Incremental Theorem Proving

Abstract. Theorem proving is a challenging task for formal verification
of systems. There exist many efforts to efficiently solve this problem,
based for example on rewriting rules and/or SAT-based techniques.
We propose an alternative of SAT-based techniques by using instead
a counting SAT-based technique (denoted also #SAT). A SAT solver
tests if a propositional formula F has at least one truth assignment,
while a #SAT solver returns the number of truth assignments of F.
For efficiency reasons, many of the existing SAT-based techniques are
applied incrementally, that is, using the satisfiability of some sub-
formulas to determine the satisfiability of a given formula. While there
exist incremental SAT solvers, to the best of our knowledge, our paper
presents first time the theoretical background for the incremental
counting satisfiability problem. Being a more general technique than
the existing works, our approach can be used to handle all the
problems solved by SAT solvers. Moreover,our #SAT solver
outperforms a SAT solver when considering the challeging problems
of re-design or debugging of systems.

1. Introduction

Theorem proving is a challenge task useful for formal
verification of the correctness of large systems. Since 50’s,
mathematicians started implementing theorem provers by con-
structing truth tables for statements in propositional logic. Dur-
ing its long and impressive history, there were many efforts to
solve theorem proving efficiently and automatically, including
Herbrand universe [DaP60], resolution [Rob65], T-unification
[Plo72], structural induction [BMS75], term rewriting [Ble77],
binary decision diagrams [Bry86], timely resolution [AbM86],
and SAT-based techniques [Hor98]. There is still a competition
between these known methods as well as a need for new
efficient techniques. Given a particular class of systems, a
method may work better than others. For example, considering
systems expressed in modal logics, it seems that SAT-based
decision procedures are more efficient than decision proce-
dures based on translation methods [GGSTO0].

In the effort to get the benefits of all known techniques, it
seems that the best way is to combine some of them. For small
state space systems, model checking represents a better alter-
native for establishing the correctness. Thus, many theorem
proving systems integrate model checkers as decision proce-
dure. The first model checker based on BDDs (Binary Decision
Diagrams, [Bry86]) was SMV [smv]. A reimplementation and
extension of SMV is NuSMV, which was designed to be an open
architecture for model checking. Recently, NuSMV2 combines
the BDD-based model checking component and a SAT-based
model checking component.

Similarly, ,smvsat® [smvsat02] is a symbolic model
checker which includes bounded model checking, proof-based
abstraction, and SAT-based model checking. The ,smvsat* is a
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proof generating SAT solver meaning that in the unsatisfiable
case it produces a proof of the empty clause using resolution
steps.

A similar professional tool is CVC (Cooperating Validity
Checker) [BDBGS04], which decides logical validity of quanti-
fier-free formulas in classical first-order logic with equality,
enriched with certain background theories. The background theo-
ries are for linear real arithmetic, arrays, and inductive datatypes.
For propositional reasoning,CVC incorporates Chaff [MMZZM2001],
a state-of-the-art SAT solver. Moreover, CVC can emit indepen-
dently checkable proofs of valid formulas.

Another industrial theorem prover is ICS (Integrated
Canonizer and Solver, [ics05]). ICS is a standalone decision
procedure for a combination of several theories. It incorporates
a SAT solver, and is able to discharge propositionally complex
formulas over the decided theories.

One more impressive theorem prover is Thunder
[AFFHPV05], a bounded model checker based on a SAT tech-
nique. Thunder is useful to verify complex temporal properties
on large RTL designs. The novel idea there was the introduction
of the explicit induction, which makes the induction scheme an
explicit part of the specification.

The motivation of our paper is to introduce a new tech-
nique based on incremental counting SAT, as an alternative for
the SAT-based technique. We show that our technique may
outperform the SAT-based approaches, when considering the re-
design and debugging of systems. To the best of our knowledge,
this paper presents for the first time the theoretical background
of incremental counting SAT technique. Our experiments [AnC04]
show that this is a promising technique as an alternative for SAT
approaches.

