Cost Evaluation of Methods for Query
Processing in Deductive Database Systems

Key words: Cost evaluation; cost metrics; deductive databases; algo-
rithms.

Abstract. The paper describes: the important characteristics of an
extensional database; a sample intensional database; some sample
queries, whose processing will be evaluated; a cost metrics, based on
the number of intermediate facts generated. On this basis, a cost
comparison between well-known methods for query processing and
a new bottom-up method, developed by the author, has been made.

1. Introduction

The classical method of asympthotic notation for cost
evaluation of algorithms cannot be applied for cost evaluation of
methods for query processing in deductive database systems
(DDBS), because the inference engine does not operate directly
with the data structures, which hold the facts. Between the
inference engine and the data structures lies an isolation layer.
This layer is the relational database management system (RDBMS).

Therefore, the efficiency of a query processing method for
DDBS can be evaluated only regarding the way this method
formulates and orders the queries to the RDBMS. This affects the
number of intermediate facts, the RDBMS must generate by
answering these queries. The smaller this number is, the better
the efficiency of the query processing method appears to be
proves to be becomes. Recall, that not all intermediate facts take
part in producing the final answer.

The paper describes:

— the important characteristics of an extensional database;

— a sample intensional database, used further for cost
evaluation of the query processing methods;

— some sample queries, whose processing (translation)
will be evaluated;

— the cost metrics, based on the number of intermediate
facts generated.

On this basis, a cost comparison between well-known
methods for query processing and a new bottom-up method,
developed by the author, has been made.

2. Characteristics
of the Extensional Database

The sample extensional database, used further, is shown
on figure 1.

This directed graph can be stored as a binary relation,
where domain elements hold information about nodes and tuples
hold information about edges.

V. litchev

LA
LA
T VAVA TR
ARV,

Figure 1

PAR(PARENT, CHILD) = {<a,f>, <b,g>, <c,g>, <c,h>, <d,i>,
<e,i>, <g,j>, <fk>, <fl>, <g,l>, <h,m>, <h,n>, <i,n>, <io0>,
<j,0>, <k,p>, <k,g>, <l,g>, <I,r>, <m,r>, <m,s>, <n,s>, <0,t>,
<0,U>, <Q,v>, <Q,v>, <rX>, <8,X>, <S>, <ty>, <u,z>} .

Apparently, there is a recursive closure between the at-
tributes PARENT and CHILD. The reason to pick out such an
example is to test how the differnt methods will process recur-
sive sets of rules.

Additionally, nodes are arranged in layers. Each edge goes
from a node of one layer into a node of the next layer. In other
words, this formal model does not represent cycles and short-
cuts. Nodes in the first layer have no incoming edges. Nodes in
the last layer have no outgoing edges. All other nodes have at
least one incoming and one outgoing edge.

A formal model of such type of data is shown on figure 2.

= —— b »
D
P
E
F

Figure 2

According to it, the important data charactics are:

— b - base. This is the number of nodes that have no
antecedents.

— h — height. This is the length of the longest chain in R.

10 1 2007

information technologies
and control




The number of layers is (h+1). They are numbered from 0to h,
where b is the number of nodes in layer 0.

— D - duplication factor. This is the average number of
incoming edges into a node.

— F—fan-out factor. This is the average number of outgo-
ing edges from a node.

— E — expansion factor, calculated as E = F / D.

It is assumed that the data are random, with an uniform
distribution. Thus, F and D obtain average values.

More detailed description of this model can be found in

[1].

Additional definitions and derivations

Let gsum(E, h) denote the sum of the elements of a
geometric series of ratio E, with length (h+1), thus:

gsum(E, h) =1 + E+ E2+ B3 + . 4+ EN

Let n(i) denote the number of nodes at level i. According
to the definition for expansion factor:

n(i+1) = n(i)*E, and

m{E=thEEL

Let N denote the total number of nodes. Then:
N=b"(1+E+E2+E+ . + E") = b gsum(E, h).

Apparently, the number of edges entering level i is n(i-
1)°F, and the number of edges leaving level i is n(i)*F. Thus, the
total number of edges, denoted as A, is:

A = bF + bEF + bE?F + bE%F + ... + bEG-E

=bF(1 + E+E2+ E® + ... + E®Y)
= b*F*gsum(E, h-1).

Let h’ denote the average level. Then:

h h
b’ = h—MZG*n(i)))/NJ:h—MZ(i*b*Ei)J/NJ.
i=1 i=1
Let aand b be nodes from different layers. If bis reachable
from athen an arc exists between these two nodes. But b may
be reachable from a through several paths. Even in such case
there is only one arc between both nodes. In other words — fact
b is derived from fact a only once.
The number of arcs of length k going from level i to level
(i+k) is:
n(i+k) = n(i)EX.

Let a(k) denote the number of all arcs of length exactly k
in the whole binary relation. The value of a(k) is obtained by
summing all the arcs of length k that enter level i fori =k to
h. Thus:

a(k) = n(k) + n(k+1) + ... + n(h)

=n()"(1 +E' +E2 + ... + EM) = n(k)*gsum(E, h-k)
= b"E¥"gsum(E, h-k).

Let P denote the total number of paths in the whole binary
relation. In contrast to the number of arcs, here we can not use
the number of nodes on an intermediate level, because each of

these nodes has been reached via more than one paths, and on
the current level each of these paths will be extended with F new
edges. In other words — the duplication factor does not act in
this case. Therefore, the total number of paths is:

P = b*F"gsum(F, h-1).

