Comparison of Service Discovery Protocols

Key Words: Service discovery protocols; SOA; UPnP: Jini: SLP.

Abstract. The advent of wireless, mobile and ubiquitous computing
has made it necessary to develop a highly-dynamic infrastructure that
enables devices to advertise their services and clients to easily locate
and utilize a particular service out of hundreds of accessible services.
There must be no need for complex configuration, administration or
device driver installation. Service discovery is an important element in
these intelligent computer networks and contributes for automated
discovery, seamless information exchange and remote control be-
tween devices. This paper is represents a survey of several prominent
service discovery technologies, compares their major features and
outlines the challenges and trends in development of service discovery
protocols during next years.

1. Introduction

During the last years a large part of science research
interests and efforts have been directed toward the invention of
technologies that will enable construction of new-generation,
intelligent, self-configuring computer networks. The goal is to
build zero-configuration network architectures with automatic dis-
covery of services, where a device can dy-
namically join the network, use available
services, negotiate required parameters and,
in the end, smoothly leave the network. Tra-
ditional software communication platforms
(RPC, Java RMI, DCOM, CORBA, and MOM)
are considered unsuitable for the above
scenario because they are designed and

discovery

M. Bratoev, B. Bontchev

* Access to service functionality is possible only through
its API.

» Each service has an address. The concrete format of
this address is dependent on particular communication protocol
being used

* The service accepts messages, performs relevant ac-
tions and returns a result to the client.

» The service itself is responsible to establish and en-
force its security policy and should itself perform client authen-
tication and authorization by itself.

SOA defines a set of rules, mechanisms and protocols to
describe, advertise and discover services as well as to commu-
nicate between services and their clients (figure 1). A Service
Discovery Protocol (SDP) is a specification of procedural inter-
actions between a device and other devices in the network and
defines the syntax and semantics of messages exchanged in
order to advertise and discover services [1,2]. In addition, SDP
prescribes expected behavior of communicating entities as a
result of arrival of specific message, i.e. it defines the state
chart diagram for each entity involved in the service discovery

process.
Service Directory l

\\
~
registration
Sarvice \ €9
Descriptor
.
o

Vi

implemented to work in networks with rela-
tively static structure. Their usage in dy-
namically changing networks is irrational
since manual change of their working pa-
rameters is required to reflect joining or
leaving of a device (service). Under these
circumstances, the idea for creation of new technology instru-
ments was born. That technology should help automatic adver-
tisement, registration discovery and utilization of services and
devices in computer networks.

The software of modern, dynamic, adaptive, distributed
systems is implemented according to principles of loosely-
coupled, service oriented architectures (SOA) [12,15]. SOA de-
fines conceptual software platform where information exchange
between system modules and communication with external Sys-
tems is based on interaction of services. In the context of SOA,
the service is defined as an object that can provide an informa-
tion, perform an action, or control a resource on behalf of other
objects. The service has five basic characteristics:

* A service is a strategic encapsulation of program logic
and interface (API) to that logic. This interface defines the mes-
sages to interact with the service.

Service Consumer

S, "

Sarvice Suppiier j

4 SEMVICE

binding

cliert

Figure 1. SOA based architecture

This paper provides an overview and comparison of sev-
eral prominent service discovery mechanisms — SLP [3,4,19],
UPnP [7,8] and Jini [9], which are currently used for building
self-configured networks. Components that constitute each of
these technologies are described and some of important inter-
actions of these components are examined. A special attention
is given on SDPs used since they are fundamental instrument
to minimize the user involvement in system configuration and,
more importantly, they have different implementation which serves
as foundation for their comparison. In order to make the presen-
tation of service discovery mechanisms more systematical and
easy to understand we propose a unified structure for their
description that consist of the following elements:

e Components — introduces the different functional enti-
ties that constitute the inspected service discovery system and
identifies their roles and responsibilities.

2 1 2007

information technologies
and control

* Architecture — outlines the interaction of the individual
components and explains how the execution focus moves from
one component to another during operation of the given protocol.

