
Cost Evaluation of Methods for Query
Processing in Deductive Database Systems

Key words: cost evaluation; cost metrics; deductive databases; algo-rithms.

Abstract. T.he paper describes: the important characteristics of anextensional database; a sample intensional database; soii-sampleq.ueries, whose processing witt be evaruated; a cost ietiir,-oised onthe number of intermediate facts generated. 0n this iiiii, a cost
comparison between welFknown methods for query priieising ana
a new bottom-up method, deveroped by the auinoi ias oiin made.

1 . Introduction

The classical metho d of asympthotic notation for cost
evaluation of algorithms cannot be applied for cost evaluation of
methods for query processing in deductive database systems
(DDBS), because the inference engine does not operate directly
with the data structures, which hold the facts. Between the
inference engine and the data structures lies an isolation layer.
This layer is the relational database management system (RDBMS).

Therefore, the efficiency of a query processing method for
DDBS can be evaluated only regarding the *uy ihir method
formulates and orders the queries to the RDBMS. This affects the
number of intermediate facts, the RDBMS must generate by
answering these queries, The smaller this number is, the better
the efficiency of the query processing method appears to be
proves to be becomes. Recail, that not all intermediate facts take
part in producing the final answer.

The paper describes:
- the important characteristics of an extensional database;
- a sample intensional database, used further for cost

evaluation of the query processing methods;
- some sample queries, whose processing (translation)

will be evaluated;
- the cost metrics, based on the number of intermediate

facts generated.
0n this basis, a cost comparison between weil-known

methods for query processing and a new bottom-up method,
developed by the author, has been made.

Characteristics
the Extensional Database

The sample extensionar database, used further, is shown
on figure 1.

This directed graph can be stored as a binary relation,
where domain elements hold information about nodes and tuples
hold information about edges.

V. lltchev

1-\

Figure 2

According to it, the important data charactics are:
- b - base. This is the number of nodes that have no

antecedents.
- h - height. This is the length of the longest chain in R.

Figure 1

PAR(PARENT, CHILD) = {<a,f>, (b,g), (c,g), <c,h>, <d,i>,
(0, i) , (g , j) , < f ,k>, <f , l> , <g, l>, (h , f f i) , (h , f l) , < i ,n>, (i ,0) ,
(j ,0) , <k,p>, <k,q>, (l ,Q) , < l , r>, <m,r>, <m,s>, ([,s) , <o, t>,
(0,u) , <q,v>, (Q,V) , (f ,X) , (S,X) , (S,y) , <t ,y>, <u,z>] .

Apparently, there is a recursive closure between the at-
tributes PARENT and cHlLD. The reason to pick out such an
example is to test how the differnt methods will process recur-
sive sets of rules.

Additionally, nodes are arranged in rayers. Each edge goes
from a node of one layer into a node of the next layer. ln other
words, this formal model does not represent cycles and short-
cuts. Nodes in the first layer have no incoming edges. Nodes in
the last layer have no outgoing edges. All other nodes have at
least one incoming and one outgoing edge.

A formal model of such type of data is shown on figure 2.

a b c d e
o a a o a\ \/\ v\."/\/ ̂./\ry

./\/\/\/..,4.
" / \ . \ . / \ / " . / -

2.
0f

l 0 I 2007 inforrnation techr.r ologpe s
and control

The number of rayers is (h+1). They are numbered from 0Io h,where b is the number of nodes in layer 0.- D - duprication factor. This is the average number ofincoming edges into a node.
- F - fan-out factor. This is the average number of outgo_

ing edges from a node,
- E - expansion factor, calculated as E = F I A.
It is assumed that the data are random, with an uniform

distribution. Thus, F and D obtain average values.
More detaired description of this moder can be found in

t1l

Additional definitions and derivations
Let gsum(E, h) denote the sum of the elements of ageometric series of ratio E, with length (h+1), thus:
gsum(E, h) = 1 + E + E2 + E3 + .. . + Eh.

Let n(i) denote the number of nodes at rever i. According
to the definition for expansion factor:

n(i+1) = n(i)-E, and
n(i) = 5.5i'

Let N denote the total number of nodes. Then:
N = b-(1 + E + E2 + E3 + .. . + En) = b.gsum(E, h).

Apparenily, the number of edges entering rever i is n(i-
1)-F, and the number of edges reaving rever i is n(i)-F. Thus, the
total number of edges, denoted as A, is:

A = bF + bEF + bE2F + bE3F + .. . + bE0-1)F
= b F (1 + E + E 2 + E 3 1 . . . 1 [o - r))
= b"F*gsum(E, h-1).

Let h' denote the average level. Then:

l (n . \ | t r n \h '=h- l l) (i -n (i)) l , * l -h - l t t (' *o*e ,)J rN I
L \ i = r) J L [; i '

') j
Let a and b be nodes from different rayers. rf b is reachabre

trom athen an arc exists between these two nodes. But b may
be reachable from a through several paths. Even in such case
there is only one arc between both nodes. ln other words _ fact
b is derived from tact a only once.

The number of arcs of rength k going from rever i to revel
(i+k) is:

n(i+k) = n(i)Ek.

Let a(k) denote the number of ail arcs of rength exacfly k
in the whole binary relation. The value of a(k) is

-obtaineo
by

summing all the arcs of length k that enter ievel i for i = k to
h. Thus:

a (k) = n (k) + n (k + 1) + . , . + n (h)
= n(k).(1 + E1 + E2 + .. . + En-n) = n(k)-gsum(E, h_k)
= 5''Ek*gsum(E, h-k).

Let P denote the totar number of paths in the whore binary
relation. In contrast to the number of arcs, here we can not use
the number of nodes on an intermediate rever, because each of

these nodes has been reached via more than one paths, and onthe current level each of these paths will be extended with F newedges. In other words - the duprication factor does not act inthis case. Therefore, the total number of paths is:
p = [*[i*gsum(F, h_1).

