to deal with uncertainty,

so there is no way to express this sort of information. Extending OWL to deal

with uncertainty is a topic of current research and standardization efforts in the

Semantic Web.

A few proposals have been made for how to deal with multiple inverse func-

tional properties in OWL. However, expressing these bring up syntactic pro-

blems (how to express a relation including an arbitrary number of properties),

as well as logical ones (what are the logical properties of the resulting system?).
One proposal for dealing with these is to extend some or all of OWL by the use

of rules, which have been proposed to be a more natural way of expressing

complex relationships like this.

Rules

While OWL is the most powerful modeling system currently defined for the

Semantic Web, it does have limitations. Some of these are best addressed, for
the purposes of data management, using rules, and thus the development of a

rules language for the Web is currently being explored.

Rule-based systems have a venerable tradition starting in the days of Expert

Systems and are in common use in business logic applications to this day.

A number of useful algorithms for processing data with rules have been known

for many years, and many of them have been made very efficient.

Many of the issues with OWL presented in this chapter can be addressed

with rules. Multipart properties (like the definition of uncle) are easily expressed
in rules. Multiple inverse functional properties can be expressed in rules as

well. There are even a number of approaches to reasoning with uncertainty in

rules. Many of these have considerable research and practical examples behind

them, making uncertainty in rules a relatively well-understood issue.
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Given all these virtues of rules and rule-based systems, why don’t they play a

bigger role in modeling on the Semantic Web than they do? In fact, one could

even ask why there is a need for a modeling language like OWL when there is

a mature, well-understood rules technology that already exists. One could even

ask this question in greater generality. Why aren’t more software systems in

general written in rules?

We cannot treat this issue in full detail in this book, but we can outline the

answer as it relates to OWL and the Semantic Web. One of the lessons learned
from the history of rule-based systems is that software engineering in such sys-

tems is more difficult than it is in modular, procedural languages. Although it is

unclear whether or not this is an essential feature of rule-based systems, it

is undeniable that rule-based programmers have not achieved the levels of pro-

ductivity of their more conventional counterparts. This has particular ramifica-

tions in the Semantic Web. One defense for using OWL Full instead of OWL DL

was that the software engineering discipline makes the notion of decidability

basically irrelevant for model design. In the case of rule-based systems, software
engineering cannot provide this same support. Unconstrained rule-based systems

are just as undecidable as general-purpose languages like FORTRAN and Java.

Is there a way to get the best of both worlds? Could a Web-oriented rules lan-

guage integrate well with OWL? It is clear that for some applications, such as the

NCI Cancer Ontology discussed in Chapter 11, the class-oriented models of

OWL are an excellent fit. For other applications, such as representing business

processes, it may be the case that rule-based reasoning is better. At the time

of this writing, there is a W3C standards group exploring the development of
an interoperable rules language for the Web and trying to clearly define the rela-

tionship between this language and OWL.

SUMMARY

OWL should be considered a living language, growing in the context of the ways

it is being used on the web and in commerce. As shortcomings in the language
are identified, the system grows to accommodate them. Sometimes that growth

takes the form of additional constructs in the language (e.g., multipart proper-

ties), sometimes as connections to other systems (rules), and sometimes prog-

ress in a language comes from specifying limitations to the language (as is the

case for OWL DL and OWL Full). All of these processes are moving in parallel

for the Semantic Web.

Fundamental Concepts

OWL Full—Unrestricted dialect of OWL, with all the constructs used in any

combination.
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OWL DL—Dialect of OWL restricted to ensure decidability; all constructs

allowed but with certain restrictions on their use.

OWL Lite—Subset of OWL DL designed to encourage early adoption. Signifi-

cance wanes as implementations reach OWL DL and OWL Full levels.

Metamodeling—Models that describe models, usually requires that classes be

treated as individuals.

Multipart properties—Daisy-chain composition of properties.

Multiple Inverse Functional Properties—Uniquely identify an individual

based on matching values for several properties.

Qualified Cardinality—Cardinality restriction whereby the class of the value

being counted is specified as well as the number of distinct values.
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CHAPTER

14Conclusions

For those readers who are accustomed to various sorts of knowledge modeling,

the Semantic Web looks familiar. The notions of classes, subclasses, properties,

and instances have been the mainstay of knowledge modeling and object sys-

tems modeling for decades. It is not uncommon to hear a veteran of one of these

technologies look at the Semantic Web and mutter, “Same old, same old,” indi-

cating that there is nothing new going on here and that everything in the

Semantic Web has already been done under some other name elsewhere.

As the old saying goes, “There is nothing new under the sun,” and to the
extent that the saying is correct, so are these folks when they speak of

the Semantic Web. The modeling structures we have examined in this book

do have a strong connection to a heritage of knowledge modeling languages.

But there is something new that has come along since the early days of expert

systems and object-oriented programming; something that has had a far more

revolutionizing effect on culture, business, commerce, education and society

than any expert system designer ever dreamed of. It is something so revolution-

ary that it is often compared in cultural significance to the invention of the
printing press. That something new is the World Wide Web.

The Semantic Web is the application of advanced technologies that have

been used in the context of artificial intelligence, expert systems and business

rules execution in the context of a world-wide web of information. The Seman-

tic Web is not simply an application running on the Web somewhere; it is a part

of the very infrastructure of the Web. It isn’t on the Web; it is the Web.

Why is this important? What is it that is so special about the Web? Why has it

been so successful, more so than just about any computer system that has come
before it?