3. Sample Intensional Database

Let par (X,Y) denote the extensional database predicate,
which corresponds to the binary relation, shown on figure 1.

Set of rules |

anc(X,Y) :- par(X,Y).

anc(X,Y) :- par(X,2), anc(z,Y).

It defines the ancestor relationship as: X is an ancestor of
Y either if X a parent of Y or if X is a parent of someone Z, who
is an ancestor of Y.

The second rule has been rewritten without left-recursion,
because the Prolog approach has also been choosen for the cost
comparison. Prolog uses the back-tracking algorithm, which can
make the inference engine fall into an infinite loop, while pro-
cessing left-recursive rules.

Set of rules Il

sge(X,Y) - eq(X,Y).

sgc(X,Y) :- par(X1,X), sgc(X1,Y1), par(Y1,Y).

It defines the same-generation-cousins relationship as:
either X and Y is one and the same person or the parents of X
and Y are same-generation cousins too.

The predicate eq(X)Y), can be implemented through a
biuld-in function or through a relation in the database, with the
following tuples: ‘

EQ = {<a,a>, <b,b>, <c,c>, <d,d>, ..., <z,z>}.

4. Sample Queries

Query 1

=-anc(b,Y). ‘

The adornment is anc®'. Thus, the inference process fol-
lows the direction of data recursion.

Query 2

=anc(X,v).

The adornment is anc®. Thus, the inference process goes
in the opposite direction to the data recursion.

Query 3

=sgc(v,Y).

The adornment is sgc®'. Here the inference process goes
up and down over the data graph.

9. Cost Metrics

As mentioned in the introduction, the inference engine
does not operate directly with the data structures, which hold the
facts. Between the inference engine and the data structures lies

information technologies
and control

1 2007 n



- anisolation layer, which is the RDBMS. Therefore, the efficiency
of a query processing method for DDBS can be evaluated only
regarding the way this method formulates and orders the queries
to the RDBMS. The smaller the number of intermediate facts, the
RDBMS must generate by answering the queries is, the better the
efficiency of the query processing method.

Regarding this, the number of successful inferences (or
successful firings) has been chosen as cost measure. For a rule
in the form:

P q1! q21 se T qn

a successful firing is (id, t, t,, t,, ..., t), where e e
, t,are tuples in q,, q,, ..., g, and tis a tuple in p. It denotes
that the truth of t,, t,, ... , t is used to establish that t is true,
by applying the given rule. The identifier id is used because it
is possible, that the same inference is made repeatedly. Thus,
the cost function measures the size of the intermediate results
before duplicate elimination.

The conjunction of the predicates in the rule body is trans-
lated into a join-operation. By recursive rules, this join-operation
is repeatedly applied to the temporal relation, corresponding to
the recursive predicate. It is assumed, that the cost for each
application is proportional to the size of the temporal relation.
Hence, by measuring the size of this intermediate relation over
all steps, a cost is obtained, that is proportional to the actual
cost.

6. Corrections in the Formal Data Model

The formal data model and the corresponding method for
cost evaluation, described in [1], give an incorrect answer by:

- stratified methods, applied to queries with bound argu-
ments;

— the final selection which must be applied at the end of
a non-stratified method.

For example, according to [1], the number of facts in the
answer of query:

=-anc(b,Y).

is equal to the number of nodes in a tree, rooted at b,
which is:

E+ B+ B + .. + E" = gsunE h).

The authors of [1] came to this result by simply taking the
formula for the total number of nodes (see chapter 2) and
substituting the base with 1. This is not correct because the
formula for the total number of nodes is applicable for average
values of F and D. But when we start from a single node, then,
for the first several layers, we have E = F, because the duplica-
tion factor exerts influence on the formula early when the number
of nodes, reached on the subsequent layer, increases to a
significant value.

More frappant in [1] however is the case with the query:

- anc(X,v).

where the authors assume that, because the inference
process goes in the opposite direction, it is enough to substitute
E with 1/E, in order to calculate the number nodes, rooted at v.
Thus, this number shall be:

1 1 1 i

§+§+§+ ..... +—

But, this is a convergent series, which has as upper bound
1. Hence, at most one fact (one node) will be generated, which

is fully incorrect.

Thefore in such cases (stratified methods or final selec-
tion), | propose to define two different expansion factors:

- E,,., — When the inference process follows the expan-
sion of facts;

- Eup — when the inference process goes in the opposite
direction of the expansion of facts.

6.1. Defining TR

The behaviour of E soun 1S illustrated on fig.3., i.e on the first
step E,,,.=F, and then it decreases exponentially to F/D.

F/D

Figure 3. Behaviour of E,

According to [10], an exponential function can be de-
scribed as:

f(x) = ae®™®9 + d

where:

¢ — translates graph horizontally;

b — does horizontal stretching or compression;

a — does vertical stretching or compression;

d - translates graph vertically.

We can simplify this function by substituting ¢=0 and b=,
thus:

Epun() = @€' + d.

To make it a decreasing function, we have to make the
base e < 1, and because the decrease of E oun 1S determined
by D, it is reasonable to substitute e = 1/D. The lower bound
of E, . is F/D, therefore we have to substitute d = F/D. Thus:

1) F
By () =a*] = | +-.
down() (Dj D

To determine a, we must consider that for i=1 — E soun=F-
Thus, after this substitution:

D D
Hence:
a=F*(D-1).