2. Incrementality for SAT and Counting SAT

Problems

The SAT problem (Given a propositional formula F, is there
a truth assignment for f?)was the first discovered | ~complete
problem [Coo71]. Stephen Cook proved that any decision prob-
lem Pe VPcan be polynomially transformed to the SAT problem.
The SAT problem can be used to solve other problems, like for
example the famous open problem , 7 versus ‘7 “ or
equivalently the inclusion .V P< 7 or | P& 7 This important
problem was formulated independently by Stephen Cook and
Leonid Levin in 1971 [Coo71, Lev73]. The original paper [Lev73]
may be hard to find, but its English translation as well as many
interesting stories about the subject can be found in [Tra84]. The
Clay Mathematics Institute included this problem (Pversus.\7)
in its list of Millennium Prize Problems and have designated a
prize of $1 milion [Cla2000].
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Given a boolean formula F an algorithm using the
satisfiability of some sub-formulas of F to determine the
satisfiability of F, is said to be incremental. Such incremental
algorithms are efficient because when checking the satisfiability
of F only the provided final results for the sub-formulas of F'are
used, and not the recomputation of the whole F. The basic
incremental satisfiability problem of propositional logic has been
introduced in [Ho093] as follows: , Given a propositional formula
F, check whether Fu{C} is satisfiable for a given clause C".
The algorithm presented in [Ho093] solves the SAT problem
using the Davis-Logemann-Loveland’s procedure [DLL62] com-
bined with a backtracking strategy that adds one clause at a
time. For example, a SAT solver able to handle non-conjunctive
normal form constraints and incremental satisfiability was pre-
sented in [WKSO01].

As stated in [GaJ79, Pap94], the counting (enumeration)
problems are another type of interesting problems, but they
might be intractable even if Z=.V7 . Itis still unknown whether
these problems can be solved at any fixed level of the polyno-
mial-time hierarchy [Sto77]. A counting problem P determines
how many solutions exist, not just an answer ,Yes/No“ like a
decision problem. The same concept of completeness can be
defined for counting problems. A counting problem Pis in # Pif
there is a non-deterministic algorithm such that for each in-
stance | the number of guesses that lead to the acceptance of
| is exactly the number of distinct solutions of P regarding | and
such that the length of the longest accepting computation is
bounded by a polynomial in the length of | [Val79]. The # P-
complete problems are at least as hard as AP -complete
problems, but probably much harder. The problem of counting
the number of truth assignments (denoted by #SAT) is: Given a
propositional formula F , how many truth assignments exist
for F?. It was proved to be # P-complete [Sim75, Val79].
Obviously, an algorithm for solving #SAT problem can also solve
the SAT problem. An important subclass of propositional formu-
las was described in [CrH96] by a #SAT Dichotomy Theorem.
[t was shown that if all logical relations used in generalized
#SAT are affine, then the number of truth assignments can be
computed in polynomial time, otherwise the problem is # P-
complete [CrHI6].

There exist already algorithms for solving the #SAT prob-
lem [lwa89, Dub91, Tan91, And95, Zha9d6, And04]. In this paper
we are addressing to a more challenging problem, namely the
incremental #SAT problem: ,Knowing the number of truth as-
signments of F, what is the number of truth assignments of
Fu{C}, for any arbitrary clause C?". To be best of our knowl-
edge, there is no similar work dealing with this particular prob-
lem.-Because our algorithm deals with the incremental side of
the problem, this is definitely more efficient than existing algo-
rithms, so there is no need to count again the number of truth
assignments for the whole F. Our investigation was occasioned
by efforts to solve timing constraints verification for real-time
systems [JaM86, JaM87, AnC04, ACCLO5], but it has application
whenever one wishes to check again for logical inferences after
enlarging a propositional knowledge base. In fact, the technique
described in this paper is useful not only for verification and

debugging of real-time systems but for any kind of systems in
general. '