In the early days of the commercial Web, there was a television ad for a

search engine. In the ad, a woman driving a stylish sports car is pulled over

by traffic policeman for speeding. As he prepares to cite her, she outlines for

him all the statistics about error rates in the various machines used by traffic

policemen for detecting speeding. He is clearly thrown off his game, and unsure

of how to continue to cite her. She adds personal insult by quoting the statistics 307



of prolonged exposure to traffic radar machines on sperm count. The slogan

“Knowledge is Power” scrolls over the screen, along with the name of the

search engine.

What lesson can we learn from ads like this? This kind of advertising made a

break from television advertising that had come before. Knowledge was seen

not as nerdy or academic but useful in everyday life—and even sexy. Or at least

it is if you have the right knowledge at the right time. The web differed from

information systems that preceded it by bringing information from many
sources—indeed, sources from around the world—to one’s fingertips. In com-

parison to Hypercard stacks that had been around for decades, the Web was

an open system. Anyone in the world could contribute, and everyone could

benefit from that contribution. Having all that information available was more

important than how well a small amount of information was organized.

The Semantic Web differs from expert systems in pretty much the same way.

Compared to the knowledge representations systems that were developed in

the context of expert systems, OWL is quite primitive. But this is appropriate
for a web language. The power of the Semantic Web comes from the web

aspect. Even a primitive knowledge modeling language can yield impressive

results when it uses information from sources from around the world. In expert

systems terms, the goals of the Semantic Web are also modest. The idea of an

expert system was that it could behave in a problem-solving setting with a per-

formance that would qualify as expert-level if a human were to accomplish it.

What we learned from the World Wide Web (and the story of the woman beat-

ing the speeding ticket) is that typically people don’t want machines to behave
like experts; they want to have access to information so they can exhibit expert

performance at just the right time. As we saw in the ad, the World Wide Web

was successful early on in making this happen, as long as someone is willing

to read the relevant webpages, digest the information, and sift out what they

need.

The Semantic Web takes this idea one step further. The Web is effective at

bringing any single resource to the attention of a web user, but if the informa-

tion the user needs is not represented in a single place, the job of integration
rests with the user. The Semantic Web doesn’t use expert system technology

to replicate the behavior of an expert; it uses expert system technology to

gather information so an individual can have integrated access to the web of

information.

Being part of the web infrastructure is no simple matter. On the Web, any

reference is a global reference. The issue of managing global names for anything

we want to talk about is a fundamental web issue, not just a Semantic Web issue.

The Semantic Web uses the notion of a URI as the globally resolvable reference to
a resource as a way of taking advantage of the web infrastructure. Most pro-

gramming and modeling languages have a mechanism whereby names can be

organized into spaces (so that you and I can use the same name in different ways

but still keep them straight when our systems have to interface).
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With the World Wide Web, the notion of a name in a namespace must be

global in the entire web. The URI is the web-standard mechanism to do this;

hence, the Semantic Web uses the URI for global namespace identification.

Using this approach allows the Semantic Web to borrow the modularity of the

World Wide Web. Two models that were developed in isolation can be merged

simply by referring to resources in both of them in the same statement. Since

the names are always maintained as global identifiers, there is no ad hoc need

to integrate identifiers each time; the system for global identity is part of the
infrastructure.

An important contributor to the success of the World Wide Web is its open-

ness. Anyone can contribute to the body of information, including people who,

for one reason or another, might publish information that someone else would

consider misleading, objectionable, or just incorrect. At first blush, a chaotic

free-for-all of this sort seems insane. How could it ever be useful? The success

of the Web in general (and information archiving sites like Wikipedia in particu-

lar) has shown that there is sufficient incentive to publish quality data to make
the overall Web a useful and even essential structure.

This openness has serious ramifications in the Semantic Web, which go

beyond considerations that were important for technologies like expert sys-

tems. One of the reasons why the Web was more successful than Hypercard

was because the web infrastructure was resilient to missing or broken links

(the “404 Error”). The Semantic Web must be resilient in a similar way. Thus,

inferencing in the Semantic Web must be done very conservatively, according

to the Open World assumption. At any time, new information could become
available that could undermine conclusions that have already been made, and

our inference policy must be robust in such situations.

In the World Wide Web, the openness of the system presents a potential

problem. How does the heroine of the search engine commercial know that

the information she has found about radar-based speed detection devices is

correct? She might have learned it from a trusted source (say, a government

study on these devices), or she might have cross-referenced the information

with other sources until she had enough corroborating evidence to be certain.
Or perhaps she doesn’t really care if it is correct but only that she can convince

the traffic cop that it is. Trust of information on the web is done with a healthy

dose of skepticism but in the same way as trust in other media like newspapers,

books, and magazine articles.

In the case of the Semantic Web, trust issues are more subtle. Information

from the Semantic Web is an amalgam of information from multiple sources.

How do we judge our trust in such a result even if we know about all the

sources? To some extent, the same principles apply. We can trust entities that
we know or have experience with, and we can trust entities that have gone

through some process of authorization and authentication. When we combine

information, we must also understand the impact that each information

source has on the outcome and what risk we are taking if we cannot trust that
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source. These important issues for understanding the reliability of the Semantic

Web are still a subject of research.

In this book, we examined the modeling aspects of the Semantic Web: How

do you represent information in such a way that it is responsive to a web envi-

ronment? The basic principles underlying the Semantic Web—the AAA slogan,

the Nonunique Naming assumption, and the Open World assumption—are

constraints placed on a representation system if it wants to function as the foun-

dation of a World Wide Web of information. These constraints have led to the
main design decisions for the Semantic Web languages of RDF, RDFS, and OWL.