Finally, after substitution of a, in the formula for E soun » WE

12 1 2007

information technologies
and control




receive:

Edown(i)=F*(D—1)*[%) +g_

Because we start from a single node (b=1), the number
of nodes, reached on a particular level, is the product of the
nodes, reached on the previous level, and E thus:

n(i)=E,,, Ai-D*E_ ().

down ’

After substitution:

n(i)=ﬂ{F*(D—l)*(%) 4%].

=

Thus, the total number of nodes reached is:
b 1Y . F
Ni= F*D=1)*.— L+—1|.:
11 o-o{5)+%)
which will be denoted from now on as esum(E

6.2. Defining Eup

The behaviour of Eup is illustrated on fig.4., i.e on the first
step Eup=D, and then it decreases exponentially to 1.

!

D

h).

down’

Figure 4. Behaviour of E_

Although D/F < 1, the lower bound of Eup is 1. To explain
the reason for this, the term decision cone has to be defined.
According to [6], the decision cone has as apex a node, which
has the value of a bound query argument. The decision cone
comprises all the nodes (facts) from different layers, rooted at
this apex node. Because D/F < 1 it is possible, that some nodes
inside the decision cone will not be reached, but this will not
shrink the decision cone, because the neighbour nodes will turn
into apexes, hence D instead of £ will act on them. Thus, on its
next layer, the decision cone will be dense again.

To describe Eup we will use the same simplified exponent
function as in chapter 6.1.;

E,() = a% + d.

To make it a decreasing function, we have to make the
base e < 1, and since the decrease of Eup is determined by F,

it is reasonable to substitute e = 1/F. The lower bound of Eup is
1, therefore we have to substitute d = 1. Thus:

| A
Eup(1)=a*(gj %1

To determine a, we must consider that for i=1—>Eup=D.
Thus, after this substitution:

D=241.
F

Hence:
a=F*(D-1).

Finally, after the substitution of a in the formula for Eup ;
We receive:

Eup(i):F*(D—l)*(%J +1.

Since we start from a single node (b=1), the number of
nodes, reached on a particular level, is the product of the nodes,
reached on the previous level, and Eup , thus:

()= ELlp (L 1) % Eup ()
After substitution:

n(i) =I:i_I[F"‘(D—1)"‘(%]J +1]-

Thus, the total number of nodes reached is:

N=iﬁ(P*(D—l)*(%T+l].

=1 j=I

which will be denoted from now on as esum(E,,h).

7. Methods, Chosen
for Competitive Cost Evaluation

7.1. Prolog

Prolog has been chosen as a typical top-down method. It
performs classical back-tracking by processing recursive sets
of rules. This makes the information retrieval tuple-at-a-time
orignted, which is very inefficient for large databases. Moreover,
rules with left recursion make the inference engine fall into an
infinite loop.

The back-tracking approach in Prolog is described in [8].
An implementation, using relational algebra, can be found in [B¥
Another implementation of this method is the Java Jedd-engine,
described in [12].

7.2. Naive Approach

This is a bottom-up strategy where the rule set is trans-
lated into SQL-expressions [15]. In case of recursive rule set,
an iterative algorithm, which implements the /east fixed-point
strategy [14] and [16], has to be applied. Such an algorithm will
generate, as first, all possible facts (most of them irrelevant to
the query), and then a final selection will be applied, to produce
the answer. That is very inefficient for large databases. Addi-

information technologies
and control

1 2007 13



tional characteristic for the naive approach is, that the whole
quantity of facts, generated at all previous steps, is used to
generate facts for the current iteration step. The naive approach
is described in [2].

7.3. Semi-naive Approach

The only difference of this approach, in comparison with
the naive approach is, that only facts generated on the last-
previous iteration step are used to generate the facts for the
current iteration step. This saves time and memory. A proof of
correctness of the semi-naive approach is given in [6].

7.4. Magic Sets Transformation Method

It belongs to the group of ,rewriting methods*, called so,
because they exploit the goal structure, to transform an ineffi-
cient program into a ,smart” one, written in the same logic
programming language. The idea behind the Magic Sets Trans-
formation Method is: to find first all possible values that can ever
appear on the places of bound arguments. To achieve this, the
rule set has to be extended with additional predicates, called
also ,magic predicates“. These predicates generate the values
for the bound arguments. A complete description of the ,Magic
Sets Transformation Method“, as well of other methods from the
same group, like ,Counting Method“, ,Reverse Counting Method*
etc. is given in [3] and [4].

The rewriting methods are the most effective and wide-
spreading methods. Some implementations of their are described
in [13,7,9] and [17].

In most cases the ,Counting Method*“ and the ,Reverse
Counting Method“ are more effective than the ,Magic Sets Trans-
formation Method“. But these two methods are not general,
which means, that there are private cases of rule sets, which
can make the inference engine fall into an infinite loop. Because
of this, the ,Magic Sets Transformation Method“ has been cho-
sen for a comparison, as a common method, applicable for all
linear sets of rules.

1.5. 2P-Method

This is a new bottom-up method. developed by the author
of this paper and published in [11]. The deduction process goes
through two phases: expand phase and shrink phase (thus, the
name comes from — 2P-method). At each iteration step of these
two phases a differential (set of new facts and eventually new
requests) is computed and stored in the predicate’s temporal
relation for further use.

An expand phase differential is the result of Sideways
Information Passing (SIP) of the requests, generated at the pre-
vious iteration step. This differential is a union of two sets:

— set of facts generated through propagating to base con-
junctions;

— set of requests generated through SIP, where the distin-
guished arguments come from a base conjunction build only
from the distinguished database predicates in the rule body. The
undistinguished arguments are substituted with the NULL value.