* Mechanism for service discovery — explains the process
and of the service discovery - how the service is described, how
it is advertised and what the service clients have to do in order
to discover a particular service of interest.

This standard approach for description of service dis-
covery techniques makes the intended comparison easier, facili-
tating the identification of their similarities and differences, and
contributes to more profound understanding of fundamental con-
cepts and special features behind them.

2. Service Discovery Protocols

2.1. Service Location Protocol

Service Location Protocol (SLP) is an IETF (Internet Engi-
neering Task Force) standard that provides for network applica-
tions means for service discovery in distributed environment.
SLP is an instrument for service discovery and advertisement in
IP networks and makes heavy use of TGP and UDP protocols. SLP
allows applications to discover existence, location, and charac-
teristics of desired services and enables services to advertise
their capabilities.

2.1.1. Components

In SLP there are three basic software objects (agents) [4]:

e User Agent (UA) — performs service discovery on behalf
of client software.

* Service Agent (SA) — advertises the location and at-
tributes on behalf of services.

* Directory Agent (DA) — aggregates information for avail-
able services in the network.

2.1.2. Architecture

SLP defines two modes of system operation - with DA and
without DA [4]. Depending on presence or absence of DA in SEP:
two separate architectures are possible whose models are shown
on figure 2.

When DA appears, it collects all service information for
services in the network. All SA components must advertise in DA
before possible access to these services. When UA searches
particular service it sends to DA request for information about

Unicast Sendca
Registration

Unicas: Service
Request

- Fee RAFEY GRS

\‘_/’ \\\w_.»"‘
Unicast Servige Unicast

Reply Acknowledgement

System with al least one DA

Figure 2. SLP architectures

/} roe |
UA DA SA UA
s il

System without DA

this service. Later the received information is used for access
to this service. In larger networks environments, several DA may
be used to increase overall system performance, scalability and
fault tolerance. Because SAs register in all DAs they detect, all
DA will contain the same service information (the presumption
is that all SAs can find them all). Since UAs can choose any
available DA to issue request to the load will be shared among
DAs. In the case, when no DA responds to UA request, UA just
multicasts an request message in the network hoping that any
SA with coinciding group will respond.

When there are no DAs, UA components periodically
multicast the same requests to the available SAs that it would
unicast to the DA if such were present. This service request
includes a query that the SAs process against the attributes of
services it advertises. If the multicast request fails in matching,
the SA simply discards it.

The presence of DA reduces the traffic in the network,
since the multicast messages are avoided. Disadvantage of an
architecture with DA is the more complicated infrastructure,
increased cost and degraded system reliability due to the depen-
dence on introduced DAs. -

2.1.3. Mechanism for Service Discovery

Services in SLP are described with unique identifiers
(ServiceURL), which contains the type of service and the ad-
dress where more information about the service could be found
[6]. Client applications that obtain this URL have all the informa-
tion they need to connect to the advertised service. The actual
protocol the client uses to communicate with the service is
independent of SLP.

At startup, UAs and SAs first determine whether there are
any DAs on the network. DA addresses can be configured stati-
cally or dynamically obtained form DHCP server [5]. In these
cases, there is no need to perform DA discovery. In all other
cases, UAs and SAs first need to find available DAs. The goal
of discovery process is to acquire ServiceURL, scope and at-
tributes of each DA in the network. There are two ways to
discover DAs — active and passive [3].

* Inthe case of active discovery, UA and SA send Service
Request (SrvRgst) messages on group SLP address
293.255.255.253 specifying the desired scope of DA. When DA
receives these messages it checks if the specified scope is the
same as its own. If a match occurs, DA returns Service Reply

(SrvRply) to the sender.

e In passive DA discovery, DA
periodically pumps multicast mes-
sages into the network presenting it-
self to available UAs and SAs. All UAs
and SAs that receive these messages

SA can extract and memorize DA’'s ad-
dress and scopes.