There is more to a web than just the information and how it is modeled. At

some point, this information must be stored in a computer, accessed by end

users, and transmitted across an information network. Furthermore, no triple

store, and no inference engine, will ever be able to scale to the size of the World

Wide Semantic Web. This is clearly impossible, since the Web itself grows con-

tinually. In the light of this observation, how can the World Wide Semantic Web

ever come to pass?
The applications we discussed in this book demonstrate how a modest

amount of information, represented flexibly so that it can be merged in novel

ways, provides a new dynamic for information distribution and sharing. SKOS

allows thesaurus managers around the globe to share, connect, and compare

terminology. FEARMO allows government agencies to operate autonomously

while conforming to a central standard for enterprise architecture. The NCI

ontology coordinates efforts of independent life sciences researchers around

the globe.
How is it possible to get the benefit of a global network of data if no machine

is powerful enough to store, inference over, and query the whole network? As

we have seen, it isn’t necessary that a Semantic Web application be able to

access and merge every page on the Web at once. The Semantic Web is useful

as long as an application can access and merge any webpage. Since we can’t

hold all the Semantic Web pages in one store at once, we have to proceed with

the understanding that there could always be more information that we don’t

have access to at any one point. This is why the Open World assumption is cen-
tral to the infrastructure of the Semantic Web.

This book is about modeling in the context of the Semantic Web. What role

does a model play in the big vision? The World Wide Web that we see every day

is made up primarily of documents, which are read and digested by people

browsing the Web. But behind many of these webpages, there are databases

that contain far more information than is actually displayed on a page. To make

all this information available as a global, integrated whole, we need a way to

specify how information in one place relates to information somewhere else.
Models on the Semantic Web play the role of the intermediaries that describe

the relationships among information from various sources.

Look at the cover of this book. An engineering handbook for aquifers pro-

vides information about conduits, ducts, and channels sufficient to inform an
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engineer about the pieces of a dynamic fluid system that can control a series of

waterways like these. The handbook won’t give final designs, but it will provide

insight about how the pieces can be fit together to accomplish certain engineer-

ing goals. A creative engineer can use this information to construct a dynamic

flow system for his own needs.

So is the case with this book. The standard languages of RDF, RDFS, and OWL

provide the framework for the pieces an engineer can use to build a model with

dynamic behavior. Particular constructs like subClassOf and subPropertyOf pro-
vide mechanisms for specifying how information flows through the model.

More advanced constructions like owl:Restriction provide ways to specify

complex relations between other parts of the model. The examples from the

“in the wild” chapters show how these pieces have been assembled by working

ontologists into complex dynamic models that achieve particular goals. This is

the craft of modeling in the Semantic Web: combining the building blocks in

useful ways to create a dynamic system through which the data of the Semantic

Web can flow.
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APPENDIX

Frequently Asked
Questions

Throughout this book, we have presented examples of modeling patterns,

issues, and challenge problems to describe various modeling tasks. In the course

of the text, the issues are organized in pedagogical order, starting with the sim-
plest RDFS constructs and moving up to more advanced OWL constructs. Now

that you have finished the book, you are familiar with all of these constructs.

This appendix references all the modeling examples through the kinds of

modeling questions they answer. It is organized (as much as you can call it

“organization”) in the form of a FAQ—a list of questions, with pointers for

where to find the answers.

FAQ Challenge Discussion

How can I represent tabular data in RDF?

Construct: rdf:type
1, p. 46

19, p. 148

p. 32

p. 45

How do I represent IF/THEN logic in RDFS or OWL?

Construct: rdfs:subClassOf
2, p. 108 p. 80

p. 94

How do I combine two properties into one more general

property?

Construct: rdfs:subPropertyOf

3, p. 109 p. 95

p. 248

How can I say that two properties are used exactly the same

way?

Construct: rdfs:subPropertyOf,
owl:equivalentClass

4, p. 109 p. 142

How do I merge individuals from multiple data sources into

a single class?

Construct: rdfs:subClassOf

5, p. 110 p. 102

How can I use another property instead of rdfs:label
to indicate the display name of a class or individual?

Construct: rdfs:subPropertyOf

6, p. 111 p. 102

p. 108

How can I filter information based on a value for one or more

properties?

Construct: owl:hasValue

7, p. 112 p. 196
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How can I filter information based on how it is used?

Construct: rdfs:domain, rdfs:range,
owl:someValuesFrom, owl:allValuesFrom

8, p. 114

9, p. 115

p. 98

p. 108

p. 179

p. 196

How can I merge information from two sources that are

organized differently?

Construct: rdfs:subPropertyOf,
owl:inverseOf

10, p. 125

11, p. 128

12, p. 129

13, p. 131

p. 102

p. 124

How do I resolve differences in opinion about how

properties should be used?

14, p. 132

15, p. 133

p. 121

How do I compute ancestors or descendants?

Construct: rdfs:subPropertyOf,
owl:TransitiveProperty

16, p. 135

How can I manage process diagrams in OWL?

Construct: rdfs:subPropertyOf,
owl:TransitiveProperty

16, p. 135

17, p. 136

18, p. 138

p. 121

How do I merge information from multiple sources?

Construct: owl:FunctionalProperty,
owl:InverseFunctionalProperty, owl:sameAs

19, p. 148

20, p. 152

21, p. 154

p. 146

How do we model prerequisites?

Construct: owl:allValuesFrom
22, p. 191 p. 179

p. 231

How do I do classic knowledge representation in OWL?

Construct: owl:allValuesFrom,
rdfs:subClassOf

23, p. 197 p. 196

How can I import a single database table as multiple

classes?

