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Abstract. A method and algorithm is presented for solving
the shortest-route problem. New algorithm is applicable to the case
when the generalized length (distance, cost, time, etc.)
associated with each arc is nonnegative, interval or real. An
interval algorithm is developed on the base of midpoint and
half-width representation of intervals and the new algorithm is
more efficient than the interval algorithm that could be proposed
by using traditional interval description. The complexity of the new
algorithm is evaluated.

1. Introduction

There are many reasons why network models, methods
and algorithms are widely used, for instance, they exactly
represent the real world systems, they  facilitate extremely
efficient solution to large real problems, they can solve
problems with significantly more variables and constraints
than can be solved by other optimization techniques,
etc. [22].

Network consists of special points called nodes and
links connecting pairs of nodes called arc (or branch or
edge or link). A network is called acyclic network, if it does
not have any loop. The acyclic algorithm is easier than the
cyclic algorithm, because it yields fewer computations
[10,25,26].

Consider a connected network G = (N, A), where
N  = {1, …, n} is the set of the nodes and
A = {(i, j), (k, l), …, (y, z)} is the finite set of arcs joining
nodes in N. The cardinality of N and A are denoted by |N|
and |A| respectively, and |N| = n, |A| = m. Let d(i) is the
distance label and i ∈ N; d(i, j) is the generalized length
(distance, time, cost, etc.) of arc (i, j) ∈ A;  Pn is the directed
route from source node s to destination node n and s,
n ∈ N; the length d(Pn) of the route Pn is given by

∑= ),()( jidPd n  such that (i, j) belongs to Pn, where by
convention d(Ps) = 0; the predecessor of node j that is
denoted by p(j), is started from node i of the single arc
(i, j) ∈ A in the tree terminating at j [7,8,25].

The Shortest-Route Problem (SRP) is concerned with
determining the shortest route from an origin to a destination
through a connecting network, given nonnegative distances
associated with the respective arcs of the network
[3,9,22,23,25].

The SRP is a classical network problem, and it is the
most popular problem/model among all network problems

[3,9,23]. In literature, Dijkstra algorithm [2] is considered a
classical algorithm for SRP. Last five decades many variants
of Dijkstra algorithm have been developed, for example, an
alternative method for SRPs is proposed in [1], which
reduces the upper bound of running time, and makes
empirical comparisons for a certain class of networks.
Reaching, Pruning, and Buckets are the three concepts
that are used in these methods. Reaching is a label setting
scheme, reaching allows a network to be pruned during
computation of some of its nodes and/or branches, and
bucket is a list of nodes whose labels fall within a given
range.

In [2], the author assumed n nodes, and the existence
of at least one route between any two nodes. Two
fundamental problems were considered: to obtain the tree
of minimum total length between the n nodes, and to find
the route of minimum total length between two given nodes.

The interval SRP  is concerned with determining the
interval shortest route from an origin to a destination
through a connecting network, given the interval
generalized length between nodes i and j is a nonnegative,
interval and interval numbers are represented by Dij,

ijD  = [ ijd , ijd ] [4-6,11,12].
The aim of this paper is to develop simple and effective

method and algorithm for solving the SRP for acyclic
network under parametric uncertainties. The analysis of
the complexity of the interval algorithm will be discussed.

2. Related Work

An interval algorithm is proposed for solving SRP
under parametric uncertainty in [4]. The exact values of the
parameters of a given network are unknown, but upper and
lower limits within which the values are expected to fall are
considered. The interval algorithm is developed on the
base of midpoint and half-width representation of intervals.
Considerable unification and simplification are obtained by
using the mean-value lemma. This interval algorithm is
applicable when the parameters of a given network are
interval and real. The interval algorithm is applicable when
the given network is acyclic. Updated version of this
algorithm is presented in [6,11].

An interval algorithm for cyclic network is presented
in [5,11]. Final versions of interval methods and algorithms
are given for solving the well-known SRP for acyclic and
cyclic networks in [12]. The formulation of the interval
shortest-route algorithm for cyclic network is an interval
extension of Dijktra algorithm. The author considered the
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interval generalized length between nodes i and j is a
nonnegative, interval number. The new methods and
algorithms are developed on the base of midpoint and half-
width representation of intervals. These interval algorithms
are applicable when the parameters are interval and real.
The complexity of these algorithms is evaluated.