After the DA has been discov-

e ered, SA can register its services by
U”m;fé ;gmce issuing Service Registration messages

to appropriate DA. DA then returns
acknowledgement for successful or
unsuccessful registration. UA search-
ing for particular service sends a

Multicast Service
Request

Py b

information technologies
and control

1 2007

(&)

SrvRgst message to DA and will receive back a SvRply mes-
sage. In figure 3 it is shown how the client application uses SLP
-API to send service request (SrvRgst message) and the SA
replies with a SrvRply message.

Client

Server

Service

multicast service request

unicast service reply

Figure 3. Service discovery with SLP APl without DA

It should be emphasized that SLP provides mechanism
only to discover information for services but not for their access
and control. To connect to a given service the developers have
to use or implement additional means for that. That's why SLP
is not a complete solution for service discovery.

2.2. Universal Plug and Play

Universal Plug and Play (UPnP) is a technology developed
by Microsoft and a consortium of other organizations which
includes IBM, 3Com, Alcatel Telecom, Compagq and Dell. Accord-
ing to the UPnP specification, it is architecture for pervasive
peer-to-peer network connectivity of intelligent appliances, wire-
less devices, and PCs of all-form factors. The basic goal of UPnP
is to provide distributed, open networking architecture that relies
on IP, TCP, UDP, HTTP and XML to enable seamless proximity
networking where a device can dynamically join a network,
obtain an IP address, convey its capabilities, and learn about the
presence and capabilities of other devices. After that the device
can directly interact with other devices in the network (for ex-
ample, perform a remote control or data exchange). Finally, a
device can leave a network smoothly and automatically without
leaving any unwanted state behind.

2.2.1. Components

The main components of UPnP are a service, a device and
a controller (control point). The smallest unit of control in the
UPnP network is a service. A service exposes actions and models
its state with state variables. Similar to the device description,
this information is a part of an XML service description standard-
ized by the UPnP forum-[13]. A service in UPnP device consists
of a state table, a control server and an event server. The state
table models the state of the service through state variables and
updates them dynamically when the service’s status changes
during working process.

UPnP device (figure 4) is a container of services and
nested devices. There are different categories of UPnP devices
and each category is associated with different sets of services
and embedded devices. Each device has a description of ser-
vices it provides, embedded devices and a list of additional
properties (name, for example). All this information is captured
in an XML document that the device delivers to control points on

demand.

A control point in UPnP is a component capable of discov-
ering and controlling other devices through invoking services
exposed by them. After a device discovery, the control point
could retrieve device description and get a list of associated
services, retrieve services descriptions, invoke operations to
control a service and subscribe to events generated by service
when its state changes.

2.2.2. Architecture

For exchange of data and control messages, the UPnP
uses a protocol stack, which consists of three upper layers
responsible for service and device description in UPnP network
[8]. The UPnP Device Architecture defines a template (XML
schema) for construction and description of each device or
service. The required information for a given advertising or dis-
covering message is extracted from description of service or
device and is included in the message before being formatted
by SSDP', GENA2 and SOAP protocols. The lower layers in the
UPnP protocol profile are composed of widely distributed, stan-
dard protocols with proved efficiency (SOAP, HTTP, UDP, TCP, and
IP). This is a big advantage of the technology, since it helps for
seamless integration of the technology in legacy computer net-
works that internally use these protocols. Regardless of the
convenience that is the usage of the HTTP based protocols SSDP
and GENA, this requires a control point and services to imple-
ment a Web server or to rely on services of an existing one.

UPnP enabled device

Device
'l Service 1 Service 2
Y.
Cantrol Point . UPNP enabled device
N,

Device

A
Contral
Paim

Service

UPnP enabled device

Root Device

Embedded Device

Service 2

Service Control
Server

[Event
| Server

State Table

Figure 4. UPnP control points, devices and services

'Simple Service Discovery Protocol (SSDP) — enhancement of HTTPU
and HTTPMU protocols, that defines the methods that control points
use to find desired services in the network and the methods that
devices use to announce their capabilities.

2 General Event Notification Architecture (GENA) — extension of HTTP
with additional methods and headers, that contributes for realization
of mechanism for event notification of control points when the state
of a UPnP service changes.