Construct: owl:hasValue

24, p. 199 p. 196

How do I organize information in a taxonomic hierarchy?

Construct: rdfs:subClassOf
2, p. 108 p. 80

p. 94

How do I approximate set union/intersection with

subclasses?

Construct: rdfs:subClassOf

5, p. 110 p. 102

How do I approximate property union/intersection with

subproperties?

Construct: rdfs:subPropertyOf

p. 102

How do I approximate set intersection with domains and

ranges?

Construct: rdfs:domain, rdfs:range

p. 116

When are two things “the same” in OWL?

Construct: owl:sameAs, owl:equivalentClass,
owl:equivalentProperty

24, p. 199

4, p. 109

p. 139

How do I filter out items for which certain data are missing?

Construct: rdfs:domain, rdfs:range
9, p. 115 p. 108
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How do I determine when two things are the same?

Construct: owl:FunctionalProperty,
owl:InverseFunctionalProperty

20, p. 152 p. 149

How do I select individuals based on their relationship to

a particular individual—for example, “the HIGH-priority

questions”?

Construct: owl:hasValue

p. 179

p. 248

How do I express statements like “The players on a team” or

“The planets around the sun” in OWL?

Construct: owl:unionOf, owl:intersectionOf

p. 214

How do I transfer information represented by one property

to another—for example, “The children of Shakespeare

are members of his family”?

Construct: owl:hasValue,
owl:equivalentClass, rdfs:subClassOf

25, p. 203

26, p. 205

p. 204

How can I assert that I know all the planets? Or all the

movies with James Dean? How do I suspend the Open

World assumption for a certain class?

Construct: owl:oneOf

p. 216

How can OWL come to conclusions by process of

elimination?

Construct: owl:oneOf, owl:differentFrom,
owl:cardinality

27, p. 217 p. 222

Can an OWL reasoner count?

Construct: owl:cardinality, owl:disjointWith
29, p.223

30, p. 224

31, p. 227

32, p. 229

33, p. 235

p. 228

How do I find problems in my model? 33, p. 235 pp. 235, 237
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Further Reading

In this book we focused on modeling in the Semantic Web: how to use the stan-

dards and technology to build models that will assist in the interoperation of

information in a web setting. In this reading list, we include pointers to other

treatments of issues relating to the Semantic Web, including history, methodo-

logy, mathematical theory, business applications, and criticisms of the entire

approach. This list is intended to be a starting point for the interested reader
and does not claim to be comprehensive.

In addition to the references provided here, a number of tutorials on RDF,

RDFS, OWL, and related Semantic Web technologies can be found at http://

www.w3.org/2001/sw/BestPractices/Tutorials.
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Annotations

benefits, 274

OWL, 257

RDF application, 73

Answers. See Questionnaires example

Anyone can say Anything about Any topic.

See AAA slogan

Application architecture, 59–60

code, 73–75

data federation, 75–76

RDF parser/serializer, 60–64

RDF stores, 64–73

Asserted triples, 85–87

Astronomy example, 2–3

differentiation, 220

disagreements, 10–11

models, 16–17, 21–26

new information, 11–12

semantic data for, 5–7

set enumeration, 216–217

set intersection, 214

Attribute tags, in HTML, 64

B
Baby identification example, 152

Baseball example

class relationship inferences, 241–243

restrictions, 179–180

set complement, 226–227

set intersection, 214

set union, 105

type propagation, 94–95

Berners-Lee, Tim, 52

Blank nodes, 55

Bnodes, 55

Book borrowing records example

integrating, 125–127

merging, 106

Braces ({ and }), in SPARQL, 68

BRM2PRM model, 257

Broader term

in SKOS, 163–166

in thesauri, 81, 83

Business Reference Model, 251

C
Calendar integration, 73

CamelCase naming

for names, 275

for URIs, 40

Capital letters

for names, 275

for URIs, 40

Cardinalities, 213, 222–225

in OWL Lite, 299

qualified, 302

relative, 239

small limits, 225–226

Categorization, 284

Cells, in tabular data, 32–36

Challenge problems, 45, 108, 196

list of, 313–315

Class Exclusivity fallacy, 285

Class-Individual Mirror pattern, 253–254, 301

Classes

equivalent, 141–142

extensions, 81

identifiers, 288–289

inferences for, 238–243
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Classes (Continued)