We now briefly sketch how to model re-design and debug-
ging problems using incremental counting satisfiability in com-
parison with any arbitrary SAT solver. Usually, to prove that a
formula ¢ is a theorem, a common technique [ChL73] is to
show that its negation (that is, — ¢ ) is unsatisfiable. Most of
the techniques reduce to show that a corresponding proposi-
tional formula Fis unsatisfiable. If = ¢ is not unsatisfiable, then
re-design and debugging approaches make sense to be consid-
ered. These approaches refer to do some allowed changes
(additions or removals) in— ¢ such that the new formula - ¢
becomes unsatisfiable. Of course, the changes in — ¢ corre-
spond to some changes into the propositional formula F . Let
us denote with SF,, ..., SF, ;the new propositional formulas
which can be added and with F the unchanged subformula of
F.The goal is to check which of formulas UFUSF , ... UFUSFis
unsatisfiable (if none of them is unsatisfiable, we need to con-
tinue the process of changing clauses), without re-computing
the satisfiability of UF . In this way, we are dealing with a real
incremental approach. The number of truth assignments of
UF uSF, ..., UF USF guides to the decision of which formula
to choose: the one with minimum number of truth assignments.
Note that this information is not provided by any existing SAT
solver. Instead, our approach benefits of a sort of monotonocity,
that is, once the formula gets new subformulas over the same
alphabet of propositional variables, then the number of truth
assignments is decreasing (details in Section 5).

Section 3 presents useful concepts and notations. Section
4 describes the main results for solving the incremental count-
ing satisfiability problem. The efficiency of our incremental #SAT
approach against a classical SAT approach is presented in
Section 5. The conclusions and references end this paper.

3. Preliminaries

In this section we introduce some concepts, examples
and notations [And95, And04] to allow the text to be self con-
tained. For a finite set A, |A| denotes the number of elements
of A. The number of all sets with 7/ elements from a set with n

elements is denoted by H and it is equal to (31, where
=23t en

Let I.> be the propositional logic over the finite set of
atomic formulae (known also as propositional variables) de-
noted by V={A, A, ..., A }. A literal L can be an atomic formula
A (positive literal), or its negation — A (negative literal). We put
[=—AifL=Aand [ =Aif L = = Aand we denoteV(L)=V(L)
= A. Any function S:V—> {0,1} is a structure (known also as
assignment, substitution, instance, or model) and it can be
uniquely extended in i[> to F{this extension will be denoted also
by S). The binary vector (y,, ..., ) is a truth assignment for
FoverV={A, .., A}iff S(F) =1 such that S(4) = y, Vi €{1,
..., n}. Aformula Fis called tautology iff for any structure S, it
follows that S( F' )=1. Aformula Fis called satisfiable iff there
exists a structure S for which S( ') = 1. A formula F'is called
unsatisfiable (or contradiction) iff F is not satisfiable. Any
propositional formulae F €Y can be translated into the
conjunctive normal form

(CNF): F = (L VML, A AL, VL ) where
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L;; are literals.In this paper, we shall use a set representation
F={{L,.., Lin}, ...,{L;,;, ...,.L;, }} to denote CNF. Any finite
disjunction of literals is a clause. The set of atomic formulae
whose literals belong to clause € and formula Fare denoted by
V(C) and V( F), respectively. A formula in CNF (finite set of
clauses) is called a clausal formula. So, the above formula can
be denoted as F={C,, ..., C, }, where Ci = {L;,, ...,L;, } (from

now on, (21 is assumed). We denote the empty clause, the one
without any literal, by . A clause with only one literal is called
a unit clause.

To solve the incremental #SAT problem, we need some
new notations. Let C,,..., C_be clauses over V(s > 1). We denote
by m,(C,, ..., C) the number of missing variables from the union
C,U...uC, that is, |{A | AEV-V(C, u..UC )}|. For example,
ﬁvﬁnadmmmﬂwJWF1deMWkﬁw=
0.