1 2007

informationtechnologies
and control

2.2.3. Mechanism for Service Discovery

The UPnP working process consists of the following six
steps:

‘1.Addressing — the device is configured with static IP
address or receives a dynamic address by the DHCP server.

2. Discovery - based on packet multicasting. When a device
is added to the network, the UPnP discovery protocol allows this
device to advertise by IP its services to control points on the
network using advertisement messages. Similarly, when a con-
trol point is added to the network, the UPnP discovery protocol
allows that control point to search for devices of interest on the
network using discovery messages. When a device is removed
from the network, it should notify other members of the network
for that, multicasting a number of messages revoking its earlier
announcements.

3. Description — to learn more about the device and its
capabilities or to interact with the device, the control point must
retrieve (by doing HTTP GET request) a description (XML docu-
ment) of the device and its capabilities from the URL provided
by the device in the discovery message.

4. Control - in contrast to SLP, UPnP provides a means for
remote service control. The control points construct messages
containing description of the invoked operations and values of
input parameters, send them to the remote service and when the
action is completed (or failed), the service returns the results or
any errors encountered during operation.

5. Eventing — on every service state change, the service (in
the part of publisher) checks for control points subscribed to
receive notification for this particular event occurrence and sends
the corresponding messages as XML document containing the
names and the new values of service state variables.

6. Presentation — offers a graphical user interface (Web
page) to control points for control and state monitoring of ser-
vices and devices.

UPnP is more resistant in respect to individual device
failure than SLP. On the other hand, the resources required by
UPnP devices and control points are significantly more compared
to SLP, which comes from the fact that UPnP uses XML and
SOAP. Another disadvantage of this technology is that it allows
discovery only by service or device type. It does not permit
discovery by attributes as in SLP [6].

2.3. Jini

Jiniis a development of Sun Misrosystems and represents
an open architecture for distributed computing which allows
different devices and applications to discover and interact dy-
namically [9]. The focus of the system is to make the network
a more dynamic entity by enabling the ability to add and remove
devices flexibly. These ad hoc ,communities” of hardware and
software can be formed without prior configuration, driver instal-
lation, or even knowledge of each other. Joining and leaving a
Jini system are easy and natural, often automatic, occurrences.

2.3.1. Components

In Jini all components are called services. A service can
be implemented as either hardware device, software program, or
a combination of the two. A network of Jini services is called Jini

federation. The most important part of Jini architecture is the
lookup service. Every service should be registered with at least
one lookup service in order to be accessible by othes services.
The lookup service acts as a central repository for all services
in the network and is analogous to Directory Agent (DA) in SLP.
One lookup service can contain other lookup services which
makes possible to build a hierarchy of lookup services.

2.3.2. Architecture

Jini architecture can be segmented into three categories
[9]:

* Infrastructure — the set of components that enables
building a federated Jini system.

e Programming model — The programming model is a set
of interfaces that enables the construction of services (including
those that are part of the infrastructure and those that join into
the federation).

» Services — can be or are part of Jini federation and
offers some functionality to every other member of the federa-
tion.

A Jini system can be.seen as a network extension of the
infrastructure, programming model, and services that constitute
traditional Java technology which allows the application of its
main concepts in computer network.

The Jini infrastructure consists of:

e A distributed security integrated into RMI (Remote Method
Invocation — RMI), that shifts the Java platform’s security model
to the field of distributed systems:

o Discovery/join protocol — defines the rules governing the
processes for discovering existing services and for attaching
and detaching services from the Jini system. Services in a Jini
federation communicate with each other by using a service
protocol, which is a set of interfaces written in the Java program-
ming language;

e Lookup service — the entries recorded in it are serial-
ized Java objects, which can be downloaded by potential clients
and work as local proxies between the client and the service

_ registered the object.