vs. instances, 275–276

membership, 94

names, 275

in NCI ontology, 261–267

objectification, 285–288

in OOP, 22–23

reasoning with, 243–244

separation from individuals, 298

tracking, 275–277

unions and intersections, 214–219

unsatisfiable, 237–238

variation in, 22–23

Classism, 277–282

Closed worlds, 216

Colons (:), in URIs, 40–41

Columns, in tabular data, 32–36

Combining functional properties, 154–155

Commas (,), in N3 notation, 53

Comments, for models, 121

Commonality, OOP for, 22

Communication

human, 16

models for, 17–19

Community tagging, 18

Competency questions, 272, 279

Complements

set, 226–229

subclasses, 239

Composability, in FEA-RM, 249–250

Composition, in OWL, 255–257

Conceptualization, creeping, 289–290

Conclusions, 307–311

Connections, for smart applications, 4–5

Constraints between FEA-RM models, 253–255

Content-management applications, 74

Content providers, 8

Context, in models, 17

Contradictions

in information, 3

in opinions, 9

in OWL, 235–236

Converters, 61–64

Core, SKOS, 160

core:broader property, 164

core:narrower property, 164

core:note property, 163

core:related property, 165

core:symbol property, 163

Counting prerequisites, 233–234

Creeping conceptualization, 289–290

Cross-referencing files, 120–121

D
Data distribution, 32–36

Data federation, 75–76

Data integration. See also Merging data

instance-level, 110

preventing, 125–127

Data standards, in RDF stores, 66

Data typing based on use, 111–114

Database-backed web portal, 75

Databases, 5–6

merging data from, 146–149

reification in, 50

dc:creator property, 107

Dean, James, movie example

cardinality, 223–226

contradictions, 235–236

differentiating, 218–222

disjoint sets, 229–231

set complement, 227–228

set enumeration, 216–218

Deception, 9

Decidability, 295–296

Default namespaces, 41

Dependencies

networks of, 134–139

restrictions, 186–190

Description Logic, 294–295

Design patterns, in NCI ontology, 262

Differentiating

individuals, 218–222

viewpoints, 21–26

Differing opinions, 9–10

Directed graphs, 35–36

Disagreements, 9–11

Disconnected information, 3

Disjoints, with unsatisfiable classes, 237

Distributed Web data, 6–7

Documentation, model, 121

Documents

FOAF for, 169

modeling systems, 91

Domains, 98–99

multiple, 116–120

rdfs:subClassOf for, 99–102

with unsatisfiable classes, 237

Dublin Core, 107

Dwarf planets example. See Astronomy example

E
E-mail, for FOAF, 175–176

Economic policy example, 160–165
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Elizabethan literature example. See

Shakespeare example

Embedded spaces, in URIs, 40–41

Employment example, 96–98

Endangered species example, 275

Endpoints, in SPARQL, 77

Enumerating sets, 216–218

Equivalence

classes, 141–142

individuals, 143–146

merging data, 146–149

properties, 142–143

RDFS-Plus, 139–140

Errors, in modeling, 277

creeping conceptualization, 289–290

exclusivity, 282–285

identifiers, 288–289

objectification, 285–288

rampant classism, 277–282

Examinations example. See Questionnaires

example

Exclusivity errors, 282–285

Executable models, 296

Existence, guarantees of, 234–235

Explanation, models for, 16, 19–21

Explicit reification, 50

Explicit representation of relationships, 80

Explicit type, filtering data based on, 198–202

Expressivity, in modeling, 26–28

Extending modeling languages, 127–131

F
Federal Enterprise Architecture, 248–249

Federal Enterprise Architecture Reference

Model (FEA-RM) and FEARMO

project, 248–249

ambiguity in, 251–253

constraints between models, 253–255

import structure, 256–257

reference models and composability,

249–250

Federated graphs, 75–76

Filtering data

based on explicit type, 198–202

undefined data, 115

First principles, 20

FOAF (Friend of a Friend) format, 169–170

groups of people, 173–174

identity, 175–176

linking, 176–177

names, 171

nicknames and online names, 171–172

online persona, 172–173

people and agents, 170–171

relationship transfers, 204–209

things people make and do, 174–175

foaf:Agent class, 170–171

foaf:aimChatID property, 171

foaf:Document class, 170

foaf:family_name property, 171

foaf:firstname property, 171

foaf:givenname property, 171

foaf:Group class, 173–174, 204, 208

foaf:homepage property, 172

foaf:icqChatID property, 171

foaf:jabberID property, 172

foaf:knows property, 176–177

foaf:made property, 174

foaf:maker property, 174

foaf:mbox property, 172, 175–176

foaf:member property, 173, 204–205, 208

foaf:membershipClass property,

173–174, 204, 208

foaf:msnChatID property, 171

foaf:name property, 171

foaf:nick property, 172

foaf:Person class, 170–171

foaf:publications property, 174–175

foaf:schoolHomepage property, 173

foaf:surname property, 171

foaf:weblog property, 173

foaf:workInfoHomepage property, 173

foaf:workplaceHomepage property, 172

foaf:yahooChatID property, 171–172

Formal models, 20, 294–295

Formalism, 20

Formality, of models, 17–19

Frequently Asked Questions (FAQs), 16,

313–315

Friend of a Friend format. See FOAF format

Functional properties, 149–150

combining, 154–155

inverse, 151–154, 302–303

G
Genealogy example, 132–133

General-purpose languages, 6

Glue, inferencing as, 88–89

Graphs

federated, 75–76

in SPARQL, 68–69

for tabular data, 45–49

for triples, 35–36
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GRDDL (Gleaning Resource Descriptions from

