
I ncremental Theorem Provi ng

Abstract. Theorem proving is a challenging task for f ormal verification
of systems. There exist many efforts to efficiently solve this problem,
based for example on rewriting rules and/or SAT-based techniques.
We propose an alternative of SAT-based techniques by using instead
a counting SAT-based technique (denoted also #SAT) A SAT solver
tests if a propositional formula F has at least one truth assignment,
while a #SAT solver returns the number of truth assignments of F.
For efficiency reasons, many of the existing SAT-based techniques are
applied incrementally, that is, using the satisfiability of some sub-
formulas to determine the satisfiability of a given formula. While there
exist incremental SAT sllvers, to the best of our knowledge, our paper
presents first time the theoretical background for the incremental
counting satisfiability problem. Being a m0re general technique than
the existing works, our apprlach can be used to handle all the
problems solved by SAT solvers. Moreover,our #SAT solver
outperforms a SAT solver when considering the challeging problems
of re-design or debugging of systems.

1. Introduction

Theorem proving is a chal lenge task useful for formal
verification of the correctness of large systems, Since 50's,
mathematicians started implementing theorem provers by con-
structing truth tables for statements in propositional logic. Dur-
ing its long and impressive history, there were many efforls to
solve theorem proving efficiently and automatically, including
Herbrand universe [DaP60], resolut ion [Rob65], T-unif icat ion
[Plo72], structural induction [BMS75], term rewrit ing [Ble77],
binary decision diagrams [811186l, timely resolution [AbMB6],
and SAT-based techniques [Hor98]. There is stil l a competition
between these known methods as well as a need for new
efficient techniques. Given a particular class of systems, a
method may work better than others. For example, considering
systems expressed in modal logics, it seems that SAT-based
decision procedures are more efficient than decision proce-
dures based on translation methods [GGST00].

In the efforlto get the benefits of all known techniques, it
seems that the best way is to combine some of them. For small
state space systems, model checking represents a better alter-
native for establ ishing the correctness. Thus, many theorem
proving systems integrate model checkers as decision proce-
dure. The f irst model checker based on BDDs (Binary Decision
Diagrams, [BryB6]) was SMV [smv]. A reimplementation and
extension of SMV is NuSMV, which was designed to be an open
architecture for model checking. Recenfly, NuSMV2 combines
the BDD-based model checking component and a SAT-based
model checking component.

Similarly, , ,smvsat" [smvsat02] is a symbolic model
checker which includes bounded model checking, proof-based
abstraction, and SAT-based model checking. The ,,smvsat* is a
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proof generating SAT solver meaning that in the unsatisfiable
case it produces a proof of the empty clause using resolution
steps.

A similar professional tool is CVC (Cooperating Validity
Checker) [BDBGS04], which decides logical val idi ty of quanti-
fier-free formulas in classical first-order logic with equality,
enriched with ceftain background theories. The background theo-
ries are for linear real arithmetic, arrays, and inductive datatypes.
For propositional reasoning,CVC incorporates Chaff [MMZM200'1 ],
a state-of-the-art SAT solver. Moreover, CVC can emit indepen-
dently checkable proofs of valid formulas.

Another industr ial theorem prover is ICS (lntegrated
Canonizer and Solver, [ ics05]). ICS is a standalone decision
procedure for a combination of several theories. lt incorporates
a SAT solver, and is able to discharge propositionally complex
formulas over the decided theories.

0ne  more  impress ive  theorem prover  i s  Thunder
IAFFHPV05], a bounded model checker based on a SAT tech-
nique. Thunder is useful to verify complex temporal properties
on large RTL designs. The novel idea there was the introduction
of the expl ici t  induction, which makes the induction scheme an
explici t  paft of the specif icat ion.

The motivation of 0ur paper is to introduce a new tech-
nique based on incremental counting SAT, as an alternative for
the SAT-based technique. We show that our technique may
outperform the SAT-based approaches, when considering the re-
design and debugging of systems. To the best of our knowledge,
this paper presents for the first time the theoretical background
of incremental counting SAT technique. Our experiments [AnC04]
show that this is a promising technique as an alternative for SAT
approaches.