The shrink phase differential is computed by replacing the
occurrences of recursive predicates in rule-bodies with the facts
already generated during the expand phase. Thus, the whole
rule-body becomes a base conjunction, which generates new

facts. Expand phase differentials are used subsequently and ir
reverse order for substitutions during the shrink phase.

8. Cost Evaluation

8.1. Query:

:-anc(b,Y).

Prolog

Because of the back-tracking, Prolog does not make du-
plicate elimination, which means that instead of arcs, all the
paths of different length rooted on b will be generated. Recall,
that the number of all paths of length k is:

p(k) = b*"F“gsum(F, h-k).

Since all these paths are rooted on one single node, the
base b is 1.

Usually, a query has as a bound arguments facts, which
do not lie on the base layer, but on an intermediate one. There-
fore h" has to be used instead of h. Thus, the sum of all paths
with length from h’ to h is:

h-h'
3 (F* gsum(F, h—h’—i))

il

To eliminate the duplicate facts in this result, a final
selection must be made. It will generate the number of nodes
rooted at b, which is:

esum(E, .. ,h—h").
Thus the total cost for processing this query by Prolog is:
h-h"

3 (F' *gsum(F, h—h'~i)) + esum(E,,.,h—h")

1=l

Naive approach

The naive approach generates first all the facts, corre-
sponding to the ancestor predicate, even though most of them
are irrelevant to the query. After this generation completes, only
the facts rooted at b are selected.

Duplicate elimination is made at each iteration step, which
means the set of relevant facts is equal to the set of arcs, and
not to the set of paths as in Prolog. Important for the naive
approach is, that the whole set of facts (generated on all pre-
vious iteration steps) takes part by computing the facts at the
current step. As a consequence, at the second step, when the
arcs of length 2 are computed, the arcs of length 1 will be
recomputed again, thus the total cost for this step is (a(1) +
a(2)). At the third step, arcs of length 1 and 2 will be recom-
puted, thus the cost is (a(1) + a(2) +a(3)), and so on. Hence,
the total number of arcs generated is:

h
D*Y ((h—i+1) *a(i)).
i=1
The arcs generation starts from the base layer, and not
from an intermediate one. Therefore h has been used instead of
h.
Recall, that the number of all arcs of length k is:
a(k) = b*E<“gsum(E, h-k). The cost for the final selection is the
same like in Prolog. Thus, the total cost by the naive approach
for processing this query is:

14 -1 2007

information technologies
and control




h

D* Y ((h-i+1)*b*E' * gsum(E, h-1i)) + esum(Ey,,,,h~h’)

i=1

Semi-Naive approach

The only difference between the naive and the semi-naive
approach is, that by the semi-naive approach only the facts,
generated at the previous iteration step, take part by computing
the facts of the current step. Thus, the total number of arcs
generated is:

D* Yadi)

The total cost for the semi-naive approach, including the
final selection, is:

h
D*Y(b*E' * gsum(E, h-i)) + esum(E,_, h—h’) :

i=1

Magic Sets Method

The rewritten system for this query is:
magic(b).

magic(Y) := magic(X), par(X,Y).
anc(X,Y) := magic(X), par(X,Y
anc(X,Y) :— magic(X) X

par(X,Y).
, par(X,2), anc(Z,Y).

The processing of the magic predicate (firings of the first
two rules) results in nodes of a subtree, rooted at b, thus the cost
is:

esum(E,  ,h-h").

While processing the ancestor predicate (firings of the
second two rules), the nodes, calculated with the magic predi-
cate, will be extended to arcs. The length of the arcs, which go
out of nodes on the i-th level, will vary from 1 to h-h'-i. Thus, the
number of arcs, which go out of the i-th level is:

n(i) * gsum(E, h—h’"—1) .

This happens only inside the decision cone. Nevertheless,
Einstead of E,, has been used in the gsum(), because most
of the arcs are with small length, and they are placed near the

cone base, which means that E instead of E,o., Will act on them.
As mentioned in 6.1, the number of nodes on the i-th level is:

i 1Y F
n(i) = FDisyh] == |+ —
(i) H( (D-1) [D) DJ'

Hence, the whole number of arcs inside the decision cone
is:
h-h[ i 1 i F

F*(D-D* — | +— |*gsum(E,h—h"-1) |-

> I1] F* )[Dj 5 | &sum )

j=1

1

The total cost for the magic sets method, including the
final selection, is:

—h i J
E[H[F*(D— 1) *[%] +g]*gsum(E, h-h'- i)]+2*esum(Ed0wn, h-h")

i=t | j=l

2P-Method

During the expand phase all the nodes in the decision
cone will be generated. The number of requests generated gets
near the number of nodes. Therefore the cost for the expand
phase is a sum of these two numbers, thus:

2*esum(E,, ,h-h").

During the shrink phase, nodes, calculated during the
expand phase, will be extended to arcs. As by the magic sets
method this happens only inside the decision cone, but with the
difference of an additional selection at each iteration step, made
by using the requests in the subsequent expand phase differen-
tial. The effect of this selection is: at each step the arcs to the
current level will be extended to the nodes of the next level, and
not newly generated as by the magic sets method. Hence, we
will compute nodes rather than arcs. Therefore, the cost for the
shrink phase is only:

esum(E,,,., h - h').
Since a final selection is not necessary, the total cost is:
3'esum(E,,,, h - ).

After substitution of esum(), the total cost is:

h=h" i J
3*EH(F*(D—1)*(1] +1]
i i i

Conclusions for query:

-anc(b,Y).