Dialects of Languages) specification, 63–64

Groups, in FOAF, 173–174

Guarantees of existence, 234–235

H
Halting Problem, 296

Hierarchy, of classes and subclasses, 22–23

Higher-order relationships, in RDF, 49–51

Hospital rooms example, 104

Hospital skills example, 103–104

Hotel example, 2, 5–7

HTML pages, 61–62

Human communication

features, 16

models for, 17–19

I
Ice cream recipe example,

135–139

Identifiers

for classes, 288–289

in RDF, 44–45

in URIs, 40–41

Identity, in FOAF, 175–176

Inconsistent information, 3

Individuals

differentiating, 218–222

equivalent, 143–146

in FEA-RM, 251–253

reasoning with, 243–244

separation from classes, 298

tracking, 275–277

Inference engines, 85–86

Inferencing, 79–80

approaches to, 87–88

class relationships, 238–243

as glue, 88–89

instance-level, 267–269

in modeling, 273–274

in RDF schema, 92–95

in semantic web, 80–83

in SKOS, 166–167

for useful data, 83–84

virtues of, 82–83

Inferred triples, 85–87

Informal models, 17–19

Infrastructure, for smart applications, 3–4

Inheritance, in OOP, 83, 101

Insightful names, 274–275

Instance-level data integration, 110

Instance-level inferencing, 267–269

Instances vs. classes, 275–276

Integrating data

instance-level, 110

preventing, 125–127

InterCap convention

for names, 275

for URIs, 40

Interoperability, of RDF stores, 66

Interpretation, in models, 17, 20

Intersections

in OWL, 214–219

properties, 104

sets, 102–104

subclasses, 239

Inverse properties, 124–129, 151–154,

302–303

InverseFunctional datatypes,

298–299

isComprisedOf, 250–252

K
Kinds of classes, in NCI ontology, 261

Knowledge discovery, 115–116

L
Labels

readable, 110–111

SKOS, 162–163

Languages

extending, 127–131

natural, 16, 31, 276

programming, 73

query, 66–72

Laws, 17, 19

Layers

to describe consistency, 80

relationship, 133–134

SKOS, 160

for variation, 23–26

Legacy data, 61

Legislation, 17

Levels

expressivity, 26–28

restrictions, 194–196

Library records example

integrating, 125–127

merging, 106

LineOfBusinessMeasurementCategory

class, 253–255

Lines of Business components, 250

Linking, in FOAF, 176–177

List format, in RDF, 56

324 Index



LOB_ManagementOfGovernment

Resources class, 253–254

Local restriction of ranges, 196–198

Logical definition, of OWL, 294–295

Logical operations. See Intersections; Unions

Lowercase letters, for names, 275

M
MA_MissionAndBusinessResults class, 257

Management of Government Resources

area, 249–250, 253–254, 257

Manchester syntax, 189

Map integration, 73

Mapping

microformats to RDF, 63

SKOS, 160

Mathematical modeling, 20

Meaning, RDF schema for, 92–94

Mediating

variability, 21–26

viewpoints, 16

Membership, in classes, 94

Merging data

database, 146–149

expectations for, 272

library records, 106

multiple sources, 36–37

RDF stores for, 65

for variability, 24–25

Metadata about statements, 50

Metamodeling

in FOAF, 174

in OWL, 300–301

Microformats, 63

Milk products example, 166–167

Mission and Business Results Measurement

Area, 253

Models and modeling, 271

accuracy limitations, 236

advantages of, 257–258

benefits, 15–16

constraints between, 253–255

documentation, 121

errors. See Errors, in modeling

executable, 296

for explanation and prediction, 19–21

expressivity in, 26–28

for human communication, 17–19

inference in, 88, 273–274

as intellectual pursuit, 208

language extensions for, 127–131

for mediating variability, 21–26

provable, 294–295

purpose, 272–273

for reuse, 274–277

semantic, 15–17

starting, 271–274

testing, 277

tracking classes and individuals, 275–277

Movies example

cardinality, 223–226

contradictions, 235–236

differentiating, 218–222

disjoint sets, 229–231

set complement, 227–228

set enumeration, 216–218

Multipart properties, 301–302

Multiple domains/ranges, modeling

with, 116–120

Multiple inheritance, 83

Multiple inverse functional properties, 302–303

Multiple sources, merging data from, 36–37

N
N-Triples, 51–52

Names and namespaces

in FOAF, 171–172

identifiers in, 44–45

insightful, 274–275

in RDF, 40–41, 43–45

standard, 43–44

in URIs, 40

wishful, 273–275

Narrower terms

in SKOS, 163–166

in thesauri, 81

National Agriculture Library (NAL), 169

National Cancer Institute. See NCI ontology

National Parks example, 2, 5–7

Natural languages

for models, 16

relationships in, 276

semantics of, 31

NCI ontology, 258–261

class descriptions, 266–267

instance-level inferencing, 267–269

upper-level classes, 261–266

Network effect, 8–9

Networks of dependencies, 134–139

Nicknames, in FOAF, 171–172

Nodes

blank, 54–56

in merging data, 37

Nonmodeling properties, 120–121
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Nonunique Naming assumption, 11, 213