2. Incrementality for SAT and Counting SAT
Problems

The SAT problem (Given a propositionalformula F. is there
a truth assignment for.f ?)was the first discovered ' :-complete
problem [Coo71]. Stephen Cook proved that any decision prob.
lem Pe ,'l Pcan be polynomially transformed to the SAT problem.
The SAT problem can be used to solve other problems, l ike for
example the famous open problem ,, F versus ' , , ,  u, 0r
equivalently the inclusion ) Pc P or \  P{ '  This important
problem was formulated independently by Stephen Cook and
Leonid Levin in 1971 [Coo71, Lev73]. The original paper [Lev73]
may be hard to f ind, but i ts English translat ion as well  as many
interesting stories about the subject can be found in [ra84]. The
Clay Mathematics lnst i tute included this problem (pversus ' \P/
in its list of Millennium Prize Problems and have designated a
prize of $1 mil ion [C1a2000].
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Given a boolean formula E an a lgor i thm using the
satisf iabi l i ty of some sub-formulas of F to determine the
satisfiability 0f 4 is said to be incremental. Such incremental
algorithms are efficient because when checking the satisfiability
of 4 only the provided final results for the sub-formulas ,of Fare
used, and not the recomputation of the whole F. The basic
incremental satisfiability problem of propositional logic has been
introduced in [Hoo93] as follows: ,,Given a propositionalformula
F, check whether Fv{C} is satisfiable for a given clause C' .
The algorithm presented in [Hoo93] solves the SAT problem
using the Davis-Logemann-Loveland's procedure [DLL62] com-
bined with a backtracking strategy that adds one clause at a
time. For example, a SAT solver able to handle non-conjunctive
normal form constraints and incremental satisfiability was pre-
sented in [WKS01]

As stated in [GaJ79, Pap94], the counting (enumeration)
problems are another type of interesting problems, but they
might be intractable even iI P=,,'\ P , lt is stil l unknown whether
these problems can be solved at any fixed level of the polyno-
mial-time hierarchy [Sto77]. A counting problem P determines
how many solutions exist, not just an answer ,,Yes/No" like a
decision problem. The same concept of completeness can be
defined for counting problems. A counting problem P is in #Pif
there is a non-determinist ic algori thm such that for each in-
stance I the number of guesses that lead to the acceptance of
I is exactly the number of distinct solutions of P regarding I and
such that the length of the longest accepting computation is
bounded by a polynomial in the length of |  [Val79]. The #P-
complete problems are at least as hard as \ P -complete
problems, but probably much harder. The problem of counting
the number of truth assignments (denoted by #SAT) is'. Given a
propositional formula F , how many truth assignments exist
for F?. lt was proved to be #P-complefe [Sim75, Val79].
0bviously, an algorithm for solving #SAT problem can also solve
the SAT problem. An important subclass of propositionalformu-
las was described in [CrH96] by a #SAT Dichotomy Theorem.
It was shown that if all logical relations used in generalized
#SAT are affine, then the number of truth assignments can be
computed in polynomial time, othenrvise the problem is # P-
complete [CrH96].

There exist already algorithms for solving the #SAT prob-
lem [wa89, Dub91, Tan91, And95, Zhag6, And0a]. In this paper
we are addressing to a more chal lenging problem, namely the
incremental #SAT problem: ,,Knowing the number of truth as-
signments of F, what is the number of truth assignments af
pu{C}, for any arbitrary clause C?".Io be best of our knowl-
edge. there is no similar work deal ing with this part icular prob-
lem. Because 0ur algori thm deals with the incremental side of
the problem, this is definitely more eff icient than exist ing algo-
r i thms, so there is no need to count again the number of truth
assignments for the whole [ Our investigation was occasioned
by efforts to solve timing constraints verification for real-time
systems [JaMB6, JaMB7, AnC04, ACCLOSJ, but it has application
whenever one wishes to check again for logical inferences after
enlarging a propositional knowledge base. In fact, the technique
described in this paper is useful not only for verification ano
debugging of real-time systems but for any kind of systems in
general,