3. Sample Intensional Database

Let par (X,y) denote the extensional database predicate,
which corresponds to the binary reration, shown on'figure 1.

Set of rules I
anc(X,y) :- par(X,y).
anc(X,y) :- par(X,Z), anc(Z,y).
It defines rhe ancestorrerationship as: X is an ancestor ofY either if X a parent of y or if X is a parent of someone Z, who

is an ancestor of y.
The second rule has been rewritten without reft-recursion,

because the Prorog approach has arso been choosen forthe cost
comparison. prorog uses the backtracking argorithr, *hirh .un
make the inference engine falr into an intinite loop, whire pro_
cessing left-recursive rules.

Set of rules ll
sgc(X,y) :- eq(X,y).
sgc(X,y) :- par(X1,X), sgc(X1,y1), par(y1,y).
lt defines the same-generation-cousins rerationship as:

either X and Y is one and the same person or the parents of X
and Y are same-generation cousins too.

The predicate eq(X,y), can be implemented through a
biuld-in function or through a relation in the database, with the
following tuples:

EQ = {<a,a>, <b,b>, (c ,c) , <d,d>, . . . , <z,z>1.

4. Sample Oueries

Query 1
:- anc(b,Y).
The adornment is anio'. Thus, the inference process for-

lows the direction of data recursion.

Ouery 2
:- anc(X,v).
The adornment is ancrb. Thus, the inference process g'es

in the opposite direction to the data recursion.

Query 3
:- sgc(v,Y).
The adornment is sgcbr. Here the inference pr'cess goes

up and down over the data graph.

5. Cost Metrics

As mentioned in the introduction, the inference engine
does nol operate directry with the data structures, which hold the
facts. Between the inference engine and the data structures lies

inforrnation technolo€rtes
andcontrol

l l
I 2007

an isolation layer, which is the RDBMS. Therefore, the efficiency
of a query processing method for DDBS can be evaluated only
regarding the way this method formulates and orders the queries
to the RDBMS. The smaller the number of intermediate facts, the
RDBMS must generate by answering the queries is, the better the
efficiency of the query processing method.

Regarding this, the number of successfur inferences (or
successful firings) has been chosen as cost measure. For a rule
in the form:

P : - Q l Q 2 , . . . , Q n
a successful firing is (id, t, t1, t2, ,.. , tn), where t1, t2, ...

, tn are tuples i 'Q,, Qz, . . . , Qn and t is a tuple in p. l t denbtes
that the truth of t1, t2, ... , tn is used to establish that t is true,
by applying the given rule. The identifier id is used because it
is possible, that the same inference is made repeatedly. Thus,
the cost function measures the size of the intermediate results
before duplicate elimination.

The conjunction of the predicates in the rule body is trans-
lated into a join-operation. By recursive rures, this join-operation
is repeatedly applied to the temporal relation, corresponding to
the recursive predicate, lt is assumed, that the cost for each
application is proportional to the size of the temporal relation,
Hence, by measuring the size of this intermediate relation over
all steps, a cost is obtained, that is proportional to the actual
cost.

6. Gorrections in the Formal Data Model

The formal data model and the corresponding method for
cost evaluation, described in [1], give an incorrect answer by:

- stratified methods, applied to queries with bound argu-
ments;

- the final selection which must be applied at the end of
a non-stratified method.

For example, according to [1], the number of facts in the
answer of query:

:- anc(b,Y).
is equal to the number of nodes in a tree, rooted at b,

which is:
E + E2 + E3 + .. . + Eh = gsum(E, h).
The authors of [1] came to this result by simply taking the

formula for the total number of nodes (see chapter 2) and
substituting. the base with 1 . This is not correct because the
formula for the total number of nodes is appricabre for average
values of F and D. But when we start from a single node, then,
for the first several layers, we have E = F, because the duplica-
tion factor exerts influence on the formula earry when the number
of nodes, reached on the subsequent layer, increases to a
significant value.

More frappant in [1] however is the case with the query:
:- anc(X,v).
where the authors assume that, because the inference

process goes in the opposite dir:ection, it is enough to substitute
E with 1/E, in order to calculate the number nodes, rooted at v.
Thus, this number shall be:

1 1 1 1
=; t ---: * ---; * * ----- .
E ' E ' E* Eh

But, this is a convergent series, which has as upper bound
1. Hence, at most one fact (one node) will be generated, which
is fully incorrect.

Thefore in such cases (stratified methods or final selec-
tion), I propose to define two different expansion factors:

Eoo*n - when the inference process follows the expan_
sion of facts;

E,o - when the inference process goes in the opposite
direction of the expansion of facts.

6.1. Defining Eoo,,n

The behaviour of Eoo*n iS illustrated on fig.3., i.e on the first
step Eoo*n=F, and then it decreases exponentially to F/D.

According to [10], an exponential function can be de-
scribed as:

f (X) =3*gb*(x-c) 1 f l

where:
c - translates graph horizontally;
b - does horizontal stretching or compression;
a - does vertical stretching 0r compression;
d - translates graph vertically.
We can simplify this function by substituting c=0 and b=1,

thus:
Eoo*n(i) =a ' 'e i +d.