with cardinality, 222

with classes, 285–288

with differentiation, 218

Notation 3 RDF (N3), 52–53

O
Object-Oriented Programming (OOP),

81–82

class diagrams, 92

classes in, 22–23

inheritance in, 83, 101

Objectification errors, 285–288

Objects, in triples, 35, 68

One-to-one properties, 154

Online names and persona, in FOAF,

171–173

Ontologies, 1

Open systems, 9

Open World Assumption, 11, 213

with classes, 285–288

counting in, 216

prerequisites for, 233

Openness, 309

Opinions, 9–10

Ordered RDF information, 56

Organizations, FOAF for, 169

Out of date information, 9–10

Out of synch information, 3

OWL (Web Ontology Language), 28, 43, 123

applications, 247–248

composition in, 255–257

contradictions, 235–236

dialects, 294

executable models, 296

FEA-RM, 248–258

FOAF relationship transfers, 204–209

inferences, 238–243

metamodeling, 300–301

modeling approach advantages, 257–258

multipart properties, 301–302

multiple inverse functional

properties, 302–303

National Cancer Institute. See NCI ontology

OWL DL and OWL Full, 293–294,

297–299

OWL Lite, 293, 299

prerequisites, 231–235

provable models, 294–295

qualified cardinalities, 302

RDFS-Plus. See RDFS-Plus

reasoning in, 243–244

restrictions. See Restrictions

rule-based systems, 303–304

sets. See Sets

SKOS relationship transfers, 202–204

subsets, 299–300

unsatisfiable classes, 237–238

variants, 293

owl:AllDifferent class, 220–221

owl:allValuesFrom property, 185–186, 189,

198, 234–236

owl:AnnotationProperty class, 266, 289

owl:backwardCompatibleWith property,

257

owl:cardinality property, 222–224

owl:Class class, 156

owl:complementOf property, 226–228

owl:DataTypeProperty class, 155

owl:DeprecatedClass class, 257

owl:DeprecatedProperty class, 257

owl:differentFrom property, 218–222

owl:disjointWith property, 228–231

owl:distinctMembers property, 220–221

owl:equivalentClass property, 141–142,

195–196, 209–210

owl:equivalentProperty property, 142–143

owl:FunctionalProperty class, 149–150

owl:hasValue property, 189, 194, 206, 239

owl:imports property, 256–257

owl:incompatibleWith property, 257

owl:intersectionOf property, 214–216

owl:InverseFunctionalProperty class,

149–154

owl:inverseOf property, 124–129

owl:maxCardinality property, 222–224, 226

owl:minCardinality property, 222–223,

225–226, 239

owl:namespace property, 43

owl:ObjectProperty class, 155

owl:oneOf property, 216–217

owl:onProperty property, 184

owl:Ontology class, 255–256

owl:priorInfo property, 257

owl:Restriction property. See Restrictions

owl:sameAs property, 144–145

owl:someValuesFrom property, 184–186

with class relationships, 239–240

for dependencies, 189

for existence, 234–236

with unsatisfiable classes, 237

owl:SymmetricProperty class, 129–131

owl:TransitiveProperty class, 131–139
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owl:unionOf property, 214

owl:versionInfo property, 257

P
Parser/serializer, 59–64

Patients example, 104

People, in FOAF

and agents, 170–171

groups, 173–174

Performance Reference Model, 251, 253

Periods (.)

for n-triples, 51

in N3 notation, 52

in triple patterns, 68

Planets. See Astronomy example

Player example. See Baseball example

Pluto. See Astronomy example

Precision, in modeling, 273

Predicates, in triples, 35, 68

Prediction, models for, 16, 19–21

Prerequisites

counting, 233–234

OWL, 231–235

restrictions, 190–194

Priority questionnaire questions, 194–196,

215–216

Problems, challenge, 313–315

Program code, for Web applications, 6

Programming languages, 73

Projects

FEA-RM. See Federal Enterprise

Architecture Reference Model and

FEARMO project

FOAF for, 169

Propagation

relationship, 96–98

type, 82, 94–95

unsatisfiable classes, 237–238

Properties

equivalent, 142–143

functional, 149–155

guidelines, 276–277

intersection, 104

inverse, 124–129

multipart, 301–302

names, 275

nonmodeling, 120–121

symmetric, 129–131

transfer, 106–107

union, 106

PROPERTY form, in SPARQL, 71

Provable models, 294–295

Provenance, 50

Published Subject Indicators (PSIs), 168

Q
Qnames, 40–43, 52

Qualified cardinalities, 302

Query languages, 66–72

Question marks (?)

for blank nodes, 55

in SPARQL, 68

Questionnaires example

answered questions, 184–185

dependencies, 186–190

format of, 180–183

prerequisites, 190–194

priority questions, 194–196, 215–216

R
Rampant classism, 277–282

Ranges, 98–99

multiple, 116–120

rdfs:subClassOf for, 99–102

restrictions of, 196–198

with unsatisfiable classes, 237

Ranks as classes, 298

RDF (Resource Description Framework), 7–8,

28, 31–32

blank nodes, 54–56

data distribution in, 32–36

higher-order relationships, 49–51

identifiers, 44–45

and inferencing. See Inferencing

merging data from multiple sources, 36–37

namespaces, 40–41, 43–45

ordered information, 56

parser/serializer, 59–64

RDF/XML, 53–54

serialization alternatives, 51–54

tabular data, 45–49

URIs, 37–43

RDFa format, 64

RDF-backed web portals, 75

rdf:object property, 50

rdf:predicate property, 50

rdf:Property class, 45

RDF Query engines, 60

RDF Schema (RDFS) language, 28, 91

data typing based on use, 111–114

domain and range combinations, 99–102

filtering undefined data, 115

functions, 91–93
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RDF Schema (RDFS) language (Continued)