The Jini programming model is composed of interfaces
that support the interaction between services and Jini infrastruc-
ture. Some of those interfaces are:

* Leasing - defines a way of allocating and freeing re-
sources using a renewable, duration-based approach for obtain-
ing object references.

e Fvent and notification — extension of the event model
used by JavaBeans™ components to the distributed environ-
ment, enable event-based communication between Jini technol-
ogy-enabled services. When the services register or leave the
lookup service, events are generated and objects that have been
declared their interest for these events are notified.

e Transaction - enable entities to cooperate in such a way
that either all of the changes made to the group occur atomically
or none of them occur.

Jini services make use of the infrastructure to make calls
to each other, to discover each other, and to announce their
presence to other services and users. Services appear program-
matically as objects written in Java programming language,
perhaps made up of other objects. A service has an interface

information technologies
and control

1 2007

(€]

that defines the operations that can be requested of that service.

2.3.3. Mechanism for Service Ddiscovery

The Jini operation can be summarized in the following
three steps, represented in figure 5, which illustrates registra-
tion, discovery and invocation of the service. The first step in the
procedure is the discovery of the lookup service. This step is
similar to the discovery of DA in SLP and can be done in one
of three ways:

* Sending a message to the previously configured static
address. In response to this message the lookup service will
acknowledge its existence in the network.

e Multicasting of UDP datagrams, that will force the lookup
services to reply.

* Lookup service actively announces its presence as well
as their groups by periodic message distribution to all devices
in the network.

For discovery of lookup service, the discovery protocol
from the pair discovery/join is used. After the lookup service is
discovered, any Jini service which aims to register in the net-
work sends Service Registration message. This message in-
cludes the proxy object of the service and a request for some
leasing period-(indicating how long the service will be regis-
tered). The response of the request includes the real lease time
and the unique identifier of the service (ServicelD) that is used
for discovery purposes and service identification in the context
of the lookup service that returned it. The procedural interactions
for service registration are described in Jjoin protocol.

The next step describes a Jini service that wants to find
another service. After this service discovers the lookup service
it sends a request to concrete ServicelD or ServiceType. When
the lookup service finds a service with corresponding param-
eters it returns the proxy object of this service. The proxy object
can contain the entire service implementation or just provide
stubs that redirect (using RMI or other mechanism) the client
request to a remote service implementation.

The ability of the service to dynamically download and
execute Java code is essential for most Jini functions. It should
be noted, however, that Jini architecture is dependent on Java
application environment not on the Java language itself. Jini
supports any programming language that have Java byte code
compatible compiler.

3. Protocol Comparison

Service discovery protocols are proposed to facilitate dy-
namic cooperation among devices (services) with minimal ad-
ministration and human intervention in normal system operation.
This survey of SLP, UPnP, and Jini shows that these technologies
address similar issues of service discovery and have identical
architectural and functional characteristics. Each one of the
inspected protocols provides means ‘or contributes to service
announcement, discovery and control. At the same time, how-
ever, there are some differences due to the fact that these
protocols stress on different aspects of their functionality and put
different weight to its components. This section proposes a

Step 1: Registering a service

Disvowery Raguest

Jini Service

Discovery Response

A 4

(printer)

Jini Lookup Service

: S-amc;e Proxy |

o

Service Registration

Step 2: Finding a service

Discovery Reruest

Jini Service

Discovery Response

(PDA device) |a

Lookup Request

Jini Lookup Service

Jini Service
(PDA device)

 Service Proxy [AL

h 4

Service Proxy
_ Object

1 b

Lookup Response

Step 3: Using a service

Sarvice Request

Service Reply

Figure 5. Protocol interactions in Jini

Jini Service
(printer)

1 2007

information technologies

and control

comparison of the presented SDPs that makes possible the
identification of unresolved problems and helps outlining fields
where more research needs to be done.

3.1. Comparison Criteria Selection

The selection of criteria for comparison of SLP, UPnP and
Jini is essential since it is directly related to the consequent
results and their usefulness. These criteria should be compre-
hensive enough to embrace the most important characteristics
of considered SDP solutions. Following this principle of criteria
selection we define four mutually orthogonal perspectives to
these technologies:

e Architectural — represents different components, depict
their roles in the system and describes the internal organization
of the given SDP technology.

e Service Description — examines the techniques and
methods for construction of service descriptors in the context of
a specific SDP.

e Operational — provides a view to various dynamical char-
acteristics of the SDP, such as leasing, event notification, active
or passive service discovery and ability for service control;

e Interoperability — defines the dependability of the SDP
system on specific operating system, hardware platform, net-
work protocol or programming language.