The notation dif, (C,,..., C,) points out if there is a differ-
encein the clauses C,, ..., C, regardless the presence of a literal
and its negation. That is, if (34, je {1,...,s}, i#/, such as 3
L€ G;and LEC) orif (3 €{1,...,s}, such as C,— ) then dif,(C,,
.,C,) = 0. Otherwise, dif(C,...,C,) = 2"V (-

For example, if V={p, q, r}, then dif J({p.a}, {Tq,r}) =0and
dif, ({p}, {q}) = 2.

We denote by det, (C, ...,C,) the number 2 VL)

) d,C; . . s1dE, 5t

L= 0l <1 =49

and we called it the determinant of the set of clauses {C,

., C.}. In fact, the determinant represents the number of truth

assignments of the given clausal formula (Theorem 3.1). We
called this number as determinant because of its similarities
with the classical determinant from linear algebraic systems
(both represent very useful numbers for those concepts). Be-
cause C,, ..., C_can be permuted in any order, we may denote
det,(C, ..., C)as det,( F ), where F={C, ..., C}. Next, useful
properties of the determinant of a clausal formula are presented
in Lemma 3.1 [And04]. They refer to the monotony of the de-
terminant over the variables” alphabet and over the set of clauses.
Thus, item a) refers to the monotony over V, item b) and c) refer
to the empty and the unit clause, and items d), €), and f) refer
to the inclusion rule and monotony over the set of clauses.

Lemma 3.1. Let F = {C, ..., C, } be a clausal formula
over V. Then:

a)ifA, ..., A, are atomic variables, » € 11, A , ...

1 3 A”I & l/!
then det , o Cox 2".det, (F);

b)if 3 ie€{1,.., 1}, such as C =1, then det, (F) 0;

c)if A is a new atomic variable, AéV A e lee e
subsetof {1,..., [}, s €N, then:

c1) det, A(C,, C,, {A}) = det (C ;.. C)

c2) det u{A}(C,, B C,, {A}) = det (C, grent -

adif C, and C, are two clauses from F for Wh/ch C cC,
then det (F} det kBB

e)/etCl ,and C, 2be the two (new) clauses over V. If
C,..<C,., then det (Fy {C, }) < det S(Fu{C,});

fletC,  be a new clause over V. Then det (FufC,..})
<det(F).

The next result makes the link between the determinant of
a clausal formula and its satisfiability [And95, And04].

Theorem 3.1. (Inverse Resolution Theorem) Let FE |12

over V. Then:

(i )F'is unsatisfiable < det,(F ) = 0;

(ii)F is satisfiable <> det, (F)#0. Much more, in this
case there exist det (F) number of truth assignments for F.

For a systematic computation of the determinant of a
clausal formula F = {C, ..., C} over V, it is better to use an
ordered labelled clausal tree. The full clausal tree CT(F) = (N,
E), where N is the set of nodes and £ is the set of edges,
associated with ' may be inductively constructed:

1)the zero (ground) level contains only a ,dummy“ root,
that is an unlabelled node;

2)the first level contains, in order from the left to right the
sequence of nodes labelled with:(C,, dif,(C ),...,(C, ,dif,(C, ))

3)for a given node v on the level k labelled wrth .,
dif (Ci ... )) the level k+1 has the following dlrectdescendants
in thrs order from the left to the right: (C+,,d/fV(C Q ,))

., (€, dif(C; .. Cl G ).

The number of nodes of the full clausal tree CT(F), without
taking into account the ,dummy* root, is the total number of
elements of the sum which occur in dez‘V(F). This number is

exponential in Z, namely (]~ [" 1~} - " 1. As a remark, dif,

(Ci,.....C; )= 0 implies dif (C;..., Ci C, .,) = 0. It follows
that only the nodes labelled with (C, v, dif (C .y Ci Gy ) for
which dif (C C,, G; )¢ Oand je {k+1, .., [} suffice

to be generated for computrng the determrnant The tree for
which the nodes labelled with 0 are not generated is called the
ordered labelled reduced clausal tree, and it is denoted as CT (
F)=(,,E,,) where N_and E_are the set of nodes and edges,

respectrvely The reduced clausal tree has equal or fewer nodes
that the full clausal tree.