We now briefly sketch how to model re-design and debug-
ging problems using incremental counting satisf iabi l i ty in com-
parison with any arbitrary SAT solver. Usually, to prove that a
formula 0 is a theorem, a common technique [ChL73] is to
show that its negation (that is, - p ) is unsatisfiable. Most of
the techniques reduce to show that a corresponding proposi-
t ional formula Fis unsatisf iable. l f  -  q/ 1s not unsatisf iable, then
re-design and debugging approaches make sense to be consid-
ered. These approaches refer to do some allowed changes
(addit ions 0r removals) in - o such that the new formula - a'
becomes unsatisfiable. 0f course, the changes in - Q corre-
spond to some changes into the proposit ional formula F , Let
us denote with SF,, . . . ,  SF*,the new proposit ional formulas
which can be added and with UFlhe unchanged subformula of
tr The goal is to check which of formulas UFuSF,,.,. ,UFuS{is
unsatisfiable (if none of them is unsatisfiable, we need to con-
t inue the process of changing clauses), without re-computing
the satisfiability of UF .ln this way, we are dealing with a real
incremental approach. The number of truth assignments of
UF v5F, . . . ,  UF USF-guides to the decis ion of  which formula
to choose: the one with minimum number of truth assignments.
Note that this information is not provided by any existing SAT
solver. lnstead, our approach benefits of a soft oI monotonocity,
that is, once the formula gets new subformulas over the same
alphabet of propositional variables, then the number of truth
assignments is decreasing (detai ls in Section 5).

Section 3 presents useful concepts and notations. Section
4 describes the main results for solving the incremental count-
ing satisfiability problem. The efficiency of our incremental #SAT
approach against a classical SAT approach is presented in
Section 5, The conclusions and references end this paper.

3. Prel iminaries
In this section we introduce some concepts, examples

and notations [And95, And04] to allow the text to be self con-
tained. For a f ini te set A, l4l  denotes the number of elements
of 4. The number of all sets with i elements from a set with n

elements is  denoted n1l  i , ' ] ,  and i t  is  equal  to  1, ,  - , ; , r ,  where

r t t = 2 . 3 . . . . r t .

Let I 1,' be the propositional logic over the finite set of
atomic formulae (known also as propositional variablesi de-
noted by V = {4,, Ar, ..., A,}. A literalL can be an atomic formula
A (positive literal), or its negation ---r A (negative literal). We put
T=--Ar t  L  =4 andT= Ai f  L  = - rA and we denoteV(L)-N(U
= 4. AnV function S'.V -> {0,1} is a structure (known also as
assignment, substi tut ion, instance, 0r model) and i t  can be
uniquely extended in ii ,io to f(this extension will be denoted also
by S/.The binaryvector (! , ,  . . . ,  l )  is a truth assignment for
Fover V = {A,, . . . ,  A} rt f  SF)= 1 such that S(l /  = yi,V i  € {1 ,
..., n]. A formula Fis called tautology iff for any structure S, it
followsthat S( F )=1. Aformula Fis called satisfiableiff there
exists a structure S for which S( F )= 1. A formula F is cal led
unsatisfiable (or contradiction) ffi F is not satisfiable. Any
propositional formulas F€ li-JP can be translated into the
conjunctive normal form

(CNF) :  p  =  (1 , , , v . . . v1 , , , , , )A  , . . ^ (1 , , , v . . ,V l7  , , / ,  where
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L,,are l i terals. ln this paper, we shal l  use a set representation
F = { {L, . ,  , . . . ,  L , . , , } ,  . . . , {L , , , ,  . . . ,1 , . , , , } }  to  denote CNF. Any f in i te
disjunction of literals is a clause. The set 0f atomic formulae
whose literals belong to clause Cand formula Fare denoted by
V(C) and y ( F), respectively. A formula in CNF (finite set of
clauses) is called a clausal formula. So, the above formula can
be  deno ted  as  F=  {C , , . . . ,C , } ,  where  C i  =  {L i . t , . . . , 1 ; , , , /  ( f rom

now 0n, 1>l is assumed). We denote the empty clause, the one
without any literal, by . A clause with only one literal is called
a unit clause.