Each of these perspectives reveals a different aspect of the
nature of these protocols and gives a separate view to a given
SDP solution. This view represents a projection of the SDP tech-
nology in the space of all characteristics that are used for
description from a concrete viewpoint.

3.2. Comparison Results

The following table systematizes major distinguishing fea-
tures of the presented protocols grouping them with respect to
the proposed perspectives as identified in section 3.1.

From the information in this table we can make the follow-
ing inferences:

e SLPis standardized and well documented through IETF,
Since it is able to operate with or without DA, it is suitable for
networks of different sizes, ranging from very small ad hoc
connectivity to large enterprise networks. Unfortunately, SLP do
not define a protocol for communication between clients and
discovered services and lacks the event notification mechanism
which is available in other two protocols.

e Jini technology is independent of any hardware platform
and communication protocol, but it presumes that there is Java
virtual machine (JVM - Java Virtual Machine) installed on every
network device or that every device can use a surrogate [10] to
represent it in Jini network. In addition, according to standard,
CLDC (Connected Limited Device Configuration) configuration of
J2ME platform does not support RMI. This forces developers
themselves to implement similar mechanism when the applica-
tion have to work on devices as cellular phones, PDA or embed-
ded devices.

 UPnP relies on the wide-spread IP and Web technolo-
gies. It's usage of XML for service description is unique among
examined protocols. This approach ensures a powerful instru-
ment for device description of device attributes, service control
commands and events that can occur during system functioning.

Since UPnP does not use a registry, it is likely to generate
significantly more network traffic than centralized variants of SLP
and Jini.

Each presented service discovery technology has advan-
tages and disadvantages. None of these technologies is a
superset of the others and none is mature enough to dominate
the market. A great problem with the currently available SDP
solutions is that they are virtually incompatible. This means that
services available in one platform can not be easily discovered
and accessed from services based on another platform. The
tight bindings of most SDP mechanisms to a particular commu-
nication protocols and hardware platform make it difficult to
rapidly prototype ubiquitous computing applications spanning a
wide variety of devices and services. In addition, from this SDP
platform’s comparison it is evident that each of them has its own
method to specify service characteristics. The ability to make
transition between two different service representations is criti-
cal for solving integration problems.

Currently, interoperability efforts are perhaps the most
important force in service discovery, since it is very unlikely that
device manufacturers will embrace multiple service discovery
technologies on low-cost mobile devices.

4. Conclusion

Service discovery represents one of foundations that intel-
ligent computer networks are built. On it suppresses the need
for preliminary device configuration and helps for seamless
information exchange between devices in order to enable remote
control of one device from another.

The presented service discovery protocols have a number
of functional similarities mainly regarding their orientation to
local network services and methods used to describe and dis-
cover services. However, as a whole, they remain incompatible
because of their dependence on operating platform, communi-
cation protocol or instrumental programming language in most
of them. There are also many essential differences, such as the
absence of event notification and mechanisms for service ac-
cess in some protocols. Moreover, it is fairly apparent the lack
of a common open standard that makes use of the strongest
features of examined protocols and that can be used for con-
struction of architectures not only with local but with both local
and global access to resources.

The shown incompatibility defines the challenges and
trends in development of service discovery protocols during next
years. They could be generalized in the following way:

* further development and improvement of existing SDPs
with a view to creation of complete solution for discovery and
remote control of services and convergence of their character-
istics;)
e modeling and realization of communication bridges (such
as uMiddle [15] and event based parsing solution described in
[18]) between several SDP systems in order to allow construc-
tion of multi-platform SDP-enabled applications;

* proposing new SDPs in various application areas — for
example, in [11] a Service Accumulator Agent protocol for Grid
architecture is proposed:;

e building of an open standard for discovery, local and

informationtechnologies
and control

1 2007 7

Service Agent (SA)
Ditectory Agent (DA)
User Agent (UA)