The next example points out an ordered labelled reduced
clausal tree attached to a particular clausal formula useful for
computing the determinant.

Example 3.1. LetF = {C,C C, C} be a clausal
formula over V = {p, g, r, t}, where C {p, gt C,={p,r, t},
C,={p. 1t} C,={qr} and G, = {p, q, rh Then CT (F)is
/n figure 1.

Figure 1. The ordered labeled reduced clausal tree

Adding the labels of the even levels and subtracting the
labels of the odd ones, we obtain det (F) = 2*- (2%+ 2'+ 21+ 2%+
2')+ (2°+ 2°+ 2'+ 29)- 2° = 6. According to Theorem 3.1, F is
satisfiable with 6 truth assignments. =

In [BiL99], it is mentioned that the algorithms for counting
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truth assignments have something in common: the more vari-
ables have both negated and unnegated occurrences, the better
is the performance of the algorithms on clausal formulae. This
is approximately equivalent to say that CT_, will have much fewer
nodes than CT (because many nodes in the full tree will have
their dif, labelled by 0). Computation of the determinant is faster
for such cases.

4.Solving the Incremental Counting Satisfi-
ability Problem

Since CT_(F) may have an exponential number of nodes
depending on the number of clauses of F, whenever a new
clause Cis added, it is better to compute only the nodes which
contain Cand not the whole tree CT_(Fu{C}). But, the clausal
tree CT_(F) attached to F= {C,, ..., C; } cannot be used directly
for incremental computing of det (F) since the most recent
clause (thatis C, ) is spreaded as leaves of CT_(F), like in the
left-hand side of figure 2.

inc,(C, F) is —dif (C). Similar like det, (), the arguments of inc,
(), except the first one, can be permuted in any order. That is,
given (i, ...,i,) an arbitrary permutation of {1, ...,.}, then inc (C,
R Ci,) =inc,(C, C, ..., C, ), where Cis an arbitrary clause
over V. Moreover, the increment of any clause C and any clausal
formulaF= {C,, ..., C, } over Vcan be represented by an ordered
labelled clausal incremental tree. The full clausal incremental
tree CIT(C, F)= (N, E) associated with C and F'may be inductively
constructed, where Nand £ denote the set of nodes and edges,
respectively:

1)the first level contains the clause C as root, labelled with
(C.dif (C));

2)for a given node v on the level k, where k>1, labelled
with (C,, dif(C, Ci,,..., Ci_)), the level k+1 has the following
direct descendants in this order,from the left to the right:(G ,
dit, (C, Gi, ..., G, C,~*+,)), B (O EIRG GipalnBs W6, )).‘ ’

The number of nodes of the full clausal incremental tree

Figure 2. The incremental splitting of the clausal tree

To have a real incremental approach, we need a way to
split the new clausal tree into the initial tree and a new tree
containing the recent leaves. In other words, we need a proce-
dure to move the nodes of CT_ (F) such that C; appears as a
label only in the most recent clausal subtree, and to use the (old)
value of det (F). This procedure is highlighted in Figure 2, which
shows that the new clausal tree from the left-hand side of Figure
2is splitted into the old clausal tree CT_ (F) and a new clausal
tree whose root is labelled with the clause C (both these trees
are shown in the right-hand side of figure 2). In this way, we need
to compute only the number of truth assignments of the new
clausal tree. To do this counting, the notion of increment for a
given clausal formula F and an arbitrary clause C is defined.

Notation 4.1. If F= {C, ..., C; }, where ; > 1, is an
arbitrary clausal formula over V and C is an arbitrary clause over

g
V, then inc(C,F)=2(-1)*'. ¥  dif(C Ci,...C;)
5=0 158, Zis] 2

is called the increment of F with clause C.
As a remark for Notation 4.1, if s = 0, then the term from

CIT(F), is the total number of elements of the sum which occur
in inc (C,F), that is | + [:% (1 J+ [zJ Ny

s 1

Similar to CT_(F), the nodes whose dif are 0 need not
be generated anymore. In other words, at step 2) of the above
inductive construction, only the nodes labelled with (Cfﬁ , dif (C,

Ci... Ci, G )) are generated, where j e {k+1, ../} and
dif (C, C,-/,..;,, G, G ) 0. We call this tree without these nodes
the ordered labelled reduced clausal incremental tree associ-
ated with C and F and denote it as CIT (CF) = (N_, E_).