To solve the incremental #SAT problem, we need some
new notations. Let C1,..., C,be clauses over [/(s 2 1). We denote
by ,zu(C. , ..., C) the number ol missing variables from the union
c1 u . . .  scs, that is, l {A I Aev -v (c1 u.. uc,)}\ .  For example'
if V = {p, q, r/, then u, u({p}, {Qil = 1 and ,,,r({p,Q}, {q,r})=
0.

The notation difr(C,,...,C/ points out if there is a,differ-
encein the clauses C1, ..., C, regardless the presence of a literal
and  i t s  nega t ion .  Tha t  i s ,  i f  ( : t ,  j € {1 , . . . , s } ,  r * . i ,  such  as  l
Le Ci andLeCi) or if (r t €{1,...,s}, such as C;=r ), Ihen dif ,,(C,,
. . . ,C) = 0. Othenruise, difup,,. . . ,C,) = 2" 'v (c, '  'c,)

For example,i l  V= {p, q, r},  then difu({p,q}, {Q,r}) = 0 and
difu(P], {q}) =2.

We denote by detr(C,, . . . ,C / the number 2tvt- l  ;1,J+t

l < i <
d i f v p i , ,  . . . , C i , ) ,

; - t

and we called it the determinant of the set of clauses /C,,
. . ,  C,]. ln fact, the determinant represents the number of truth

assignments of the given clausal formula (Theorem 3.1). We
called this number as determinanf because of its similarities
with the classical determinant from linear algebraic systems
(both represent very useful numbers for those concepts). Be-
cause Ct, . . . ,  C,can be permuted in any order, we may denote
detu(C,, ..., C) as detu(F /, where F = {C,, ..., C,}. Next, useful
propefties of the determinant of a clausal formula are presented
in Lemma 3.1 [And04]. They referto lhe monotony of the de-
terminant over the variables' alphabet and over the set of crauses.
Thus, item a) refers to the monotony over l/, item b) and c) refer
to the empty and the unit clause, and i tems d), e), and f) refer
to the inclusion rule and monotony over the set of clauses.

Lemma 3.1. Let F = {C,, ..,, C,} be a clausal formula
over V. Then:

subset of {1, ..., I }, s e r,.:,., then:
t l).d|ty u,o,(C^,,," ', Cr, {A}) = detr(Cu Q  i , " ' ,  C , )
'i1 d'i,Jii^|,'p, , i; ,-{A}) = d;iiit, ,' . ,'!c,,)
['ir 

"i,'uid'ii,ii, 
r*' ; i r;;; ! io r"i"id, in i ri" 1,, c,,

then detr( r) = detu(p - C,).
e)let C , r, and C t _2 b-e the two (new) clauses over V. lf

c , *,.? , -, tltn det, (pu {c t -,}) < det,(r'u {c r _2});
f) let C , *, be a new clause over V. Then deir( p v {C , r,})

< det , (F/ .

The next result makes the link between the determinant of
a clausal formula and its satisfiability [Andg5, And0a].

Theorem 3.1. (lnverse Resolution Theorem) Let FelL"L!
over V. Then:
(i )F is unsatisfiabte €) detu(F / = 0;
1ii)F is satisfiable edetr(F)*0. Much mlre, in this

case there exist detr(F) number of truth assignments for F.
For a systematic computation of the determinant of a

clausal formula F = {C,, ..., C} over V, it is better to use an
ordered labelled clausal tree.fhe full clausaltree CT(F) = (N,
F/, where /V is the set of nodes and F is the set of edges,
associated with F may be inductively constructed:

1)the zero (ground) level contains only a ,,dummy" r00t,
that is an unlabel led node;

2)the first level contains, in order from the left to right the
sequence of nodes labelled with:(C,, difu(C,)),...,(C, ,dif/Cr ))

3)for a given node u on the level k labelled with (C, ,
difupi,..., C,)),the level k+1 has the following direct descendants
in this ordei, from the leftto the right: (C;^*,,dif1c,,,.., Q,C,^r,il,
'.., (Q ,dif v0 i ,"', C ,, ,Cr )).