Both method and algorithm are more efficient than the
method and algorithm that could be obtained by using
traditional interval description and comparison, and the
complexity of such an algorithm will be too high from the
point of view of computation and practical applications.

A method to find the most reliable route in a given
network is given in [25]. The probability of an arc is certain.
The author converts probability to log probability. Then
the shortest-route algorithm is used to find the shortest
distance (log). Finally, this log probability is converted
back to non-log probability. There are some limitations of
this method. If the probabilities of a given network are with
higher degree of uncertainty, this method can not be used
to solve the problem. The author has not considered the
complexity analysis of this method. To convert probability
to log probability, then log probability to probability, he
needs more operations. So, the complexity of the method
will be higher.

Five algorithms are proposed for solving the most
reliable route problem in finite fuzzy acyclic and cyclic
networks in [12,13]. The uncertainty about the reliability of
a route is represented in a possibilistic setting. The
plausibility of not being stopped on a segment of the route
is described using the corresponding possibility. The
concept of interval possibility is introduced to increase the
degree of uncertainty. These algorithms maximize the
possibility of not being stopped on the route between an
origin node and a destination node. The complexity of
these algorithms is evaluated. Brief description of the
algorithms is given below:

1. The first and second algorithms are based on the
usage of “and” and “product” operators to determine the
strongest route, that is, the most reliable route in a finite
fuzzy acyclic network. The first algorithm takes less time
for computations than the second algorithm. So, the first
algorithm is better suited for large network.

2. The third algorithm uses multiplication of interval
possibilities and yields directly the largest interval possibility
of not being stopped on the route.

3. The fourth and fifth algorithms are based on the
concept of interval possibility for acyclic network and cyclic
network, respectively. Only once at the beginning, the
transformation of the initial representation of intervals
possibilities into logarithmic form is accomplished, and then
the simple midpoint algorithm for solving interval acyclic
algorithm and interval cyclic algorithm is applied,
respectively.

A variant of SRP has considered in [17,18,19].
Consider a directed network G = (N, A), where N is the set
of nodes and A is the set of arcs, and s , n ∈ N. The costs

(travel times) of each arc is given by an interval. Intervals
represent ranges of possible costs. An interval  [dij , dij] is
associated with each arc (i, j) ∈ A, and 0 ≤ dij  ≤ dij. A route
H from source to destination is said to be a Robust Shortest
Route (RSR) if it has the smallest (among all routes from
source to destination) maximum (among all possible
scenarios) robust deviation.

In [19], the authors proposed a branch and bound
algorithm for the RSR problem with interval data. The
new algorithm is based on a lower bound and on some
reduction rules which work by exploiting some properties
of the particular branching strategy. The algorithm starts
by initializing the structures of r, the root of the search-
tree, which is then inserted into the set of nodes to be
examined. An iterative statement is then repeated until the
search-tree has been completely examined. The authors
tested their methods on different networks: random
networks, real networks, etc.

In [17], the authors presented an exact algorithm for
RSR problem with interval data. The algorithm is based on
the conjecture that a RSR is one of the first routes in a
shortest route ranking in a simple directed network, where
the cost on each arc (i, j) is equal to dij . They adopted the
algorithm which is based on the concept of route deletion,
and also implemented the Dijkstra algorithm to evaluation
of the robustness cost of a given route. The algorithm
works in the following way: a procedure ranks routes in the
simple directed network. For each route retrieved, the re-
spective robustness cost is calculated. The algorithm stops
when a lower value for the robustness costs of the routes
not yet examined matches an upper bound for the same
routes. The limitations of the proposed algorithm are as
follows: a) if the robust route from s to t is long, all the
routes from s to t will tend to be long, and the shortest
route algorithm will be slower, b) if the robust route from
s to t is long, more alternative routes will exist between s
and t, and the algorithm need more iterations to converge,
c) the new method obtains poor results on problems based
on Karasan networks. The main advantage is that the
algorithm gives the optimal solution of some network
problems.