It is obvious that if a query starts from an intermediate
level, then the stratified methods will show better performance
than the unstratified ones. Therefore, in order to create uniform
conditions for all methods, we will assume that each query
starts from the first (or resp. the last) layer and spreads over
the whole depth of database. Thus, the cost formulas are:

Prolog:
h
3 (F * gsum(F, h—i)) + esum(E,___,h).

i=]

Naive approach:

h
D*Y((h=i+1)*b*E' * gsum(E, h-i)) + esum(E,,,, h)

i=1

Semi-naive approach:

D* Ehj(b *E' *gsum(E, h~i)) + esum(E,, ,h)

i=1

Magic Sets Method:

i[H{F*(D -1) *[%jj +§]*gsum(E,h - i)]+2*esum(Edow“ S h).

=l

2P-Method:
h i 1 J
33T F*@-1* = | +1
i=1 j=1 F ;
Thus, we can conclude that:

1. For large base and small depth of recursion, Prolog has
better performance than the naive and the semi-naive approaches,

information technologies
and control

1 2007 1

(€]



because F < b*E.
2. For real databases, where F << b:

i J
H[F*(D—l)*(—l—-j +£J %o rE"
i D D

Hence, the magic sets method has a better performance
than naive and semi-naive approaches.

3. The magic sets method has always a better perfor-
mance than Prolog, because:

F[[F*(D—l)*(%] +§] < 1

Recall that each member of the left series is equal to or
smaller than F (see definition of E, in 6.1).

The right member of the sum for total costs of Prolog, and
of naive and semi-naive approaches is:

esum(g, .h)

where for the magic sets method it is:

2esum(E,, ,h)

But, this will not affect vastly the total sum, because its left
member has the form:

h i h-i
Z[H(...)* 2<...>].
i=1 | j=1 =1

By analogy with the terminology of asympthotic notation we
should say that the order of growth of this formula is n

On the contrary, the right member of the total sum, the
esum(), has the form:

316
2| 1]
which has an order of growth - n.
Please consider that by this reasoning we exclude the
member:;

jel
because it presents in both formulas.

4. The 2P-Method has a better performance than the other
four methods because, if we apply the terminology of asympthotic
notation again: the 2P-Method has an order of growth - n, while
all other methods have order of growth — n2. The physical
explanation is, that the 2P-Method computes nodes, while all
other methods compute ‘arcs or paths.

8.2. Query:
- anc(X,v).

Prolog

Prolog will generate each path in the data structure on fig.1
and then check to see if it ends on ‘v'. Recall, that the number
of all paths of length k is: p(k) = b*F<«gsum(F, h-k). Hence, the
total number of paths, which may enter node ‘v’ is:

h
3 (b*F' * gsum(F, h-1)),
i=1
In the final selection E has to be used instead of S
esum(E,,h’)
because its direction is opposite to the transitive closure
of facts. Thus, the total cost is:

h
2 (b *F * gsum(F, h — i)) + esum(E
i=1
Naive approach
The naive approach does not consider the query bindings.
Therefore, as by the previous query, the method will generate the
whole amount of arcs and then select only those, which answer
the query. The only difference is, that the final selection uses E
instead of E,, for the same reason as in Prolog. Thus, the total
cost is:

up? h’) .

h
D* Y ((h=i+1)*b*E' * gsum(E, h—i)) + esum(E
i=l
Semi-Naive approach
Only facts, generated at the previous iteration step, take
part by computing the facts of the current step. Thus, the total
cost for the semi-naive approach, including the final selection,
is:

h%).

up?

h
* 2 (b *B'* gsum(E, h — i)) + esum(E,,h")
i=r
Magic Sets Method
The rewritten system for this query is:

magic(v).
anc(X,Y) :— magic(Y), par(X,Y).
anc(X,Y) :— magic(Y), par(X,2), anc(Z,Y).

The magic predicate generates only one fact. It is v. This
fact will be substituted in the two rules for the ancestor predi-
cate. Because the anwer set for the magic predicate contains
only one fact, at each iteration step the arcs to the current level
will be extended to the nodes of the next level, and not newly
generated. Hence, we will compute nodes rather than arcs. Thus,
the cost is only:

esum(E,,h’).

In this case a final selection is not necessary, but the
magic sets algorithm can not distinguish it. Therefore it applies
in principle a final selection to each rule set. Hence, the total
cost, including this final selection, is:

1+2%esum(E,,h).

2P-Method

The expand phase lasts only one single step. Hence, only
facts, connected to the query through edges, are generated. The
cost for them is:

D

At each step of the shrink phase these edges will be
extended to the nodes of the next level. Hence, we will compute
nodes rather than arcs. Thus, the cost is only:

esum(E,,h’).

1 2007

information technologies
and control




A final selection is not necessary, thus the total cost is:

D +esum(E, ).

Conclusions for query:

= anc(X,v).

As by the previous query, in order to create uniform con-
ditions for all methods (stratified and unstratified), we will as-
sume that each query starts from the first (or resp. the last) layer
and spreads over the whole depth of database. Thus, the cost
formulas are:

Prolog:

zh:(b*F‘ *gsum(F,h—i)) + esum(E

i=1

Naive approach:

h).

up’

h
D*Y ((h-i+1)*b*E'* gsum(E, h-1)) + esum(E, ,h)

Semi-naive approach:

h

D* Z(b*Ei'* gsum(E, h - i)) + esum(E,, h).
=l

Magic Sets Method:

1+2"esum(E_h').

up’

2P-Method:
D+esum(E, ).