The number of nodes of the full clausal tree CT(F), without
taking into account the ,,dummy" root, is the total number of
elements of the sum which occur in det,,(F). This number is
exponent ia l  in  l ,  namely i  l ; ,  i i  

' , .  ' ,  .  : t ' , .  As a remark,  d i f , ,
(Ci , , . . . ,Ci . )= 0 impl ies d i f , (Ci , . . ,  Ci , ,  C, ,  , )  =  0.  l t  fo l lows

that only the nodes labelled with (Ci,+ t, difr(C,,, .,., Ci^Ci,l,tor
w h i c h  d i f v Q i  , . . . ,  C , , ,  C , , ) * 0 a n d  7 e  { k + 1 , . . . ,  I  J ,  s u f f i c e
to be generated for computing the determinant. The tree for
which the nodes labelled with 0 are not generated is called the
ordered labelled reduced clausaltree, and it is denoted as CT,,o(
F) = (N*nE*r), where N,,oand E,,oarc the set of nodes and edges,
respectively. The reduced clausal tree has equal or fewer nodes
that the ful l  clausal tree.

The next example points out an ordered labelled reduced
clausal tree attached to a particular clausal formula usefur for
computin g the determinant.

Example 3.1. Let F = {C,,C2, C, Cn, Cu} be a clausal
formula oyer V = {p, -Q, r, t}, where C,: lp_Q}, Cr= {p, r, t},
cr= {F,7, t}, C4= {q, r}, andCu= {p, q, r} Thin cT,,nf) is
in figure 1.

4if  41, . . , ,  A,,,are atomic variables,,,€ I in, A,, . . . ,  A,,,eV, l .then det v u {4/ .,0,,,r(F)= z"'.detu (il;

b) i f  =  i  e  {1, . . . ,  I } ,  such as C =, ; ,  then det ,  (F )=0;
c)if A is a new atomic variable, AEV, and {,,, ...,i, } a J:

Figure 1. The ordered labeled reduced clausal tree

Adding the labels of the even levels and subtracting the
labels of the odd ones, we obtarn detrf ) = 2a- (22+ 2t+ 21+ 22+
21)+(2"+ 2o+ 2t+2a)- Zo = 6. According to Theorem J.l, F is
satisfiable with 6 truth assrgnments. ,

In [BiL99], it is mentioned that the algorithms for counting
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truth assignments have something in common: the more vari-
ables have both negated and unnegated occurrences, the better
is the performance of the algorithms on clausal formulae. This
is approximately equivalent to say that CT,,owill have much fewer
nodes than Cf (because many nodes in the full tree will have
ther dif ,labelled by 0). Computation of the determinant is faster
for such cases.

4.Solving the Incremental Counting Satisfi '
abi l i ty Problem

Since CT-/F)may have an exponential number of nodes
depending on the number of clauses of F , whenever a new
clause C is added, it is better to compute only the nodes which
contain Cand not the whole tree CT,,o(Fr{C}). But, the clausal
tree CT,,o(F)attached to F= {C,, ...,C1 } cannot be used directly
for incremental computing oI detr(F) since the most recent
clause (that is C1)is spreaded as leaves oI CT,,,(F), like in the
left-hand side of figure 2.

A

To have a real incremental approach, we need a way to
split the new clausal tree into the initial tree and a new tree
containing the recent leaves, In other words, we need a proce-
dure to move the nodes of CT,,o(0 such that Cr apPears as a
label only in the most recent clausal subtree, and to use the (old)
value of det (F). This procedure is highlighted in Figure 2, which
shorvs that the new clausaltree from the left-hand side of Figure
2 is splitted into the old clausal tree CT,,oF)and a new clausal
tree whose root is labelled with the clause C (both these trees
are shown in the right-hand side of figure 2). ln this way, we need
to compute only the number of truth assignments of the new
clausal tree. To do this counting, the notion of incrementlor a
given clausal formula F and an arbitrary clause C is defined.