To make it a decreasing function, we have to make the
base e < 1, and because the decrease of Eoo*n is determined
by D, it is reasonable to substitute e = 1/D.-lhe lower bound
0f Eoo*n is F/D, therefore we have to substitute d = F/D. Thus:

Eoo*n (i) = a -f +)' * I
[D / D

To determine a, we must consider that for i=1 + Eno*n=F.
Thus, after this substitution:

F = a * F .
D D

Hence:

a = F * 1 O - 1) .
Finally, after substitution of a, in the formula for Eoo* , we

Figure 3. Behaviour of Eoo*n

l 2 t ?007 irrf o rrnation te chnolo crie s
andcoritrol

recetve:

Eoo*n (i) = F* (D - rl.f-l-)' * I
I D J D

Because we start from a singre node (b=1), the number
of nodes, reached on a particurar rever, is the product of the
nodes, reached on the previous level, and Eoo*n , thus:

n(i) - Eoo*n (i - 1) * Edo*n (i) .

After substitution:

t (/ r \ j n \n(i) = l l l e*(D- l) . [+ I * r I,= ' l . t 'Di D)

Thus, the total number of nodes reached is:

* = i i l lr.,o-,).f :) '.:J- ' , = i (. (D / D)

which will be denoted from now 0n as esum(Eoo*n,h),
6.2. Defining E,o

The behaviour of Euo is iilustrated on tig.4., i.e on the first
step E,o=D, and then it decreases exponentially to 1.

it is reasonable to substitute e = jlF. The rower bound of E,o is
1, therefore we have to substitute d = 1 . Thus:

E,p (i) = u . (!) ' * , .
I f /

To determine a, we must consider that for i=1-+Euo=D.
Thus, after this substitution:

D = 3 + t
F

- '

Hence:

a = F * (D - 1) .
Finally, after the substitution of a in the formura for Euo ,we receive:

E , e (i) = F * (D - 1) . [1) ' * , .
I F /

since we start from a singre node (b=1), the number of
nodes, reached on a particular level, is the product of the nodes,
reached on the previous level, and E,o , thus:

n(i) = E"o (i - 1) * E,e (i) .
After substitution:

i (- / r \ j)n(i) = lJl r. (D - r).[* I *t li = '
[\ f /)

Thus, the total number of nodes reached is:

7. Methods, Ghosen

N = inlr* (D -,).f +)' * ,]
i = r t = r (\ " /)

which will be denoted from now 0n as esum(E,o,h).

r 1

Figure 4. Behaviour of E,o

Although Dlr , 1, the rower bound of Euo is 1. To exprain
the reason for this, the term decision cone ils to be defined.
According to [6], the decision cone has as apex a node, which
has the value of a bound query argument. The decision cone
comprises all the nodes (facts) from different layers, rooted at
this apex node. Because DrF < 1 it is possible, that some nodes
inside the decision cone wiil not be reached, but this will not
shrink the decision cone, because the neighbour nodes will turn
into apexes, hence D instead of Ewill act on them. Thus, on its
next layer, the decision cone will be dense again.

To describe E,o we will use the same simplified exponent
function as in chaptbr 6.1.:

E , , (i) =a*e i +d .

To make it a decreasing function, we have to make the
base e < 1, and since the decrease of E,o is determined by F,

for Competitive Gost Evaluation
7.1. Prolog

Prolog has been chosen as a typicar top-down method. rt
performs classical back-tracking by processing recursive sets
of rules. This makes the information retrieval tupte-at-a4ime
oriented, which is very inefficient for large databases. Moreover,
rules with left recursion make the inference engine fall into an
infinite loop.

The back-tracking approach in prorog is described in [gJ.An implementation, using relational algebra, can be found in lsi.Another implementation of this method is the Java Jedd-engine,
described in [12J.

7.2. Naive Approach
This is a bottom-up strategy where the rule set is trans-

lated into s0l-expressions [15]. In case of recursive rule set,
an iterative algorithm, which implements the /eas t fixed-point
strategy [14] and [16], has to be appried. such an argorithm wiil
generate, as first, all possible facts (most of them irrelevant to
the query), and then a finar serection wiil be appried, to produce
the answer. That is very inefficient for large databases. Addi-

inf orrnatioqr te chnolo €fie sandcontrol

+

I ?007 l 3

tional characteristic for the naive approach is, that the whole
quantity of facts, generated at all previous steps, is used to
generate facts for the current iteration step. The naive approach
is described in [2].

7.3. Semi-naive Approach
The only difference of this approach, in comparison with

the naive approach is, that only facts generated on the last-
previous iteration step are used to generate the facts for the
current iteration step. This saves time and memory. A proof of
correctness of the semi-naive approach is given in [6].

7.4. Magic Sets Transformation Method
It belongs to the group of ,,rewriting methods", called so,

because they exploit the goal structure, to transform an ineffi-
cient program into a ,,smart" one, written in the same logic
programming language. The idea behind the Magic Sets Trans-
formation Method is: to find first all possible varues that can ever
appear on the places of bound arguments. To achieve this, the
rule set has to be extended with additional predicates, called
also ,,magic predicates". These predicates generate the values
for the bound arguments. A complete description of the ,,Magic
Sets Transformation Method", as well of other methods from the
same group, like ,,Counting Method", ,,Reverse Counting Method"
etc. is given in [3] and [a].

The rewriting methods are the most effective and wide-
spreading methods. some implementations of their are described
in [13 ,7 ,9] and [17] .

In most cases the ,,Counting Method" and the ,,Reverse
Counting Method" are more effective than the ,,Magic Sets Trans-
formation Method". But these two methods are not general,
which means, that there are private cases of rule sets, which
can make the inference engine fall into an infinite loop. Because
of this, the ,,Magic Sets Transformation Method" has been cho-
sen for a comparison, as a common method, appl icable for al l
l inear sets of rules.

7.5. 2P-Method
This is a new bottom-up method, developed by the author

of this paper and published in [11]. The deduction process goes
through two phases: expand phase and shrink phase (thus, the
name comes from - 2P-method). At each iteration step of these
two phases a differential (set of new facts and eventually new
requests) is computed and stored in the predicate's temporal
relation for fufther use.