inference in, 84, 92–95

instance-level data integration, 110

knowledge discovery, 115–116

multiple domains/ranges, 116–120

nonmodeling properties, 120–121

property intersection, 104

property transfer, 106–107

property union, 106

readable labels, 110–111

relationship propagation, 95–98

set intersection, 102–104

set unions, 105

term reconciliation, 108–110

typing data by usage, 98–99

RDF stores, 59, 64–66

accessing, 66–72

interoperability of, 66

rdf:subject property, 50–51

rdf:type property, 44–45

rdfs:Class class, 93, 156

rdfs:comment property, 121

rdfs:domain property, 98–102, 115–116

rdfs:isDefinedBy property, 121

rdfs:label property, 110–111, 120, 162–163

RDFS-Plus, 28, 123–124

equivalence. See Equivalence

FOAF. See FOAF (Friend of a Friend) format

functional properties, 149–155

inverse properties, 124–129

miscellaneous properties, 155–156

SKOS. See SKOS

symmetric properties, 129–131

transitivity, 131–139

rdfs:range property, 98–102, 115–116

rdfs:seeAlso property, 120–121

rdfs:subClassOf property, 99–102

class equivalence, 142

class relationships, 239

restrictions, 209

set unions, 105

type propagation through, 94–95

rdfs:subPropertyOf property

class equivalence, 142

nonintegrated data, 126–127

property equivalence, 142–143

property intersection, 104

property union, 106

relationship propagation through, 95–98

transitivity, 132–133

rdfs:superClassOf property, 128–129

Readable labels, 110–111

Reasoning, with individuals and classes, 243–244

Redundancy, in models, 265

Reference models, 249–251

Referential semantics, 31

Regional laws, 19

Reification, 49–51

Related term, in SKOS, 163–165

Relational databases, 5–6, 50

Relational queries, 72

Relationships

class, 241–243

FOAF transfers, 204–209

layers of, 133–134

in natural languages, 276

propagation, 95–98

RDF, 49–51

SKOS transfers, 202–204

Relative cardinalities, 239

Resource Description Framework. See RDF

Resources, in RDF, 31

Restrictions, 179–180

alternative descriptions, 209–210

cardinality, 222–226

dependencies, 186–190

filtering data based on explicit type,

198–202

kinds, 184–186

prerequisites, 190–194

priority levels, 194–196

questionnaire example, 180–183

ranges, 196–198

RETE algorithm, 297

Reuse, modeling for, 274–277

Rows, in tabular data, 32–36, 47

Rule-based systems, 303–304

S
Sameness, 149–155

Schema languages

functions, 91–93

RDF. See RDF Schema (RDFS) language

Scope, of applicability, 281

Scrapers, 61–64

SELECT form, in SPARQL, 71

Semantic data, 5–6

distributed Web data, 6–7

features, 7–9

new information, 11–12

variance in information, 9–11

Semantics, 1

modeling, 15–17

in SKOS, 163–166
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Semicolons (;), in N3 notation, 52

Semiotics, 31

Serialization alternatives, 51–54

Service Component Reference Model, 251

Sets

closed worlds, 216

complement, 226–229

differentiating individuals, 218–222

disjoint, 228–231

enumerating, 216–218

in FEA-RM, 251–253

intersection, 102–104, 214–219

union, 105, 214–219

Shakespeare example

blank nodes, 54–56

higher-order relationships, 49–51

individual equivalence, 143–146

inverse properties, 129

merging data, 36–37

relationship transfers, 204–209

SPARQL for, 67–71

URIs for, 37–43

Shipping example

data typing based on use, 111–114

filtering undefined data, 115

knowledge discovery, 115–116

multiple domains/ranges, 116–120

Simile project, 62

Singular nouns, for class names, 275

SKOS (Simple Knowledge Organization

System), 159–163

applications, 168–169

Published Subject Indicators, 168

relationship transfers, 202–204

semantic relations, 163–166

special purpose inference, 166–167

skos:altLabel property, 163

skos:broader property, 164–166, 203, 207

skos:CollectableProperty class, 207

skos:Collection class, 166, 203, 207–208

skos:Concept class, 168, 207

skos:hiddenLabel property, 163

skos:member property, 166

skos:narrower property, 164–165, 167,

203, 207

skos:related property, 164, 207

skos:subjectIndicator property, 168

Small cardinality limits, 225–226

Smart Web applications, 2–5

Social networking in FOAF. See FOAF (Friend of

a Friend) format

Solar system example. See Astronomy example

Solvent scraper system, 62–64

Spaces, in URIs, 40–41

SPARQL query language, 66–72

Special purpose inference, in SKOS, 166–167

Square brackets ([ and ]), for blank nodes,

55

Standard namespaces, 43–44

Stored procedures, 6

Stores, RDF, 59, 64–66

accessing, 66–72

interoperability, 66

Student identification numbers example, 154

Subclasses, 81

class relationship inferences, 239

OOP, 22–23

propagation through restrictions, 239

unsatisfiable classes, 237

subClassOf pattern, 81–83

Subfunctions, 250

Subjects, in triples, 35, 68

Superclasses from unions, 239

Symbols

models from, 31

in SKOS, 163

Symmetric properties, 129–131

T
T-box reasoning, 243

Tableau Algorithm, 296

Tabular data, 32–36, 45–49

Tagging applications, 73

Tagging infrastructure, 18

Talmudic scholarship, 19

Taxonomies, 81

Teams example. See Baseball example

Technology Reference Model, 251

Terminology reconciliation

example, 107–108

RDF Schema language, 108–110

Testing models, 277

Thesauri, 81, 83

AGROVOC, 169

SKOS. See SKOS

UKAT. See UK Archival Thesaurus

Tracking classes and individuals, 275–277

Transfer

properties, 106–107

relationships, 202–209

Transitivity

networks of dependencies, 134–139

RDFS-Plus, 131–139
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Transitivity (Continued)

relating parents to ancestors, 132–133

relationship layers, 133–134

Triple stores, 59, 64–66

accessing, 66–72

interoperability of, 66

Triples

asserted vs. inferred, 85–87

in merging data, 36–37

n-triples, 51–52

N3 notation, 52

namespaces for, 41–42

parser/serializer for, 60–61

RDF, 35–36

SPARQL, 68–70

tabular data for, 46–49

Trust issues, 309

Type

filtering data based on, 198–202

propagation, 82, 94–95

Typing data by usage, 98–99

U
UK Archival Thesaurus (UKAT) example,

160–165

Undecidability, 295–296

Undefined data, filtering, 115

Unification variables, 72

Uniform Resource Identifiers (URIs), 7

expressing, 40–43

in RDF, 37–43

vs. URLs, 39–40

Uniform Resource Locators (URLs), 6–7,

39–40

Unions, 214–219

properties, 106

sets, 105

SPARQL, 70

for superclasses, 239

Unsatisfiable classes, 237–238

V
Variability models, 21–26, 273

Variables

SPARQL, 68

unification, 72

Variation

in classes, 22–23

in information, 9–11

and layers, 23–26
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