In [18], two versions of novel exact algorithms are
given for the RSR problem with interval data, and these
algorithms are based on Benders decomposition. The
Benders decomposition approach is the best one for
networks with low arc density, and the branch and bound
method given in [19], is the most promising while the arc
density increases. The authors made an experiment on real
road networks that showed that the Benders decomposition
approach is the most appropriate for this type of networks.
Moreover, the choice of the most appropriate approach is
strictly connected with the characteristics of the problem
to be solved.

In [24], the authors examined a specific SRP in acyclic
network, in which arc costs are unknown functions of
certain environment variables at network nodes, and each
of these variables evolve according to an independent

,
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Markov process. The vehicle can wait at a node (at a cost)
in anticipation of more favorable arc costs. First, the authors
developed two recursive procedures for the individual arc
case, based on successive approximations, and policy
iteration. Several procedures have been used to determine
which of the environment states at each node are green
(the vehicle departs immediately) and which are red (the
vehicle waits), based on successive approximations, policy
iteration, and parametric linear programming methods. The

complexity of this method is )( 32 nKKnO + , where n is
the number of nodes and K is the number of Markov states
at each node.

Sometimes single objective function may not be
sufficient to characterize many practical problems completely.
In a real transportation network several objectives, i.e.,
time, cost, distance, etc. can be assigned to each arc. If
only one objective is given on each arc, the solution of the
problem can be obtained by classical shortest-route
algorithm, given in [2]. When more than one objective is
given on each arc, the solution of the problem can not be
obtained by classical shortest-route algorithm. The shortest
route may be not wise to use because it could be expensive.
To deal with a real problem with more than one objective,
new variants of classical shortest-route algorithm have been
developed, which are called the bicriterion or multi-criteria
shortest-route algorithms [12,14-16,27].

In [27], the authors proposed a method to solve the
fuzzy SRP. The weighted additive method is introduced to
solve a multiple objective integer programming problem,
which met the requirements of the Network LPs constraints.
Weights in the weighted additive model show the relative
importance of the goals. For simplicity, the authors assumed
that the importance of the four objectives is the same.
Therefore, all objective functions were reformulated as a
single objective function, and one need not to add the
constraints of integer programming. The fuzzy shortest route
was obtained when the model met the requirements of the
Network LPs constraints. This new approach reduced the
complexity of solving the basic fuzzy shortest route
formulation. The author assumed that the importance of all
objective functions is same.

Mixed Integer Linear Programming (ILP) approach is
proposed in [12,14,15] to solve the bicriterion network
problem. The method is based on the approach, proposed
in [28], for solving multicriterion continuous problems, which
introduces fuzzy sets of the values “near to the optimal
values” for each criterion. Consider a network G = (N, A),
where N = {1, …, n} is the set of the nodes and
A = {(i, j), (k, l), …, (y, z)} is finite set of directed arcs
joining nodes in N. Assume we have |A| = m arcs. Each arc
(i , j) ∈ A has two attributes, for example,
dij = (d'ij, d''ij). d'ij is the distance between node i and node
j, d''ij is the travel time between node i and node j.

In [15], Mixed ILP approach is proposed to solve the
multicriterion network problem. The method also is based
on the approach, proposed in [28], for solving multicriterion
continuous problems, which introduces fuzzy sets of the

values “near to the optimal values” for each criterion.
Consider a network G = (N, A), where N = {1, …, n} is the
set of the nodes and A = {(i, j), (k, l), …, (y, z)} is finite
set of directed arcs joining nodes in N. Assume we have
|A| = m arcs. Each arc (i, j) ∈ A has three attributes, for
example, dij = (d'

ij, d
''
ij,d

'''
ij). d

'
ij is the distance between node

i and node j, d''
ij is the travel time between node i and node

j,  and d'''
ij is the travel cost between node i and node  j.

3. Theoretical Preliminaries

An interval number is a pair of real numbers ( r , r),

with r  ≤ r. The interval analysis concepts are introduced
in [20,21]. Let R be an interval. We will denote its lower

(left) endpoint by r  and its upper (right) endpoint by r ,

so that ],[ rrR = .