Notat ion 4.1.  l f  F= {C, ,  . . . ,  C1 } ,  where r>1,  is  an
arbitrary clausal formula over V and C is an arbitrary clause over
V, then incn(C, F ) = >( - t) '.' .

s=o  t s  i / . . . 1 i , s  I

is called the increment of F with clause C.
As a remark for Notation 4.1, it s = 0, then the term from

incn(C, F)is-dif,(C/. Similarlike detuQ,the arguments of inc,
(/, except the first one, can be permuted in any order. That is,
given ( i1 , ...,i,)an arbitrary permutation of {1 , ...,t},then incu(C,
Ci,, . . . ,  Ci,) = incr(C, C,, . . . ,  C, / ,  where Cis an arbitrary clause
over t/. Moreover, the increment of any clause Cand any clausal
formulaF= {C,,...,C, }over l/can be represented by an ordered
labelled clausal incremental tree. The full clausal incremental
tree CIT(C, F)= (N, F/ associated with C and Fmay be inductively
constructed, where lVand Edenote the set of nodes and edges,
respectively:

1)the first level contains the clause Cas root, labelled with
(c,dif ,(c));

2)tor a given node u on the level & where k>1, label led
with (C,n, difvQ, Ci,,..., Ci^ )), the level k+7 has the following
direct descendants in this order,from the left to the right.(C',*r,
d i f vP ,  C i , . . . ,  G^ ,  C i , r t ) ) , . . . ,  (C , ,d i f v0 ,  C i , . . . ,  C i ^ ,  C , ) ) . "

The number of nodes of the full clausal incremental tree

Figure 2. The incremental splitting of the clausal tree

CIT(F), is the total number of elements of the sum which occur
i n  incu(C,F / ,  tha t  i s '  .  f  1  I .  I  i  I - '  I  i  I  = ' ,

l r /  l . r /  \ / l

Similar Io CT,,oF), the nodes whose dif are 0 need not
be generated anymore, In other words, at step 2) of the above
inductive construction, onlythe nodes labelled with (C;,* t, difv(C,

C,,. . . ,  C,l  Q D are generated, where 7 e {k+ 1, , . . ,1} and
difvQ, Ci,,..., Cit Ci,! 0. We call this tree without these nodes
lhe ordered labelled reduced clausal incremental free associ-
ated with C and F and denote iI as ClT,,oP,F) = (Nnr E*).

Considering the formula F from Example 3.1, let us
compute incr(Cu,F/, where Cu = fp,qJ. Since difvQ6,C,) = 0,
difvQ6,C) =0,difvQ6,C) =0, and difr(Cu,C) = 0, we get that
incuprp) = difuQ) + difr(Cu,C) = -2' +2 = -2. Theorem 4.1
allows us to say that, by adding CuIo F, the number of truth
assignments decreases with 2.

In the following, the main result is presented. lt allows the
computation of the determinant of a new clausal formula using
the already computed determinant of the old clausal formula.

(''*

l - '
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Theorem 4.1.(incremental computing)Let F ={Cr, ..., C t}
be a clausalformula over V and let F'= {Ct+r, ..., Ct*k}, k>1,
be a clausal formula over V. Then:

a) the following identity holds:
(1) det,( F u F') = detu(F)+ incr(C ,*, , F)+ incup r+2 ,Fu

{C ,*,})+ ... +incr(C r +r< , Fu {C ,*,}u ...u{C ,,*J).
b) let us denote by N, N' the number of nodes of the

reduced clausal trees corresponding to detr( p),detr( F v F,),
respectively, and b! N,*,, N,*r..., N,*rthe number of-nodes of
the reduced clausal incremental trees clrresponding to
incr(c,*,, r), incr(c 42, Fv{c r*,}), ..., and incr(c t*t ,Fdcnt}
u ... u {C,*r., }), respectively.Then the following identity holds:

(2) N'= N+ N,*,+ N,*r+...*f f ,**.
Item b) of incremental computing theorem says that the

incremental computation of the determinant of a formula con-
taining new clauses is optimal. That is, no new nodes are
created in the new incremental clausal trees, except the ones
which would have been created in the non-incremental ap-
proach. Subsection 6 of the Appendix contains a comparison of
experimental results between the incrementaland the non-incre-
mental approaches.

The incremental computing theorem can be used to prove
that the increment is in facta negative integer, that is, incu(C,
F )< 0. This holds since the number of truth assignments of
F v{C} is less or equal than the number of truth assignments
ot F, i.e. detr(Fu {C}) s detu(F).

Similar to Theorem 4.1 , the decremental computing of the
determinant can be proved.