An expand phase differential is the result of Sideways
lnformation Passing (SIP) of the requests, generated at the pre-
vious iteration step. This differential is a union of two sets:

- set of facts generated through propagating to base con-
junctions;

- set of requests generated through S/P, where the distin-
guished arguments come from a base conjunction build only
from the distinguished database predicates in the rule body. The
undistinguished arguments are substituted with the NULL value.

The shrink phase differential is computed by replacing the
occurrences of recursive predicates in rule-bodies with the facts
already generated during the expand phase. Thus, the whole
rule-body becomes a base conjunction, which generates new

facts. Expand phase differentials are used subsequently and rr
reverse order for substitutions during the shrink phase.

8. Cost Evaluation
8.1. Query:

:- anc(b,Y).
Prolog
Because of the back-tracking, prolog does not make du-

plicate elimination, which means that instead of arcs, all the
paths of different length rooted on b wiil be generated. Recall.
that the number of all paths of length k is:

p(k) = b*Fk*gsum(F, h-k).
Since all these paths are rooted 0n one single node, the

base b is 1.
Usually, a query has as a bound arguments facts, which

do not lie on the base layer, but on an intermediate one. There-
fore h' has to be used instead of h. Thus, the sum of all paths
with length from h' to h is:

h - h ' .

Xf
*gsum(F ,h -h ' - i))

To eliminate the duplicate facts in this result, a final
selection must be made. lt will generate the number of nodes
rooted at b, which is:

e s u m (E o o * n , h - h) .

Thus the total cost for processing this query by prolog is:
h - h "

>(F
*gsum(F , h -h ' - i l) * esum(Eoo*n , h -h ') ,

Naive approach
The naive approach generates first all the facts, corre-

sponding to the ancestor predicate, even though most of them
are irrelevant to the query. After this generation completes, only
the facts rooted at b are selected.

Duplicate elimination is made at each iteration step, which
means the set of relevant facts is equal to the set of arcs, and
not to the set of paths as in Prolog. lmportant for the naive
approach is, that the whole set of facts (generated on all pre-
vious iteration steps) takes part by computing the facts at the
current step. As a consequence, at the second step, when the
arcs of length 2 are computed, the arcs of length 1 will be
recomputed again, thus the total cost for this step is (a(1) +
a(2)). At the third step, arcs of length 1 and 2 will be recom-
puted, thus the cost is (a(1) + a(2) +a(3)), and s0 0n. Hence,
the total number of arcs generated is:

h

D*>(t t ' - i+1) *a(i)) .
i = l

The arcs generation starts from the base layer, and not
from an intermediate one. Therefore h has been used instead of
h'.

Recall , that the number of al l arcs of length k is:
a(k) = b*Ek*gsum(E, h-k). The cost for the final selection is the
same like in Prolog. Thus, the total cost by the naive approach
for processing this query is:

l 4 I ?007 inforrnation technolocries
andcoritrol

n ,

D - I (f n - i + l) * b * E ' * g s u m (E , h - i)) * e s u m (E o o * n , h _ h , ; ,

Semi-Naive approach
The only difference between the naive and the semi-naive

approach is, that by the semi-naive approach only the facts,
generated at the previous iteration step, take part by computing
the facts of the current step. Thus, the total number of arcs
generated is:

h

D *
)a(i) .
i = l

The total cost for the semi-naive approach, incruding the
final selection, is:

h ,

D *) (U x n t * g s u m (E , h - i)) + e s u m (E d o * n , h _ h ,) .
i=1

Magic Sets Method
The rewritten system for this query is:
magic(b).
magic(Y) :- magic(X), par(X,y).
anc(X,Y) :- magic(X), par(X,y).
anc(X,Y) :- magic(X), par(X,Z), anc(Z,y).

The processing of the magic predicate (firings of the first
two rules) results in nodes of a subtree, rooted at b, thus the cost
is:

e s u m (E o o * n , h - h) .

while processing the ancestor predicate (firings of the
second two rules), the nodes, calculated with the magic predi-
cate, will be extended to arcs. The length of the arcs, which go
out of nodes on the i-th level, will vary from 1 to h-h'-i. Thus. the
number of arcs, which go out of the i-th level is:

n(i) * gsum(E, h - h'- i) ,
This happens only inside the decision cone. Nevertheless,

E instead 0f Eoo*n has been used in the gsum0, because most
of the arcs are with small length, and they are placed near the
cone base, which means that E instead of Eoo*n will act on them.
As mentioned in 6.1, the number of nodes"oi'i tne i-tn level is:

/ t) j F)n(i)= l l l e * (D- ryx [1 I *= |l i t . IDJ Di' /
Hence, the whole number of arcs inside the decision cone

is:

2P-Method
During the expand phase all the nodes in the decision

cone will be generated. The number of requests generated gets
near the number of nodes. Therefore the cost for the expand
phase is a sum of these two numbers, thus:

2 * e s u m (E d o * n , h - h ,) .