Devices
Control points
Services

Table 1. Comparison of service discovery protocols

Services

Directory Agent (DA)

No

Lookup service

client-server (with

DA)/peet-to-peer

Peer-to-peer

Client-server (when using
lookup service) /peet-to-peer
(when peer lookup is used)

Registration in DA

Multicast of NOTIFY
message with NTS: ssdp.alive

Discovery/Join protocol

IANA — Service Template

UPnP Forum Working
Commitee — device/service
template

By service type (plus
attributes if LDAP filters
are used), through request to
DA or multicast to all SAs

By type or identifier of device
(service), after the control
point reads service
advertisements

Request to lookup service
contains the service template
interface and attributes)

Service type, attributes (in
respect to corresponding
template)

XML document, conforming
to XML schema for the
concrete device/service type

Interface type and attributes

No (the result of discovery
process is the service URL)

SOAP requests to service
URL

Service proxy object that
implements the service or
redirects (using RMI or other
mechanism) requests to the
remote service

The specified expiration
time during service
registration

max-age = expiration_time
should be set in the header
block of the NOTIFY
message

Jini leasing

The service publishes events
(GENA), when the value of a
status variable changes

Remote Events

Active and passive (only
active without DA).

Active and passive (using
discovery and advertisement
messages)

Active and passive (only
active when peer lookup
technique is used)

Dependent

Dependent

Independent

Dependent (works only in
IP-based networks and uses
TCP and UDP transport
protocols)

Dependent (tightly bound to
Web protocols - IP, TCP,
UDP and HTTP)

Independent (uses Java RMI)

Independent

Independent

Java (or language with
compiler capable to produce
Java compatible byte code)

3 1 2007

information technologies

and control

global access to loosely-coupled services in the light of service
oriented architectures.

Since service discovery mechanisms currently in develop-
ment are still in their infant stage, there are many areas of
improvements still needing research. Another promising research
challenge is the work on quality analysis of existing SDPs and
architectural modeling of their operation using the appropriate
modeling instruments (for example, UML or some kind of archi-
tecture description language (ADL) like Rapide [16,20]) for de-
scription of events and dynamic behavior of »plug-and-play*
device communities. The construction of such architectural
models is intended to closely examine dynamic characteristics
of SDPs, like consistency, accessibility, latency, scalability, delays,
dead locks and other synchronization problems. The results
obtained form this analysis would be of great value for further
comparison of various SDPs and can be used to predict the
behavior of distributed systems in dynamic conditions and to fuel
the development of new, reliable mechanisms to guarantee
quality of service (QoS) in spontaneous SDP-enabled networks.

We have shown that one of the reasons for incompatibility
of different SDP platforms is the absence of a common standard
method for service description in these platforms. To help solv-
ing this integration problem, some means to translate between
different service descriptions are needed. Our future work is
concerned with proposing a common description language that
provides uniform set of abstractions for representing the ser-
vices in platform-neutral format. Finally, we plan to build a tool
that translates from this abstract format to a native service
description and vise versa.

References

1. Richard, G. G. Service Advertisement and Discovery: Enabling Uni-
versal Device Cooperation.— /EEE Internet Computing, Sept./Oct. 2000,
18-26.

2. Helal, S. and C. Lee. Protocols for Service Discovery in Dynamic and
Mobile Networks.— International Journal of Computer Research, 22, 1-
12!

3. Guttman, E., C. Perkins, J. Veizades, and M. Day. Service Location
Protocol, Version 2. IETF RFC 2608, June 1999.

4. Guttman, E. Service Location Protocol: Automatic Discovery of P
Network Services.— IEEE Internet Computing, 3 1999, No. 4, 71-80.