Thus, we can conclude that;

1. For big values of both F and D, Prolog becomes less
effective than the naive approach, because F >> E.

2. The semi-naive approach has always a better perfor-
mance than Prolog, because b*E' < b*F. The physical explana-
tion is, that the semi-naive approach does a duplicate elimina-
tion at each step. Thus it computes arcs, while Prolog computes
paths.

3. The magic sets method and the 2P-Method have better
performance than Prolog, naive approach and semi-naive ap-
proach, because if we apply the terminology of asympthotic
notation again: magic sets method and 2P-Method have order of
growth — n, while the other three methods have order of growth
— n2. The physical explanation is, that magic sets method and
2P-Method compute nodes, while the other three methods com-
pute arcs or paths.

4. The 2P-Method is a little more effective than the magic
sets method:

: D + esum(E,, 1) < 1 + 2'esum(E )
because it does no final selection.

8.3. Query:
- sge(v,Y).

The authors of [1] assume that the join par,,.sgc.par,
is generated as follows:

1. Obtain a tuple from the current relation for sgc.

2. Look for matching tuples in par,.

3. Look for matching tuples in par

down

down®

4. Take the cartesian product of the first column of the
tuples from par, and the second column of the tuples in par bt

For this purpose they define T, , as transfer ratio between
two sets A and B. It is the fraction of these nodes in A which
also appear in B, hence 0 < T < 1. For example, if R and S are
relations, where i is the i-th attribute of R and j is the j-th attribute
of S, then n#Tg s gives the number of tuples in the result of the
join operation between R and S on R, and S

We will simplify this model of evaluatlon assuming that
the relational expression par,, sgc par, is evaluated as a
whole, because:

1. This is an internal operation of the RDBMS and we can
not control it.

2. This evaluation procedure will be applied to all methods
analyzed, i.e. all the methods will be evaluated under same
conditions.

down

Prolog

Prolog will generate all paths of different length in up-
direction, which start from the query node, and extend each of
these paths with paths in down-direction, whose length will

h’ i
Z(Di *gsum(D, h'~1)* ¥ (F/* gsum(F, i j)) |,
i=1 =1

vary from 1 to the length of the path in up-direction. The
deduction process will start from an intermediate level with base
b = 1, therefore the costs are:

To eliminate duplicate facts in this result, a final selection
must be made, but its cost is insignificant. Moreover, it presents
as cost in each method, except the 2P-Method. Therefore it will
be not included in cost formulas.

Naive approach

Each fact is build by two arcs, which start from same node
and have same length.

As mentioned in 6.1, if we start from a single node, then
the number of nodes reached on the k-th level is:

n(k) = H[F*(D 1){ J g]

Each pair of these nodes builds a fact, i.e. the number of
facts on this k-th level is a Cartesian product of the set of nodes
with itself, thus:

[QEF*(D—I)*(%I+£D2.

For a node on i-th level of the data structure, the maximal
length of an arc, which can generate facts, is k = h - i. Hence,
the number of all facts, generated from a node on the i-th level,
is a sum up to this length, thus:

sfro-risf 4]

The number of facts, generated from all the nodes on i-
th level of the data structure is:

information technologies
and control

1 2007 17




b*E‘*Z H(F*(D—l)*(%Jj+g—]

Because of recomputing, the number of facts for all levels
is:

h s i*h—ik*—*ijiz
zl (h—i+1)*b*E ;[H[F (D-1) (DJ +DD :

Semi-Naive approach

The semi-naive approach does not recompute arcs, there-
fore the total cost is:

g+ S T Frp oy o[ L) 4 F
) X 11 (_)[BjJrB

2

i=1 = St

Magic Sets Method
The rewritten system for this query is:

magic(v).

magic(X) :— magic(Y), par(X, Y).

sgc(XY) :— magic(X), eq(X,Y).

sgc(X,Y) = magic(X), par(X1, X), sgc(X1, Y1), par(Y1, Y).

The processing of the magic predicate (firings of the first
two rules) results in nodes of an inverted subtree (a subtree in
up-direction), rooted at the query node. Thus the cost is:

esum(E,, ).

While processing the same-generation-cousins predicate
(firings of the second two rules), each node, calculated with the
magic predicate, will be extended with arcs. Each pair of these
arcs, which have the same length and start from one same node,
will build an answer.

Following the pattern for naive and semi-naive approaches,
the number of facts, generated from one single node on i-th level
of the magic set, is:

Py

e el o)

Hence, the number of facts, generated from all the nodes
on i-th level of the magic set, is:

]J:[[F*(D—l)*(%)j +1] . E[Q[F*(D_“*[%I%H .

Thus, the total number of facts is:

ﬁ;{l'l[wm—l)*[%)]ﬂj E[I:I(F*(D D [—j +g]ﬂ + esum(E,,, h")

2P-Method

During the expand phase all the nodes of an inverted
subtree, rooted at the query node, will be generated. The number
of requests generated, nears the number of nodes. Therefore the
cost for the expand phase is:

2%esum(E,, h).

Recall that during the shrink phase a nested SELECT
operation is used to separate only those facts, which correspond
to the requests generated during the subsequent step of the
expand phase. The purpose is, at each shrink phase step there
have to be selected only these nodes, which lie on a fixed
distance from the apex of the decision cone, the distance is
determined by the step number. Therefore, the cost for the shrink
phase is only:

lJ_I[[F*(D—l)*( j +1J *é[]ﬁl[F*(D—l)*(%}J+g]J.