During the shrink phase, nodes, carcurated during the
expand phase, will be extended to arcs. As by the magic sets
method this happens only inside the decision Conr, but with the
difference of an additionar selection at each iteration step, made
by using the requests in the subsequent expand phase differen-
tial. The effect of this selection is: at each step the arcs to the
current level will be extended to the nodes of the next level, and
not newly generated as by the magic sets method. Hence. we

Therefore, the cost for the
shrink phase is only:

esum(Eoo*n, h - h').
since a final selection is not necessary, the total cost is:
3-esum(Eoo*n, h - h,).
After substitution of esum$, the total cost is:

h - h '
- . / t \ j), .) l l l F* (D-r) * [* I . t I

i = r j = r \ \ " / l

Conclusions for query:
:- anc(b,Y).
It is obvious that if a query starts from an intermediate

level, then the stratified methods will show better performance
than the unstratified ones. Therefore, in order to create uniform
conditions for all methods, we will assume that each query
starts from the first (or resp. the last) layer and spreads over
the whole depth of database. Thus, the cost formulas are:

Prolog:

h ,

I (p' * gsum(F, h - i)) + esum(Edo,* , h) .
i=l

Naive approach:
h

D * I , (t - i + l) * b * E i * g s u m (E , n - i l) + e s u m (E a o * n , h) .
i = l

Semi-naive aoproach:

- . 9 / . : \
D*) (b * E ' * gsum(E, h - i)) * esum(Edo*n , h) .

i - l

Magic Sets Method:

i [n[t -(D- r)* [t) , n '))
i = r \ ;= r (\ D) . OJ .e t " tE 'h - i) J+2*esum(Eoo*n 'h) .

2P-Method:

- t - i (/ r \ j \3->l l l F*(D-r) - [* I . t I
i = r j = r | i \ " / I

Thus, we can conclude that:
1. For large base and smail depth of recursion, prorog has

better performance than the naive and the semi-naive approaches,

The total cost for the magic sets method, including the
final selection, is:
n - n ' (i (, . \ j

f ,))

}[fl
F * (D -', -[

U,) + I.J * s'u*tE, h - h' - i)
J
+ z * esum(Ed"*", h - h,)

inforrnation technolo gies
andcontrol

I

I 2007 l 5

because Fi < b*Ei.
2. For real databases, where F << b:

i (- . / r \ j e ')
l l l e * (D - t) * l = l + i l . b * E i .
l _ j l \ D) D)

l-lence, the magic sets method has a better performance
than naive and semi-naive approaches.

3. The magic sets method has always a better perfor-
mance than Prolog, because:

i (
- . . / t \ j F)

l l l e * (D - l) * l : l + = 1 . F i .j = i l (D / DJ' /
Recall that each member of the left series is equal to or

smaller than F (see definition of Eoo*n in 6.1).
The right member of the sum for total costs of prolog, and

of naive and semi-naive approaches is:
esum(Eoo*n,h)
where for the magic sets method it is:
2-esum(Eoo*n,h)
But, this will not affect vastly the total sum, because its left

member has the form:

n (i h - i \D n() .>() l
i= r

\
j=r i=r)

By analogy with the terminology oI asympthotic notationwe
should say that Ihe order of growth of this formula is n2.

0n the contrary, the right member of the total sum, the
esumfl, has the form:

n (i \

I l i l () l
i = r

\
j = l

)

which has an order of growth - n.
Please consider that by this reasoning we exclude the

member:

ino
j=l

because it presents in both formulas.

4. The 2P-Method has a better performance than the other
four methods because, if we apply the terminology of asympthotic
notation again: the 2P-Method has an order of growth - n, while
all other methods have order of growth - n2. The physical
explanation is, that the 2P-Method computes nodes, while all
other methods compute'arcs or paths.

8.2. Ouery:
:- anc(X,v).

Prolog
Prolog will generate each path in the data structure on fig,1

and then check to see if it ends on 'v'. Recall. that the number
of all paths of length k is: p(k) - b*Fk*gSUm(F, h-k). Hence, the
total number of paths, which may enter node 'v' is:

h ,

Xb*F i
*gsum(F ,h - i))

i=1

In the final selection Euo has to be used instead of Eoo*ni
esum(Ero,h')
because its direction is opposite to the transitive closure

of facts. Thus, the total cost is:
h ,

Xb
* F' * gsum(F, h - i)) + esum(Euo, h') .

i= l

Naive aporoach
The naive approach does not consider the query bindings.

Therefore, as by the previous query, the method will generate the
whole amount of arcs and then select only those, which answer
the query. The only difference is, that the final selection uses E
instead 0f Eoo*n, for the same reason as in Prolog. Thus, the totJi
cost is:

h ,

D*>(t ' t - i +1) * b * E i * gsum(E, h - i)) + esum(Euo, h ') .

Semi-Naive approach
0nly facts, generated at the previous iteration step, take

paft by computing the facts of the current step. Thus, the total
cost for the semi-naive approach, including the final selection,
is :

h
F '

D *
>(U*t '

* gsum(E, h- i)) + esum(Euo, h ') .
i = l

Maoic Sets Method
The rewritten system for this query is:
magic(v).
anc(X,Y) :- magic(Y), par(X,Y).
anc(X,Y) :- magic(Y), par(X,Z), anc(Z,Y).

The magic predicate generates only one fact. lt is v. This
fact will be substituted in the two rules for the ancestor predi-
cate. Because the anwer set for the magic predicate contains
only one fact, at each iteration step the arcs to the current level
will be extended to the nodes of the next level, and not newly
generated. Hence, we will compute nodes ratherthan arcs. Thus,
the cost is only:

esum(Ero,h').
In this case a final selection is not necessary, but the

magic sets algorithm can not distinguish it. Therefore it applies
in principle a final selection to each rule set, Hence, the total
cost, including this f inal select ion, is:

1+2-esum(Euo,h').

2P-Method
The expand phase lasts only one single step. Hence, only

facts, connected to the querythrough edges, are generated. The
cost for them is:

D
At each step of the shrink phase these edges will be

extended to the nodes of the next level. Hence, we will corppute
nodes rather than arcs. Thus, the cost is only:

esum(Euo,h').

l 6 I ?007 inforrnation technolocries
andcoritrol

A final selection is not necessary, thus the total cost is:
D + esum(Ero,h').
Conclusions for ouery:
- *c (X I
As by the previous query, in order to create uniform con-

ditions for all methods (stratified and unstratified), we will as-
sume that each query starts from the first (or resp. the last) layer
and spreads over the whole depth of database. Thus, the cost
formulas are:

Prolog:

* . / \
)(b

* F' * gsum(F, h - i)) + esum(Euo, h) .
i= l

Naive approach:
h ,

D * t (t r - i + 1) * b * E i * g s u m (E , h - i)) + e s u m (E u o , h) .
i = l

Semi-naive approach:
h ,

D *) (U * B t * g s u m (E , h - i)) + e s u m (E , u o , h) .
i = l

Magic Sets Method:
1+2"esum(Euo,h').