Corollary 4.1. (decremental computing) Let p= {C,, ...,
C,) be a clausal formula over V and p'= {C i,, ..., C,} be awr
sUbset of p. Then detn( n - F,) = det,( p)-'incnQ'i,F - F)-
inc,(Ci, F - F'v{C i,})- ... -inc,(C i1F - F'u{C;,}u...u{Ci. r}).

The next theorem points out some prop'erties useful for
speeding up the computation of the increment. Like in case of
the determinant, these propefties refer to lhe monotony of the
increment over the variables alphabet and over the clauses set.
Thus, item a) refers to the monotony over V, items b) and c) refer
to the case when the increment is zero, and items d), e), and
f) refer to the inclusion rule and monotony over the set of
clauses. For example, items b) and c) are important because the
clauses of increments zero do not contribute to the value of the
determinant, so they can be removed. ltem f) proves that the
increment of smaller clauses will be less than the increment of
bigger clauses. Since an increment is a negative integer, it
follows that is better to have small increments in order to get
a new determinant close to zero.

Theorem 4.2. Let F= {C,, ..., C,} be a clausal formula
over V. Then:

a)lf V'is an alphabet such that V CV,and C an arbitrary
clause lver V, then inc,,(C, F)-2t l'1vtinc, (C, F);

b)lt detv(F) = 0 and C an arbitrary clause over V, then
incr(C, F) = 0;

c)i f  C,*, and C,*2 are two (new) clauses over V and
incu(Ci*r ,F)  = 0,  then incu(Cl*z,F)  = incu(Cl*z, r 'u{C, . , } ) ;

d) if A is an atomic variable, Ae V, then incu, u,{{A}, n )
= incuuioy({-A}f ) = -det,(F);

^ e)lf C,eCrth-en incr(Cr, {C,, Cr,..., C,}) = 0 and detr(C,,
Cs, ..., C,) = detr(C, Co ...;C,1+ incu(C,, {C, Cr, ..., Cr}):

0 if Ct*t and C1*2 are two (new) clauses over V and
C , *,e C ,*, , then incu(C , *r,F)s incu(C , ,r,F ).

5. Incremental Gounting SAT Versus
Incremental SAT

Since an (incremental) SAT solver finishes its execution
after detecting the first truth assignment, it is expected that a
(incremental) SAT solver to be faster than a (incremental) count-
ing SAT solver. In contrast, an (incremental) counting SAT solver
will count how many truth assignments exist for a given clausal
formula, However, there exist large classes of problems where
an (incremental) counting SAT solver outpeforms a SAT solver.
Re-design and debugging problems are such examples. A suc-
cessful example is a redesign approach for timing constraints
verification of real-time systems [AnC0a].

As we mention in the Introduction, to prove that a formula
/ is a theorem, a common technique is to show that its nega-
tion (that is, - Q ) is unsatisfiable. Most of the techniques
reduce to show that a correspondin! propositional formula Fis
unsatisfiable. lf F is satisfiable, then we need to do some
changes (add or delete some subformulas). For simplicity, sup-
pose we need to do only additions of clauses (removal of clauses
can be done similarly, Corol lary 4.1). We assume that we have
to choose one c lause out  of  a l l  poss ib le c lauses C, , , , . . . ,C, , r ,
which is nothing else but the set of allowed clauses to be added
according to the system specification (figure 3). In other words,
the goal of this approach is to provide a (minimal) set of clauses
C1, . . . ,  Q,such that Fu {C,}u...u{Cl} is unsatisf iable. Note that
p, {C,}u...r{C,i is also called a solution The solution will
correspond to a new formula, s?! -9', which implies that e'is
a theorem for the new system specification. We may say thatq'is
a correction of q after some allowed changes.