In other words, we first find the nodes on the base layer,
reachable from the query node in up-direction (see the left
multiplier) and then extend these nodes with arcs in down-
direction to the layer with the query node (see the right multi-
plier). Additionally, the selection upon the requests in the sub-
sequent expand phase differential removes the cost for the
Cartesian product from the formula.

Thus, the total cost for the 2P-Method is:

ﬁ(F*(D—])*[lF]j +l] *i[ﬁ{F*(D—l)*(LD)j+§]J + 2*esum(E“v,h’)
Cost for final selection
It is:
Eh >kEdown
Which may be written also as:

{0 5)

In other words, we first find the nodes on the base layer,
reachable from the query node in up-direction and then use them
to find the nodes on the layer with the query node. Because of
the selection with the query node, no Cartesian product is nec-
essary.

Conclusions for query:

- sge(v,Y).

As by the previous queries, in order to create uniform
conditions for all methods (stratified and unstratified), we will
assume that each query starts from the first (or resp. the last)
layer and spreads over the whole depth of database. Thus, the
cost formulas are:

Prolog:

i[Di *gsum(D, h —1)* Z(FJ *gsum(F,i- j))]'

i=1 j=1

Naive approach:

sl _HI*b*E,*"Z'[ﬁ[p*(D—l)*(%jj+ghz

i=1 j=1

Semi-naive approach:

. * i*h_i h * —1)* i_ : E :
> b*E ;[H[F (D-1) (Dj +DD

information technologies
and control




Magic Sets Method:
S —

2P-Method:
ﬁ[F*(Dq)*[%]JHJ *Zh:[f[[F*(D~1)*[]1)]J+gB + 2*esum(E,,, h)

j=l k=1 { j=1

ME

=
i

[ﬁ[F*(D_I)*(%JJ+%jJ :| + esum(E,,, h)

Thus, we can conclude that;

1. For small base and; big values of both F and D, Prolog
becomes less effective than the naive approach.

2. The semi-naive approach has always a better perfor-
mance than Prolog, because the member of the nested sum by
the semi-naive approach is smaller than those by Prolog, and
because the first two members of the outher sum by the semi-
naive approach are smaller than these by Prolog.

3. For real databases, where F << b:

i il
H[F*(D—l)*(l) +1J < b*E'.
i F

Hence, the magic sets method has a better performance
than the semi-naive approach.

4. The 2P-Method has a better performance than the other
four methods because, if we apply the terminology of asympthotic
notation again: the 2P-Method has an order of growth - n, while
all other methods have order of growth - n2. The physical expla-
nation is, that the 2P-Method computes nodes, while all other
methods compute arcs or paths.

9. Graphical Cost Representation

The graphics are generated with MathLab by interpreting
the cost formulas, derived above. The generation has been made
by a constant base and an expansion factor, and by a variable
height.

Query 1
- anc(b,Y).
x10°
10 T ]
facts Prolog  Naive Semi-naive /l
| | /
8r é Mﬁgxc sets
7t | /
i j
6 ! ;,
! ’,’
5t | /
/.»
4+ /
f J
3 j /
/
2t 4
; 2P-Method
1} 3 UL
- "
0 = et e
0 5 10 15 n_ 20
Figure 5

- anc(X,v)
500 T T T T
facts t
o Prolog i
400 | Naive |
] Semi-naive
3sof | -
|
300+ 4
250 | |
- ]
200 |
o} | ]
;!
w00r /) i
{ Magic sets
s0F | _ / 2P-Method 4
J.
0 . -
0 5 10 15 h 20
Figure 6
Query 3
== sgc(v,Y).
10 x 10 {
facts | I :j
| {
8 Naive 3 /
|Prolog {
7t f }f 4
sl f RSOE-alye Magic sets
5| ? 4‘ / 4
| /
ar )‘ /;f
{ I
L ! /
3 f /
2t /
/ 2P-Method 1
i "/“( ! A X e
- et
0 = R e BPCIRPOI ns sl
0 5 10 15 h 20
Figure 7

10. Conclusions and Future Work

1. For a small base and big values of both F and D, the
naive and the semi-naive approaches show a better perfor-
mance than Prolog, even though it is a stratified method. This
is because the naive and the semi-naive approaches do a
duplicate elimination on each step. Thus, they compute arcs,
while Prolog computes paths.

2. The magic sets method has a better performance than
Prolog, because as a bottom up method it does a duplicate
elimination on each step. Thus, it computes arcs, while Prolog
computes paths. The magic sets method has a better perfor-
mance than the naive approach and the semi-naive approaches,
because it uses stratification, based on a rewriting technique,
which allows to find at first all possible values that can ever
appear on the places of bound arguments.

3. The 2P-Method has a better performance than the magic
sets method because of the additional selection, implemented

information technologies
and control

1 2007 19




by computation of the shrink phase differentials. The purpose is,
at each shrink phase step have to be selected only these nodes,
which lie on a fixed there distance from the apex of the decision
cone. This distance is determined by the step number. As a
result, the 2P-Method computes nodes, while in most cases the
magic sets method computes arcs.With this behaviour the 2P-
Method resembles the counting and the reverse counting meth-
ods, which use rewriting techniques. But, as mentioned in 7.4.,
these two methods are not general. For example, the by answer-
ing the second query, they will generate a rewriten rule, which
will make the inference engine fall into an infinite loop.