2P-Method:
D+esum(Ero,h'),

Thus, we can conclude that:
1. For big values of both F and D, Prolog becomes less

effective than the naive approach, because F >> E.
2. The semi-naive approach has always a better perfor-

mance than Prolog, because b*Ei < b.Fi. The physical explana-
tion is, that the semi-naive approach does a duplicate elimina-
tion at each step. Thus it computes arcs, while Prolog computes
paths.

3. The magic sets method and the 2P-Method have better
performance than Prolog, naive approach and semi-naive ap-
proach, because if we apply the terminology oI asympthotic
notation again: magic sets method and 2P-Method have order of
grovvth - n, while the other three methods have order of growth
- n2. The physical explanation is, that magic sets method and
2P-Method compute nodes, while the other three methods com-
pute arcs or paths.

4. The 2P-Method is a little more effective than the magic
sets method:

D + esum(Euo,h') < 1 + 2"'esum(Euo,h')
because it does no final selection.

8.3. Query:
:- sgc(v,Y).

The authors of [1] assume that the join par,o.sgc.pardown
is generated as follows:

1. 0btain a tuple from the current relation for sgc.
2. Look for matching tuples in par,o.
3. Look for matching tuples in paroo*n.

4. Take the cartesian product of the first column of the
tuples from paruo and the second column of the tuples in paroo*n.

For this purpose they define To, as transfer ratio between
two sets A and B. lt is the fraction of these nodes in A which
also appear in B, hence 0 < T (1. For example, if R and S are
relations, where i is the ith attribute of R and j is the j-th attribute
of S, then fl*Tn.s gives the number of tuples in the result of the
join operation between R and S on R, and S,.

We will simplify this model of evaluatibn assuming that
the relational expression paruo.sgc.pardown is evaluated as a
whole, because:

1. This is an internal operation of the RDBMS and we can
not control it.

2. This evaluation procedure will be applied to all methods
analyzed, i.e. all the methods will be evaluated under same
conditions.

Prolog
Prolog will generate all paths of different length in up-

direction, which start from the query node, and extend each of
these paths with paths in down-direction, whose length will

>[" * gsum(D,h' - i) * >(r, * gru-(F, i- j)) l
i = '

\ i = l)

vary from 1 to the length of the path in up-direction. The
deduction process will start from an intermediate level with base
b = 1, therefore the costs are:

To eliminate duplicate facts in this result, a final selection
must be made, but its cost is insignificant. Moreover, it presents
as cost in each method, except the 2P-Method. Therefore it will
be not included in cost formulas.

Naive approach
Each fact is build by two arcs, which start from same node

and have same length.
As mentioned in 6.1, if we start from a single node, then

the number of nodes reached on the k-th level is:

- / t) j F)n (k) = T J l p * (D - l) - l + i + _ r .
i = i l [D , D J

Each pair of these nodes builds a fact, i.e. the number of
facts on this k-th level is a Cartesian product of the set of nodes
with itself, thus:

t'nt F * (D - r) -f :'l' . ̂ r'll'
[i i [[D i o))

For a node on ith level of the data structure, the maximd
length of an arc, which can generate facts, is k = h - i. Hence,
the number of allfacts, generated from a node on the ith level,
is a sum up to this length, thus:

/ / , r \ 2h - i r k / / r \ r F l l
> l U F * (D - l) * l + l + - ^ t l
k = , [j = , \ (D) D))

The number of facts, generated from all the nodes on i-
th level of the data structure is:

inforrnation technolo gies
andcontrol t ?007 t7

n - i (n (
f 1) , F) ' l 'b*E - I l

f l r * (D- r) - [D I ,D l lr= r [:= r [\ . /))
Because of recomputing, the number of facts for all levels

is:

>l rr- i +r)xb*E - i f f i [r*(D-,). f *] ' . : l l ' l1rL alrjt(. tDi "))]
Semi-Naive approach
The semi-naive approach does not recompute arcs, there-

fore the total cost is:
T

r' I n-,(r (

i l ,*E xy fI I F*(D-r)*f: ' l '
' o l r = r [: = r [\ " /

Magic Sets Method
The rewritten system for this query is:
magic(v).
magic(X) :- magic(Y), par(X, Y).
sgc(X,Y) :- magic(X), eq(X,Y).
sgc(X,Y) :- magic(X), par(X1, X), sgc(X1, Y1), par(y1, y).

The processing of the magic predicate (firings of the first
two rules) results in nodes of an inverted subtree (a subtree in
up-direction), rooted at the query node. Thus the cost is:

esum(Ero, h').
While processing the same-generation-cousins predicate

(firings of the second two rules), each node, calculated with the
magic predicate, will be extended with arcs.'Each pair of these
arcs, which have the same length and start from one same node,
will build an answer.