Considering the formula F from Example 3.1, let us
compute inc,(C, F), where C, = {p,q}. Since dif (C,,C,) = 0,
dif (C,C,) = 0, dif (C,C,) = 0, and dif (C,,C,) = 0, we get that
inc,(C, F) = dif (C,) + dif (C,C,) = -2* +2 = -2. Theorem 4.1
allows us to say that, by adding C, to F, the number of truth
assignments decreases with 2.

In the following, the main result is presented. It allows the
computation of the determinant of a new clausal formula using

the already computed determinant of the old clausal formula.
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Theorem 4.1. (incremental computing)Let F={C,, ..., C }
be a clausal formula over V and let F'= {C, _,, ..., G, }, k>1,
be a clausal formula over V. Then:

a) the following identity holds:

(1) det( Fu F') = det,(F)+ inc,(C,,,, F)+ inc,(C,, ,Fu
{Cz }) ... +inc (Cz «r Fu{C., }u.. U{C wi)

b) let us denote by N, N' the number of nodes of the
reduced clausal trees corresponding to det ( F).det(Fy F),
respectively, and by N,,, N, ,..., N, the number of,nodes of

i il

the reduced clausal incremental trees corresponding to
inc,(C,,,, B, inc,(C ,,, FW{C,,,}), ..., and inc(C, ., ,Fu{C,,}
u...u{C,,, }), respectively.Then the following identity holds:

()N =N+ N, + Npo+ ... +N,,...

ltem b) of incremental computing theorem says that the
incremental computation of the determinant of a formula con-
taining new clauses is optimal. That is, no new nodes are
created in the new incremental clausal trees, except the ones
which would have been created in the non-incremental ap-
proach. Subsection 6 of the Appendix contains a comparison of
experimental results between the incremental and the non-incre-
mental approaches.

The incremental computing theorem can be used to prove
that the increment is in fact a negative integer, that is, inc, (C,
F )= 0. This holds since the number of truth assignments of
Fy{C} is less or equal than the number of truth assignments
of F, i.e. det,(Fy{C})< det,(F).

Similar to Theorem 4.1, the decremental computing of the
determinant can be proved.

Corollary 4.1. (decremental computing) Let = {C,, ...
C‘l} be a clausal formula over V and F'= {C, , ..., C. } be any
subset of F. Then det,( F - F') = dez‘(F) inc (C ,F - F)-
inc,Ci, F-FulCi }) - -inc(Cy,F - Fiu{C; }u u{C, 1)

The next theorem points out some properhes useful for
speeding up the computation of the increment. Like in case of
the determinant, these properties refer to the monotony of the
increment over the variables alphabet and over the clauses set.
Thus, item a) refers to the monotony over V, items b) and c) refer
to the case when the increment is zero, and items d), €), and
f) refer to the inclusion rule and monotony over the set of
clauses. For example, items b) and c¢) are important because the
clauses of increments zero do not contribute to the value of the
determinant, so they can be removed. Item f) proves that the
increment of smaller clauses will be less than the increment of
bigger clauses. Since an increment is a negative integer, it
follows that is better to have small increments in order to get
a new determinant close to zero.

Theorem 4.2. [et F={C,, ..., 01 } be a clausal formula
over V. Then:

a)lf V'is an alphabet such that V C V'and C an arbitrary
clause over V, then inc, (C, F)=2"1"inc, (C, F);

b)If det(F) = 0 and C an arbitrary clause over V, then
inc,(C, F) = 0;

¢)if C;,, and C,,, are two (new) clauses over V and
inc,(C;+,,F) = 0, then inc,(C;.,,F) = inc,(C,,,, Fu{C, })

d)if Ais an atomic variable, Az V, then inc, , ., {{A}, F)

lnch{A}({A}F) = -det (F);
C, ... C}) =0 and det (C,

e)If C,cC, then inc,(C, {C,
C,...G)= detV(Cz, G C,)+ inc,(C,, {C,, C, ..., C, });

NifC,., andC,,, aretwo (new) clauses over V and
C,.,cC,,, theninc,(C, ,F)<inc,(C, ,.F).