A typical (incremental) SAT solver can only check whether
Fu C,,, ,  . . . ,  Fu Cloatl  sat isf iable or not. But i t  cannot predict
which of these kclauses lead to the solution. Instead, an (incre-
mental) counting SAT solver is able to pr,ecisely decide which of
the formulas FuC,,, ,  . . . ,  F u C,,nlead fasterto a solut ion. This
can be done efficiently by considering yfrom {1, ..., kJ such that
incr(C,,,,F)is the minimum among all increments incu(C,,,,F/,
..., incr(C,,rF).ln other words, the sub-tree of root C,, will be
selected for the next iterations (the one drawn with tickbr lines,
Figure 3). According to Theorem 4.1, we get that C,, is the best
candidate which minimize detr(Fu C,.,), . .., det,( Ftr C1).- That
is, detr(FuC,,) = det/ n)+ incr(C,,, fl is the minimum possible
determinant. So, C,,, represents th'e optimal solution for C,. The
iteration can continue similarly with Cr, ..., C,. This procedure
continues until the determinant becomes zero, which corre-
sponds to the unsatisfiability of the formula (Theorem 3.1). In
conclusion, a SAT solver needs to visit an exponential number
of nodes in the worst case (that is, the total number of nodes
of the tree in Figure 3), while our #SAT solver needs to visit only
a linear number of nodes in the worst case.

The above algorithm has a finite number of iterations
according to monotonies of the determinant (Lemma 3.1) and
the increment (Theorem 4.2). At any iteration, the determinant
of F is decreasing because the increments of value zero are
not taken into consideration. Moreover, the minimum increment
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Figure 3. Counting SAT versus SAT

is chosen at any iteration, s0 based 0n the m0n0t0ny, we may
say that this algorithm is optimaL

Another advantage is the re-use of the old value of the
determinant to the next iteration. The former computations are
not repeated. As mentioned in Theorem 4.1 , the number of nodes
for computing the increment is optimal. 0bviously, the incremen-
tal approach is much fasterthan the non-incremental approach.
A comparison between these approaches has been presented
the next section.

O.lncremental and Non-
incremental Approaches

This section presents some issues for an efficient imple-
mentation, as well as the experimental results of our incremental
approach against non-incremental approaches.

The practical efficiency of the algorithm can be improved
by adopting the numerical coding. First, we will not actually
,,create" any node of the clausal trees, but all the computations
needed to get the determinant will be done using the same
memory, The second improvement is that the computations of
powers of 2 can be avoided, by considering just its exponents,

The clausalformula F= {C,, ..., C} is said tobe uniformly
random generatedwith the probability p = (p,, pr,1- pi p2)rt in
any clause Q , any literal I appears positive or (exclusive)
negative, with the probability p/, respectively 4, or does not
appear in C; with the probability 1- p,- pr

We have implemented the determinant and the increment
computation algorithms. We did some experiments ran on a
Pentium lV, 1.6GHz, and measure the t ime spend ( in seconds)
by the incremental computing of the determinant. For simplicity,
we considered only the addition of two new clauses to the initial
clausal formula F = {C,, ..., q } over the same set of variables
V = tA,, ..., 4, J. Moreover, we suppose that the probability of
the literals in the clauses equals t0(*.* *). For short, we denote
CT"oFu{Ct* }u{C 1*t }) bV CTi,'{,ClT*/q+ t,F ) by ClT,a , and
CIT*/C.+2, Fu{C,*il by CIT id. Our testing instances refer to
different values tor (n, r1.

For example, looking at the first lines of the tables, (,= 10
and 1 = 20), we may validate item b) of Theorem 4.1, namely
28831 = 12655+ 1760+ 14416. Moreover, the t ime needed for
computing det/Fv{c,*}u{c1*2}) is approximately equal to the
t ime consumed by the computat ion of  det , (Fu{q* t } ) ,

iltr(C,r, , F), and incu(Cr*zFr{g*, }) altogether.
For the first line, we may see that O. t FO.OO+ 0.01 + 0.05.

0ne to memory caching, the time needed for the incremental

Table 1. The non-incremental approach

7 . Conclusion
We showed how our incremental counting SAT approach

is a better alternative to an usual SAT solver when considering
the challeging problems of re-design or debugging of systems.
Our previous works [AnC04, ACCL05] have demonstrated that
this approach is indeed a promising technique. Our #SAT solver
can identify deterministically the solution, while a SAT solver
needs to compute non-deterministically all the possible candi-
dates for the solution (figure 3).

An interesting future work is to assign each new redesign
choice occurrence a probability that may replace the designer
guidance. This is especially useful when it is no possible to
consult the designer for approval.
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