Following the pattern for naive and semi-naive approaches,
the number of facts, generated from one single node on ith level
of the magic set, is:

n ' - ; (- u (/ r \ i t r)) '
) | i l l F * (D - r) * t : l + _ ;i r [] i [(D/

"))
Hence, the number of facts, generated from all the nodes

on ith level of the magic set, is:

2P-Method
During the expand phase all the nodes of an inverted

subtree, rooted at the query node, will be generated. The number
of requests generated, nears the number of nodes. Therefore the
cost for the expand phase is:

2-esum(Ero, h'),

Recall that during the shrink phase a nested SELECT
operation is used to separate only those facts, which correspond
to the requests generated during the subsequent step of the
expand phase. The purpose is, at each shrink phase step there
have to be selected only these nodes, which lie on a fixed
distance from the apex of the decision cone, the distance is
determined by the step number. Therefore, the cost for the shrink
phase is only:

fl['*(D -').f+]' .,.l . i[t']['*(D -,).f:)' .:ll
r=i l \ tsi J i i [i=i t ' IDJ "))

In other words, we first find the nodes on the base layer,
reachable from the query node in up-direction (see the left
multiplier) and then extend these nodes with arcs in down-
direction to the layer with the query node (see the right multi-
plier). Additionally, the selection upon the requests in the sub-
sequent expand phase differential removes the cost for the
Cartesian product from the formula.

Thus, the total cost for the 2P-Method is:

n['.,o-',.[.+l ' . , . l . i [f i [0.,o-,,.[.*] ' -*l ' l - 2*esum(E",,, h.)
; i l [' ' i J i i l . l=i l . \DJ ,))

Cost for final selection
It is:

El; . E[*"
Which may be written also as:

n ' (/ r \ i \ r , ' (_ / t \ ' F)l l l t . (D-r) .1 + I *r l *n l o*(D-1)- l + I *= l '^ = i [
[^ , , / , = , \ [D , i D)

In other words, we first find the nodes on the base layer,
reachable from the query node in up-direction and then use them
to find the nodes on the layer with the query node. Because of
the selection with the query node, no Cartesian product is nec-
essary.

Conclusions for ouery:
:- sgc(v,Y).
As by the previous queries, in order to create uniform

conditions for all methods (stratified and unstratified), we will
assume that each query starts from the first (or resp. the last)
layer and spreads over the whole depth of database. Thus, the
cost formulas are:

Naive approach:

Semi-naive approach:

4))'l

Prolog:

n (\

i [o' * gsum(D, h - i) *
)(t '

* gsum(F, i - j)) . |
'= '

\
j=r

)

f,t[..(D-1).[+)' .'] .][g['*(D-',.[*)' d)J'
Thus, the total number of facts is:

Iht[' . ,"-, , .(*) ' . 'J
. p[; t [o.,o-,, . [*) ' . ;)) '] + esum(',n, h')

[' E * }[U[F*(D -1) *[*)' 4)J']

*1.-i +r)*b*E .[[g['*(D-',.(*) 4))'l

l 8 I ?007 inforrnation technolocrie s
and coritrol

tr

ilf,t['.,"-',.(*)' .') . r[it[u.,o-,,.(*)' +J]'l + esum(E*,h)

Magic Sets Method:

2P-Method:

Il['-,o-',-(i)' .') .r[ir[,.,o-',.(*)'.*)J . 2*esum(E*, h)
Thus, we can conclude that:
1. For small base and,big values of both F and D, prolog

becomes less effective than the naive approach.
2. The semi-naive approach has always a better perfor-

mance than Prolog, because the member of the nested sum by
the semi-naive approach is smaller than those by prolog, and
because the first two members of the outher sum by the semi-
naive approach are smaller than these by prolog.

3. For real databases, where F << b:

Hence, the magic sets method has a better performance
than the semi-naive approach.

4. The 2P-Method has a better performance than the other
four methods because, if we apply the terminorogy of asympthotic
notation again: the 2P-Method has an order of growth - n, while
af l other methods have order of growth - n2. The physical expla-
nation is, that the 2P-Method computes nodes, while all other
methods compute arcs or paths.

9. Graphical Gost Representation

The graphics are generated with Mathlab by interpreting
the cost formulas, derived above. The generation has been made
by a constant base and an expansion factor, and by a variable
height.

Ouery 1
:- anc(b,Y).

,oSd

508
flctt

0l
10

Figure 6

Query 3
:- sgc(v,Y).

x loa

N L-0

facts

1 0 1 5 h 2 0

Figure 7

10. Gonclusions and Future Work

1. For a small base and big values of both F and D, the
naive and the semi-naive approaches show a better perfor-
mance than Prolog, even though it is a stratified method. This
is because the naive and the semi-naive approaches do a
duplicate elimination on each step. Thus, they compute arcs,
while Prolog computes paths.

2. The magic sets method has a better performance than
Prolog, because as a bottom up method it does a duplicate
elimination on each step. Thus, it computes arcs, while prolog
computes paths. The magic sets method has a better perfor-
mance than the naive approach and the semi-naive approaches,
because it uses stratification, based on a rewriting technique,
which allows to find at first all possibre varues that can ever
appear on the places of bound arguments.

3. The 2P-Method has a better performance than the magic
sets method because of the additional selection, implemented

0 L
0 10

Figure 5

l i

l i . r
Prolog f r

l i

lNaivc

b{agic sets
2P-ld€ttrod

,,.- lL
1 t

, " / .

,"t l ''

Prolog Haive

/

.-:1*

infgrrnation technolo giles
andcontrol I ?007 l ?

by computation of the shrink phase differentials. The purpose is,
at each shrink phase step have to be serected only these nodes,
which lie on a fixed there distance from the apex of the decision
cone. This distance is determined by the step number. As a
result, the 2P-Method computes nodes, while in most cases the
magic sets method computes arcs.with this behaviour the 2p-
Method resembles the counting and the reverse counting meth-
ods, which use rewriting techniques. But, as mentionedin7.4.,
these two methods are not general. For exampre, the by answer-
ing the second query, they will generate a rewriten rule, which
will make the inference engine fall into an infinite loop.