Le1= Y2 Tk

5. Incremental Counting SAT Versus

Incremental SAT

Since an (incremental) SAT solver finishes its execution
after detecting the first truth assignment, it is expected that a
(incremental) SAT solver to be faster than a (incremental) count-
ing SAT solver. In contrast, an (incremental) counting SAT solver
will count how many truth assignments exist for a given clausal
formula. However, there exist large classes of problems where
an (incremental) counting SAT solver outperforms a SAT solver.
Re-design and debugging problems are such examples. A suc-
cessful example is a redesign approach for timing constraints
verification of real-time systems [AnCO04].

As we mention in the Introduction, to prove that a formula
¢ is a theorem, a common technique is to show that its nega-
tion (that is, — ¢ ) is unsatisfiable. Most of the techniques
reduce to show that a corresponding propositional formula Fis
unsatisfiable. If F' is satisfiable, then we need to do some
changes (add or delete some subformulas). For simplicity, sup-
pose we need to do only additions of clauses (removal of clauses
can be done similarly, Corollary 4.1). We assume that we have
to choose one clause out of all possible clauses C”, C,’k,
which is nothing else but the set of allowed clauses to be added
according to the system specification (figure 3). In other words,
the goal of this approach is to provide a (minimal) set of clauses
C, ..., Csuch that Fu {C,}u...u{C,} is unsatisfiable. Note that
Fu {C}u..u{C} is also called a solution. The solution wil
correspond to a new formula, say —¢’, which implies that ¢’is
a theorem for the new system specification. We may say that¢’is
a correction of ¢ after some allowed changes.

Atypical (incremental) SAT solver can only check whether
FuC, nar B Y C, are satisfiable or not. But it cannot predict
which of these k clauses lead to the solution. Instead, an (incre-
mental) counting SAT solver is able to precisely decide which of
the formulas  FuC, ,, ..., Fu Cy,lead faster to a solution. This
can be done efficiently by considering j from {1, ..., k} such that
inc,(C,,,F) s the minimum among all mcrements inc,(C, .F),

, inc,(C, ,F). In other words, the sub-tree of root C, - will be
selected for the next iterations (the one drawn with ticker lines,
Figure 3). According to Theorem 4.1, we get that C,. IS the best
candidate which minimize det (FuC, ), ..., det (PU C,,).- That
is, det,(FuC, ) = det,( F)+ /ncv(C, ,F)|s the mlnlmum possmle
determinant. So, C, ,; Tepresents the optimal solution for C,. The
iteration can continue similarly with C,, ..., C. This procedure
continues until the determinant becomes zero, which corre-
sponds to the unsatisfiability of the formula (Theorem 3.1). In
conclusion, a SAT solver needs to visit an exponential number
of nodes in the worst case (that is, the total number of nodes
of the tree in Figure 3), while our #SAT solver needs to visit only
a linear number of nodes in the worst case.

The above algorithm has a finite number of iterations
according to monotonies of the determinant (Lemma 3.1) and
the increment (Theorem 4.2). At any iteration, the determinant
of F is decreasing because the increments of value zero are
not taken into consideration. Moreover, the minimum increment
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Figure 3. Counting SAT versus SAT

is chosen at any iteration, so based on the monotony, we may
say that this algorithm is optimal.

Another advantage is the re-use of the old value of the
determinant to the next iteration. The former computations are
not repeated. As mentioned in Theorem 4.1, the number of nodes
for computing the increment is optimal. Obviously, the incremen-
tal approach is much faster than the non-incremental approach.
A comparison between these approaches has been presented
the next section.