5. Perkins, C. and E. Guttman. DHCP Options for Service Location
Protocol. IETF RFC 2610, June 1999.

6. Guttman, E., C. Perkins, and J. Kempf. Service Templates and
Service:Scheme, IETF RFC 2609 June 1999.

7. UPnP™ Device Architecture. Version 1.0, 2000 http://upnp.org/
resources/documents.asp.

8. Microsoft, Corp. Universal Plug and Play Device Architecture Reference
Specification.

9. Sun Microsystems Inc. Jini Specifications Version 2.0. http://
WWWS.sun.com/software/jini/specs/.

10. Sun Microsystems Inc. JiniTM Technology Surrogate Architecture

Specification, v 1.0 DraftStandard http://surrogate. jini.org.

11. Heaton, J. B. Enabling the Grid for Pervasive Computing. MSc
Theses, Dep. of Distributed Systems Engineering, Lancaster University,
2004.

12. Microsoft, Corp. Service Oriented Architecture. http://
msdn.microsoft.com/architecture/soa/.

13. UPnP Forum. http://www.upnp.ora/.
14. Oasis Consortium. Reference Model for Service Oriented Architec-

ture. Committee Draft 1.0, February 2006.

15. Nakazawa, J., J. Yura, and H. Tokuda. uMiddle: A Universal Frame-
work for Bridging Diverse Middleware Platforms.

16. Dabrowski, C. and K. Mills. Analyzing Properties and Behavior of
Service Discovery Protocols Using an Architecture-Based Approach. In
Proceedings of Working Conference on Complex and Dynamic Systems
Architecture, Brisbane, Australia, December 2001.

17. Capra, L., W. Emmerich, and C. Mascolo. Middleware for Mobile
Computing. In proceedings of the International Conference on Network-
ing 2002, Pisa, Italy, May 2001.

18. Yiirom-David Bromberg and Valitrie Issarny. Service Discovery
Protocol Interoperability in the Mobile Environment. In Proceedings of
the International Workshop Software Engineering and Middleware (SEM),
September 2004, 64-77.

19. Bettstetter, C. and C. Renner. A Comparison of Service Discovery
Protocols and Implementation of the Service Location Protocol. In pro-
ceedings of the 6th EUNICE Open European Summer School: Innovative
Internet Applications, 2000.

20. Luckham, D. Rapide: A Language and Toolset for Simulation of
Distributed Systems by Partial Ordering of Events. DIMACS Partial Order
Methods Workshop IV, July 1996, August 1996.

Manuscript received on 30.03.2006

Mihail Bratoev received a MS Degree in Com-
puter Science at the Technical University of Sofia,
Bulgaria, in 2006. He is now finishing his PhD
Thesis in the field of service discovery in distrib-
uted software environments. Dr. Bratoev is
Microsoft Certified Solution Developer (MCSD)
and has participated as senior developer in many
industrial projects. He is an author and coau-
thor of several publications in international con-
ferences and magazines. His present scientific interests are in the field
of pervasive computing, zero-configuration computer networks, and
semantic service discovery systems.

Contacts:

Sofia University St. Kliment Ohridski
Faculty of Mathematics and Informatics
Department of Information Technologies
e-mail: mihail.bratoeverila.com

Boyan Bontchev received a MS Degree in Elec-
tronics and Automation Engineering at the Tech-
nical University of Sofia, Bulgaria, in 1988. He
got his PhD in Computer Science at the Center
of Informatics and Computer Technology (Bul-
garian Academy of Sciences) in 1993, investi-
gating hybrid data flow architectures. Dr.
Bontchev has participated and conducted many
research and industrial projects in the area of
parallel processing, object-oriented software, mobile systems and com-
puter modeling and simulation, for several entities in Portugal, Spain,
ltaly, Bulgaria and EC FP5/6. He is author and coauthor of more than
forty research papers published at international conferences and in
magazines. Since 2004 Dr. Bontchev is Associated Professor at Chair
of Information Technologies, Sofia University. His current scientific inter-
ests are in the field of service sciences, software modeling and design,
and adaptive systems.
Contacts:
Sofia University St Kliment Ohridski
Faculty of Mathematics and Informatics
Department of Information Technologies
e-mail: bbontcheve@fmi.uni-sofia.bg

information technologies
and control

1 2007 9