Relerences

1. Bancilhon, F. & R. Ramakrishnan. performance Evaluation of Data
lntensive Logic Programs. Foundations of Deductive Databases And
Logic Programming Table of Contents. ISBN: 0-g34613-40-0, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1gBB,43g - 517.
2. Bancilhon, F. Naive Evaluation of Recursivery Defined Relations, spdnger
Topics ln Information systems, on Knowledge Base Management svs-
tems: Integrating Artificial lntelligence and Database Technologies. lsBN:0-
3,q1:96382-0, Springer-Verlag New york Inc., New yorli, Ny, USA,
1986, 165-178.
3, Bancilhon, F. D. David Maier, Y. Sagiv & J. Ullman. Magic sets and
9!her gtgngg ways to implement logic programs, proceedings of the
fifth ACM SIGACT-S|GM0D symposium on principres of database sys-
tems. ISBN: 0-89791 -1 79-2, cambridge, Massachusetts, United stat-es,
ACM Press New York, NY, USA, 1986, 1-1S.
4. Beeri, c. & R. Ramakrishnan. 0n the power of Magic. proceedings
of the sixth ACM slGAcT-slGM0D symposium on principles of Databaie
Systems. ISBN: 0-89791-223-3, San Diego, California, United States,
1987, ACM Press New York, NY, USA1987, 269-284.
5. Berghammer, R., B. Leoniuk, & U. Milanese . lmplementation of
Relational Algebra using Binary Decision Diagrams. Lecture Notes in
computer science. 2561, Revised papers from the 6th lnternational
conference and 1st workshop of c0ST Action 224 TARSKI on Relational
lVlethods in Computer Science. ISBN:3-540-00315-0, 2001, Springer-
Verlag, London, UK, 2001 , 241-257.
6. ceri, s,; G. Gottlob. & L. Tanka. Logic programming and Databases.
Springer-Verlag, ISBN 3-540-51728-G, Berlin, 1g90.
7. chien-Le G.241-257, A. Kazuki, T. Masahiko & N. shojiro. Database
compression with Data Mining Methods. The Kluwer International series
in Engineering and computer science, Logic-based Artificial Intelligence.
lsBN:0792372247, 2000, Kluwer Academic publishers, Norwell-, MA,
usA, 2000, 177-190.
B. Clocksin, W. & C. Melish. Programming in prolog. Using the lS0
Standard. Springer-Verlag, ISBN 3-540-00678-8, Berlin, 2003.
9. Greco, s. & E. Zumpano. 0n the Rewriting and Efficient computation
of Bound Disjunctive Datalog Queries, proceedings of rhe sth Acm
sigplan lnternational conference on Principles and practice o Declaritive
Programming. ISBN: 1-58113-705,2, Uppsala, Sweden, 2003, ACM
Press, New York, NY, USA, 2003, 196-147.
10. Husch, 1.,S. Transformations of Exponential Functions. Lecture
Notes 200 1 . http://archives. math. utk. edu/visual. calculus/0/shifting. 5/
index.html.
11. lltchev, V. Bottom-up Method for Processing Recursive sets of
Rules. International conference on computer systems and Technologies.
ISBN 954-9641-33-3, ACM-acmbul&UAl, Sofia, Bulgaria, 1g-20 June,
2003, i l .18.1- i l .18.6.
12. Lhotak,0. & L. Hendren. Jedd: a BDD-based Relationar Extension
of Java. Proceedings of the ACM slGPLAN 2004 conference on pro-
gramming Language Design and lmplementation. ISBN:1-SB1 13-S07-
5, Washington DC, USA, 2004, ACM Press, New york, Ny, USA, 2004,
1 58-1 69.

13, Mumick, s.,1. & H. Pirahesh. lmplementation of Magic-sets in a
Relational Database system. proceedings of the 1gg4 A-cM slGMOD
International conference on Management of Data. lssN: 0163-s80g
Minneapolis, Minnesota, United States, 1994, ACM press, New york, Ny.
usA, 1994, 103-114.
14. Tarski, A. Lattice-theoretic Fixpoint Theorem and its Applications.-
Pacific journal of Mathematics, 1955, No 5, 2gS-309.
15. Ullman, J lmplementation of Logical Guery Languages for Data-
bases- ACM Transactions on Database systems (r1Di).1b, september.
1995, No 3, 289-321, ISSN: 0362-591S.
16. Van Emden, M. H. & R. A. Kovalski . The semantics of predicate
Logic as a Programming Language.- Journal of the ACM (JACM), 23,
0ctober 1 976, No 4,733-7 42,ISSN: 0004-541 1 , ACM press New york.
NY, USA.
17. Wenfei, F., X. Y Jgffrey, L Hongjun, L. Jianhua & R. Rajeev . Query
Translation from XPATH to SQL in the presence of Recursive DTDs.
Proceedings of the 31-th lnternationar conference on very Large Data
Bases. ISBN 1-59593-154-0, Trondheim, Nonruay, VLDB-Endowment,
August 30 - September 02,2005, 337-348.

Manuscript received on 14.09.2006

Velko lltchev received the MSc degree in Radio-
electronics from the Technical University in Sofia,
Bulgaria, in 1987. Since 1gB7 he is Assistent pro-
fessor in the Department of Computer Systems
and Technologies. at the Technical university -
Sofia, branch Plovdiv. He specialized in the lhniver-
sities of Regensburg, Passau and Karlsruhe, with
grants from the EU and from the German Aca-
demic Exchange Seruice. He is currenily in proce-
dure of receiving a PhD degree. His research

interests are in: language processors (compiter construction), relational
and deductive databases, xML strorage and retrieval in/from relational
databases, in which areas he has over 20 pubtications.

Contacts:
Department of Computer Systems

Technical University - plovdiv
e-mait iltchevotu-plovdiv.bg

?0 I 2007 inforrnation technolocries
andcoritrol