The set of all intervals will be denoted by )(RI . Let
R, S ∈ I(R), and let ∗ denote any of the interval arithmetic
operations, ∗ = +, −, ×,  /. Then the set theory definition
of the interval arithmetic operations is as follows:

(1) srSR ∗=∗ { | Rr ∈ ,
It follows that the sum of  R = [r, r], S = [s, s]

denoted by R + S, is the interval
R + S = [r, r] + [s, s] = [r + s, r + s] .
The product R × S is again an interval
 R × S = [min{rs, rs, rs, rs}, max{rs, rs, rs, rs}].
For R, S > 0 the definition reduces to
(2)   R × S = [rs, rs]
The half-width of an inter R = [r, r]  is the real

                    1
number,  w (R) =    (r – r) , and the midpoint of  R is the
                    2

real number,  m(R) = ( r + r)/2.
Using the set inclusion relation ⊆ and the relation ≤,

we can define the supremum-like (sup) and infimum-like
(inf) elements:

(3) sup(R, S) = [sup(r, s), sup(r, s)]

(4) inf(R, S) = [inf(r, s), inf(r, s)]

To compare intervals the concept of metric ρ is
introduced. For each R and S in I(R) the distance ρ is
defined by

                    1
(5) ρ(R, S) =      {r − s + r − s}

                          2

Now the intervals R and S can be compared. The
following important results hold in [4].

R ≤ S iff (if and only if)
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operation +, the metric ρ as defined in (5), and the
conditions (6) or (10), (11).

Let Dij and Uj denote the interval distance between
nodes i and j, and the shortest interval distance from the
source node (node 1) to node j, correspondingly. The
destination node is node n.

The interval values of Uj = [ uj, uj], j = 2, n may be
computed recursively using the interval formula

(16)   Uj = min {Ui+ Dij}
             i

where Ui+ Dij = [ ui+ dij, ui+ dij] , and U1 = [0, 0]. The
operator min{} is performed on the basis of the metric (5)
and the conditions (6) or (10), (11). This way an interval
extension of the well-known shortest-route algorithm for
acyclic network is obtained.

We present a more effective algorithm, using the
midpoint and half-width notation, (13b) and the conditions
(12), (14) and (15).

Let uj denote the real shortest distance from 1 to node
j.  The real values uj, j = 2, n are computed using the
recursive noninterval formula

(17) uj = min {ui+ dij}                   i

where dij is the midpoint of Dij, u1 = 0.
To obtain the optimal solution of the SRP, it is

important to identify the nodes encountered along the route
and the corresponding interval widths. The following
labeling of node j is used

(18) node j Label = [uj, k, Δkj]
where k is the node immediately preceding j that leads to
the shortest distance uj, and Δkj is the half-width of Dkj.

Further it is assumed that the network is described
using interval notation with midpoint and half-width (13b).
It is also assumed a natural consecutive numbering of
nodes from 1 to n, such that the number of any node i,
i ∈ N | 1 is greater than the number of any immediately
preceding node k, k ∈ N, and where N is the set of nodes,
and Ni is the set of all preceding node.

The generalized steps of the interval acyclic algorithm
are summarized as follows:

Step 1. Assign the label [0, −, 0] to the source
node 1. Set  j = 1.

Step 2. Set  j = j + 1. Compute the shortest distance
from source node 1 to node j, by using recursive formula
(17).  Label node j by using (18).

If  j < t repeat step 2.

Step 3. Obtain the optimum route H* between nodes
1 and node n, starting from node n and tracing backward
through the nodes using the label’s information.

Step 4. Obtain the half-width Δ(Un) of the interval
solution Un, adding the corresponding Δij encountered along
the optimum route H*

Δ(Un) = Σ  Δij.
           

   
(i, j)∈H*

(6) ρ (R, inf(R, S)) ≤ ρ (S, inf(R, S))
In a similar way,
R ≥ S iff

(7) ρ (R, sup(R, S)) ≤ ρ (S, sup(R, S))
Two intervals R and S are said to be equivalent

R ~ S if the following condition holds:
(8) ρ (R, sup(R, S)) = ρ (S, sup(R, S))

(9) ρ (R, inf(R, S)) = ρ (S, inf(R, S))
It means that | r - s| = |s - r|, i.e., the midpoints of R

and S coincide.
In practical cases when R ~ S and one have to make

a choice in the sense of ≤, the condition (6) should be
modified. We say that R ≤ S if

(10) ρ (R, inf (R, S)) = ρ (S, inf (R, S)) and r  ≤ s
or

(11) ρ (R, inf (R, S)) = ρ (S, inf (R, S)) and r  ≤ s
We use, further, the notation R ≤ S in the usual

sense, when r  ≤ s  and r  ≤ s , and in the case of inclusion,
R ⊆ S, when ρ(R,inf(R, S)) ≤ ρ (S,inf(R, S)).