References

1. Bancilhon, F. & R. Ramakrishnan. Performance Evaluation of Data
Intensive Logic Programs. Foundations of Deductive Databases And
Logic Programming Table of Contents. ISBN: 0-934613-40-0, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1988, 439 - 517.
2. Bancilhon, F. Naive Evaluation of Recursively Defined Relations, Springer
Topics In Information Systems, on Knowledge Base Management Sys-
tems: Integrating Artificial Intelligence and Database Technologies. ISBN:0-
387-96382-0, Springer-Verlag New York Inc., New York, NY, USA,
1986, 165-178.

3. Bancilhon, F. D. David Maier, Y. Sagiv & J. Ullman. Magic sets and
other strange ways to implement logic programs, Proceedings of the
fifth ACM SIGACT-SIGMOD symposium on Principles of database sys-
tems. ISBN: 0-89791-179-2, Cambridge, Massachusetts, United States,
ACM Press New York, NY, USA, 1986, 1-15.

4. Beeri, C. & R. Ramakrishnan. On the Power of Magic. Proceedings
of the Sixth ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems. ISBN: 0-89791-223-3, San Diego, California, United States,
1987, ACM Press New York, NY, USA1987, 269-284.

5. Berghammer, R., B. Leoniuk, & U. Milanese . Implementation of
Relational Algebra Using Binary Decision Diagrams. Lecture Notes in
Computer Science. 2561, Revised Papers from the 6th International
Conference and 1st Workshop of COST Action 274 TARSKI on Relational
Methods in Computer Science. ISBN:3-540-00315-0, 2001, Springer-
Verlag, London, UK, 2001, 241-257.

6. Ceri, S.; G. Gottlob. & L. Tanka. Logic Programming and Databases.
Springer-Verlag, ISBN 3-540-51728-6, Berlin, 1990.

7. Chien-Le G.241-257, A. Kazuki, T. Masahiko & N. Shojiro. Database
Compression with Data Mining Methods. The Kluwer International Series
in Engineering and Computer Science, Logic-based Artificial Intelligence.
ISBN:0792372247, 2000, Kluwer Academic Publishers, Norwell, MA,
USA, 2000, 177-190.

8. Clocksin, W. & C. Melish. Programming in Prolog. Using the SO
Standard. Springer-Verlag, ISBN 3-540-00678-8, Berlin, 2003.

9. Greco, S. & E. Zumpano. On the Rewriting and Efficient Computation
of Bound Disjunctive Datalog Queries, Proceedings of The 5th Acm
Sigplan International Conference on Principles and Practice o Declaritive
Programming. ISBN: 1-58113-705-2, Uppsala, Sweden, 2003, ACM
Press, New York, NY, USA, 2003, 136-147.

10. Husch, L.,S. Transformations of Exponential Functions. Lecture
Notes 2001. http://archives.math.utk.edu/visual.calculus/0/shifting.5/
index.html.

11. litchev, V. Bottom-up Method for Processing Recursive Sets of
Rules. International Conference on Computer Systems and Technologies.
ISBN 954-9641-33-3, ACM-acmbul&UAI, Sofia, Bulgaria, 19-20 June,
2003, 11.18.1-11.18.6.

12. Lhotak, 0. & L. Hendren. Jedd: a BDD-based Relational Extension
of Java. Proceedings of the ACM SIGPLAN 2004 Conference on Pro-
gramming Language Design and Implementation. ISBN:1-58113-807-
5, Washington DC, USA, 2004, ACM Press, New York, NY, USA, 2004,
158-169. :

13. Mumick, S.|. & H. Pirahesh. Implementation of Magic-sets in 2
Relational Database System. Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data. ISSN: 0163-5808.
Minneapolis, Minnesota, United States, 1994, ACM Press, New York, NY,
USA, 1994, 103-114.

14. Tarski, A. Lattice-theoretic Fixpoint Theorem and its Applications.—
Pacific journal of Mathematics, 1955, No 5, 285-309.

15. Ullman, J. Implementation of Logical Guery Languages for Data-
bases— ACM Transactions on Database Systems (TODS). 10, September.
1995, No 3, 289-321, ISSN: 0362-5915.

16. Van Emden, M. H. & R. A. Kovalski . The Semantics of Predicate
Logic as a Programming Language.— Journal of the ACM (JACM), 23,
October 1976, No 4, 733-742, ISSN: 0004-5411, ACM Press New York
NY, USA.

17. Wenfei, F., X. Y Jeffrey, L Hongjun, L. Jianhua & R. Rajeev . Query
Translation from XPATH to SQL in the Presence of Recursive DTDs.
Proceedings of the 31-th International Conference on Very Large Data
Bases. ISBN 1-59593-154-6, Trondheim, Norway, VLDB Endowment,
August 30 - September 02, 2005, 337-348.

Manuscript received on 14.09.2006

. Velko litchev received the MSc degree in Radio-
electronics from the Technical University in Sofia,
Bulgaria, in 1987. Since 1987 he is Assistent Pro-
fessor in the Department of Computer Systems
and Technologies at the Technical University —
Sofia, branch Plovdiv. He specialized in the Univer-
sities of Regensburg, Passau and Karlsruhe, with
grants from the EU and from the German Aca-
demic Exchange Service. He is currently in proce-
dure of receiving a PhD degree. His research

interests are in: language processors (compiler construction), relational

and deductive databases, XML strorage and retrieval in/from relational
databases, in which areas he has over 20 publications.
Contacts:

Department of Computer Systems

Technical University — Plovdiy
e-mail: ilichev@tu-plovdiv.bg

20 1 2007

information technologies
and control