6.Incremental and Non-

incremental Approaches

This section presents some issues for an efficient imple-
mentation, as well as the experimental results of our incremental
approach against non-incremental approaches.

The practical efficiency of the algorithm can be improved
by adopting the numerical coding. First, we will not actually
,create” any node of the clausal trees, but all the computations
needed to get the determinant will be done using the same
memory. The second improvement is that the computations of
powers of 2 can be avoided, by considering just its exponents.

The clausal formula = {C,, ..., C;} is said to be uniformly
random generated with the probability p = (P, by 1-p,-p,)ifin
any clause G, any literal L appears positive or (exclusive)
negative, with the probability p,, respectively p, or does not
appear in G; with the probability 1- p.- p,

We have implemented the determinant and the increment
computation algorithms. We did some experiments ran on a
Pentium IV, 1.6GHz, and measure the time spend (in seconds)
by the incremental computing of the determinant. For simplicity,
we considered only the addition of two new clauses to the initial
clausal formula F= {C,, ..., G } over the same set of variables
V=1{A, .. A, } Moreover, we suppose that the probability of
the literals in the clauses equals to ;-5 For short, we denote
CT (Fu{C, }u{C;,,}) by C rea CIT (G, ,,F) by ClT.g, and
CIT, (G2, Fu{C,, ,}) by CIT 2,. Our testing instances refer to
different values for (. 1),

For example, looking at the first lines of the tables, (=10
and ! = 20), we may validate item b) of Theorem 4.1, namely
28831 = 12655+ 1760+ 14416. Moreover, the time needed for
computing det,(Fu{C,, }u{C,, }}) is approximately equal to the
time consumed by the computation of det (Fu{G.,}),

inc,(C,,; , F), and inc (Cy., Fu{C, ,}) altogether.

For the first line, we may see that 0.16=0.06+ 0.01+ 0.05.
One to memory caching, the time needed for the incremental

Table 1. The non-incremental approach

B oy CTred(F)
(n, 1) A\'m’nl‘n‘;l' Time | Number | Time
of nodes | (sec.) | of nodes | {sec.)
1 (10,20) | 28831 0.16 | 12655
(15, 25) 70255 | 0.37 | 17799 0.13
(20, 40) 136714 | 3.32 | 99671 | 2.48
(25,45) 78468 218 49800 [ 1.50
(30, 60) 178531 | 7.70 | 141663 | 6.03
(40,75) 150693 | 11.64 | 111837 | 877
""" (50.100) | 312276 | 39.26 | 268790 | 33.57
[ (100,200 | 2258144 | 2147 | 2080358 | 1992
Table 2. The incremental approach
& p il CEF¥ s
(n,1) Number | Time | Number | Time
of nodes | {sec.) | of nodes z’hw_t.l}f
(10.20) 1760 | 0.01 | 14416 | 0.05 |
(15.25) [ 17800 | 0.11 | 34636 | 0.21
(20.40) 19832 0.39 7911 | 0.41
(35.15) | 6258 0.16 | 224100 | 0.71 |
(30.60) 12700 0.83 | 24168 1.28
(40, 75) 13667 142 | 25189 [2.19
(50,100) | 3701 0.67 [ 39785 1566
(100,200 | 165867 | 144 | 11919 | 30.48

method may be even better than the non-incremental method.
The incremental algorithm can be said to be efficient since the
experimental work ,shows® that the time complexity of our
approach is ,in tandem® with the space complexity (item b of
Theorem 4.1).

7. Conclusion

We showed how our incremental counting SAT approach
is a better alternative to an usual SAT solver when considering
the challeging problems of re-design or debugging of systems.
Our previous works [AnC04, ACCLO5] have demonstrated that
this approach is indeed a promising technique. Our #SAT solver
can identify deterministically the solution, while a SAT solver
needs to compute non-deterministically all the possible candi-
dates for the solution (figure 3).

An interesting future work is to assign each new redesign
choice occurrence a probability that may replace the designer
guidance. This is especially useful when it is no possible to
consult the designer for approval.
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