The conditions (6) and (7) lead to the following result,
as proven in [4].

Let m(P) denote the midpoint of P, m(P) = ( p + p )/2.
Then

(12) R ≤  S iff m(R) ≤  m (S)

Let [m(R), Δ(R)] denote the interval R, R = [ r , r ],

where m(R) = ( r  + r )/2 is the midpoint of R, and

Δ(R) = ( r  - r)/2 is the half-width of R, so that

(13a) R = [m(R) - Δ(R), m(R) + Δ(R)]

(13b) R = [m(R), Δ(R)]

The following result is easily shown:
Let R, S, and T ∈ I(R). Then T = R + S iff
(14) m(T) = m(R) + m(S)

(15) Δ(T) = Δ(R) + Δ(S)

4. Method and Algorithm

In many practical cases, the parameters of the network
models are not exactly known, they are uncertain. A typical
way to express these uncertainties in the edge weights is
to utilize tools based on probability theory, interval
mathematics, fuzzy sets theory, etc.

The aim is to find the shortest route between a source
node 1 and any destination node t in a network with n
nodes, nt ≤ . An interval extension of the well-known
acyclic algorithm can be obtained, using the interval
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Step 5. Obtain the interval solution Un,
Un = [un –Δ(Un), un + Δ(Un)].

The algorithm provides the shortest route between
node 1 and any node j, j ≤ n in the network.

4.1. Analysis of the complexity of the interval
shortest route algorithm for acyclic network

Consider the network in figure 1. The cardinality
|Nj| of the set of entering arcs Nj into node j is (j – 1),
|Nj| = j – 1. To calculate  (shortest distance from 1 to node

j, nj ,2= ), we need the following addition(s) and
comparison(s):

u2 = u1 + d12 ⇒ We need only 1 addition to determine
u2.

u3 = min {(u1 + d13), (u2 + d23)} ⇒ We need only 2
additions and 1 comparison to determine u3.

4u  = min {( 141 du + ), ( 242 du + ), ( 343 du + )} ⇒
We need only 3 additions and 2 comparisons to determine
u4.

5u  = min {( 151 du + ), ( 252 du + ), ( 353 du + ),

( 454 du + )} ⇒ We need only 4 additions and 3 compari-
sons to determine u5.

.

.

.
u(n-1) = min {(u1 + d1(n-1)), (u2 + d2(n-1)), (u3 + d3(n-1)), ...,

(un-2+d(n-2)(n-1))} ⇒ We need only (n – 2) additions and
(n – 3) comparisons to determine u(n-1).

nu  = min {( ndu 11 + ), ( ndu 22 + ), ( ndu 33 + ) ,…,

( )1)(2(2 −−− + nnn du ), ( nnn du )1()1( −− + )} ⇒ We need only
(n - 1) additions and (n - 2) comparisons to determine .

Hence, to obtain uj we need only (j – 1) additions and
(j – 2) comparisons.

The number of additions is ∑
=

−
n

j
j

2
)1( .

The number of comparisons is ∑
=

−
n

j
j

2
)2( .

 

1 3

n-1

4

5

2

n

Figure 1. Acyclic network n node

We set χ = j – 1 and δ = j – 2, and we obtain:

∑
−

=

1

1

n

χ
χ  = 2

)1( nn ×−

The total number of additions is ϑ,

(to get total half-width) + 2

additions to obtain the traditional interval representation.
The total number of comparisons is ε,

                        .

So, the running time of the algorithm is bounded by
O(addi = ϑ, comp = ε).

Note that if the interval formula (16) were used, then
each comparison of two intervals V = [v, v] and W = [w, w]
includes the following comparisons and additions:

Step 1. if v ≤ w  → set Lab = V, go to the next interval
comparison ⇒ 2 comparisons;

Step 2. if  w ≤ v    → set Lab = W, go to the next
interval comparison ⇒ 2 comparisons;

Step 3. if V = W (v = w  and v = w) → set Lab =
V, W, go to the next interval comparison ⇒ 2 comparisons;

Step 4. if  v ≤ w and v ≤ w → set Lab = V, go to the
next interval comparison ⇒ 4 comparisons;

Step 5. if  w ≤ v  and w ≤ v  → set Lab = W, go to
the next interval comparison ⇒ 4 comparisons;

Step 6. if  v ≤ w  → set ρ1 = ρ (V, inf) = v – w;
set ρ2 = ρ (W, inf) = w – v  ⇒ 2 comparisons, 2 additions;

if ρ1 < ρ2 → set Lab = V
else set Lab = W go to the next interval comparison

⇒ 1 comparison;
Step 7. if  w ≤ v  → set et ρ1 = ρ (V, inf) = v – w;

set  ρ2 = ρ (W, inf) = w – v  ⇒ 2 comparisons, 2 additions;
if ρ1 ≤ ρ2 → set Lab = V
else set Lab = W ⇒ 2 comparison.
To compare two intervals 1 to 21 comparisons and 0

to 4 additions are needed. So, if we develop interval shortest-
route algorithm based on traditional interval representation,
the complexity of the algorithm will be very high.

Comment

The analysis of the complexity is very important for
two reasons: practical reasons and theoretical reasons.
The first reason can be summarized as a need to obtain the
execution-time that are needed in the implementation of
algorithm. The second reason for the complexity analysis
of the algorithm is the desirability of quantitative standards
that would allow the comparison of more than one algorithm
designed to solve the same problem.

The analysis of the complexity of the interval shortest
route algorithm is to provide upper bounds on the amount
of computational work (comparisons (comp) and additions

ε =

ϑ = (n – 1) × n + (n – 1)
2

(n – 2) × (n – 1)
2

(n – 2) × (n – 1)
2δ = .Σ

δ=1

n−2
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[9, 1 , 1]

[8, 1 , 1]
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[17 ,  4, 1]

[ 22, 4, 2 ]

[26, 5,  1 ]

(addi)) involved in the application of interval shortest route
algorithm for acyclic network.

It is assumed that a comparison and an addition
require approximately the same unit of time. The worst-case
conditions for the execution of an algorithm means that the
required number of elementary operations to terminate the
algorithm is maximum [22].

4.2. Numerical Example
Consider the network in figure 2. The generalized

length of the arcs are uncertain and given by intervals, in
the form (13b).

Using the algorithm, as described in section 4, we
obtain the results for nodes 1, 2, …, 7, that are put on
table 1. The computations for all iterations are summarized
directly on figure 2.

The optimal solution is obtained tracing backward
from node 7 and using the label’s information

7 → [26,5,1] → 5 → [17,4, 1] → 4 → [10,1,1] → 1.
The half-width of the optimal solution is as follows:

31111445577 =++=Δ+Δ+Δ=Δ .
Hence, U7 = [ 26 – 3, 26 + 3] = [23, 29].
The algorithm provides the shortest interval distance

between node 1 and any other node. In figure 2, the solid
lines show the obtained the interval shortest route (the
desired route) between the source and the destination node
namely 1 → 4 → 5 → 7.

Figure 2.  Acyclic network with midpoint and half-width
notation

Note that if the interval formula (16) were used, at
node 7, for example, we would have to compare two
intervals:

[15, 19] + [8, 10] = [23, 29] and
[19, 25] + [7, 9] = [26, 34].

5. Conclusions

In this paper, we proposed a method and an algorithm
for solving shortest-route problem for acyclic network based
on midpoint and half-width representation of intervals (13b),
and the conditions (12), (14), and (15). The new interval
algorithm is applicable when the parameters are real or
interval valued.

This approach yields simple and computationally
effective algorithm, when the exact values of the parameters
are unknown, but upper and lower limits within which the
values are expected to fall are given.  Instead of comparing
intervals using the distance (5) and infimum-like intervals
(4), the conditions (10) and (11), the algorithm compares
real values, i.e., the midpoints of the intervals.

The complexity of the interval acyclic algorithm is
evaluated, it is a polynomial algorithm.
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