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Abstract. In this paper, an approach for achieving robustness, by proper
configuration of a pre-filter in the control system, is proposed. A typical
SISO, linear, continuous-time, regular, industrial class control systems is
taken into consideration. The presence of delay, different order of astatism,
as well as minimum phase properties of a larger class of models do not
reduce the generality of the considerations and the conclusions made
throughout the work. An assessment of the obtained performance in the
time and frequency domains is presented also.

1. Introduction

Guaranteeing robustness in control systems different in
nature and function is a problem, which has found an effective
solution in the combination of multiple approaches, based on
different tools, ideas and alternatives, available in the complex
plane and the frequency domain [1-7], [10-12]. Both domains,
where robustness is searched for and guaranteed, have their,
advantages and disadvantages.

The basic measure used to quantify control systems’ ro-
bustness properties — the sensitivity function module has its
useful and clear visualization and interpretation in the frequency
domain. In the complex plane, interpreting the sensitivity function
magnitude is a much harder task, though it is possible to have
some insight depending on the n'"- order zero poles. Comple-
mentary sensitivity function can be traced directly in the complex
plane through root loci, allowing interpretation for all gains and
frequencies covering the range from zero to infinity, but still its
module is perceived in a much simpler and clearer way in the
frequency domain.

The approach for guaranteeing robustness desired perfor-
mance through a pre-filter [8] is a powerful tool, which requires
rather good knowledge about the characteristics of the respec-
tive system. The pre-filter is a basic element in the QFT (Quan-
- titative Feedback Theory) idea for robust control [2], [7], devel-
oped in the frequency domain, an approach, giving and using the
relations between frequency-domain defined stability margins
and time-domain specifications. Very feature, gives grounds to
using complex-plane capabilities for specifying time-domain
requirements [1], [5], [10-11], as an alternative for configuring
a pre-filter. Most commonly, a pre-filter is needed and used
when the capabilities of the system are insufficient to counteract

adequately variations in the plant’s dynamigal parameters.
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2. Goals and Problems

The goal of this paper is to present the application of an
approach for ,equipping“ a specific class of control systems,
with robustness properties, by using correctly specified pre-
filter. The study targets a class of control systems characterized
by a standard controller (PI, PID) and a typical industrial plant
model [9] in their structure.

This approach is reduced to an engineering procedure,
solving design and analysis problems arising in the realization
of the following steps:

a) performance analysis of the nominal uncompensated
control system;

b) controller design, guaranteeing desired performance in
nominal regime;

c)an assessment of system’s performance under an a
priori interval uncertainty in the dynamical parameters of the
plant model;

d) pre-filter configuration in the complex plane;

e) verification and validation of the two-degrees of freedom
control system’s robustness properties in time and frequency
domains.

An original aspect of the proposed approach is the configu-
ration of a pre-filter, using performance specification tools, avail-
able in the complex-plane. It is shown that a motivated choice
of the pre-filter’s transfer function in the complex plane reflects
in satisfying classic frequency-domain defined robustness crite-
ria. Moreover, a quite clearer relation to time-domain perfor-
mance is obtained since it can be explicitly interpreted in the
complex plane.

3. Pre-filters’ Application Domains

Figure 1 shows the signal flow graph of a linear SISO control
system.

Figure 1
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The basic equations relative to the output Y () and error

&(s) signals are given by the following expressions (1) and (2)

A
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T(s)R(s)F(s)-T(s)N(s)+S(s)D(s),

where:
F(s) - pre-filter transfer function (TF), R(s) - input,

£(s) -error, G.(s) - controller TF, G(s) - plant TF, D(s)
- disturbance, Y (s) - output, N (s) - measurement noise.
The error signal £(s) should be distinguished from the

signal e*(s), seen on the signal-flow graph, which itself is
given by the following expression (3)

@) & (s)=S(s)[R(s)F(s)=N(s)=D(s)].

It is namely &(s), the difference between reference input

and system’s output, the significant signal from control perfor-
mance point of view.

T(s) represents the complementary sensitivity TF and
characterizes the closed-loop system’s properties (4)

@) T(s)=F ()G (s)G (5)(1+ G, (s)G (5))
Itis seen from (1) and (2), that the magnitude of T (s),
which is shaped by the pre-fiter F(s) determines the input

tracking errors as well as the measurement noise influence. On

the other hand, the sensitivity TF S () has different interpreta-
tions (5) (6), (7), according to (1) and (2)

471 AT
D(s) 1+GC(s)G(s) g

6) Si(s)=

R(s)F(s)=0, N(s)=0;

S () can be defined as a disturbance (D(s)) to output
(Y (s)) TF, noted as S, (s), or reference (R(s)F(s)) to error

£(s) TF S(s), or can be interpreted as a complex function

describing the relative variation of the closed-loop to a relative
variation of the open-loop system -S, (s) .

The basic equations (1) and (2) suggest the zones where
the pre-filter is able to affect the system performance. The pre-
filter influences the sensitivity function, regarded as the refer-
ence to error TF, which means that it does not affect the dis-
turbance rejection capabilities of the system.

When parameter uncertainty is considered, it can be
claimed that the pre-filter has an influence, since the worst
combination of parameter values leads to larger tracking and
steady-state errors in the system. The noise influence on the

control system performance is not affected by F(s)

4. Basic Considerations for Pre-filter
Configuration

The pre-filter F () sets the desired dynamic behavior of

the system by shaping its closed-loop transient response in
order to meet certain time-domain specifications satisfying dif-
ferent criteria — integral, frequency or time domain.

The choice of pre-filter transfer function does not present
a trivial problem at all. There is a common practice to assign
pre-filter poles matching controller zeros [5]. Thus, a closed-

loop system, with n>m, m=0 is obtained.

The use of a pre-filter is a delicate moment, representing
a balance between performance specifications, since in order
to work efficiently its dynamics must be significantly slower than
the dynamics of the closed-loop control system (in and out
presence of uncertainty). That is why, using a pre-filter aims and
achieves a smaller overshoot or under-damped response sac-
rificing the speed of response of the system. In terms of fre-
quency domain performance indices, the overshoot can be re-
lated to phase margin specification, which gives criteria for

choosing F(s).

Different direct and indirect frequency domain relations
enable transforming these criteria for choosing desired values

of sensitivity functions Sand 7 .

Following the above mentioned considerations, taking for-
mal expressions as (5), (6) and (7), the sensitivity function is
used to characterize in a general way the control systems’
performance. Nominal performance, robust stability and robust
performance conditions are given (8), (9) u (10), [12]. A.com-
plex weighting function ws( ja)) is used to specify desired

performance of the control system. Following (8), the module of

its inverse |w;‘ ( jw)| can be viewed as a frequency-dependent

bound on |S| . The weighting function w, (]w) , taking part in
the robust stability condition, accounts for the uncertainties in
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the model of the plant model, representing a multiplicative un-
certainty model (11) or the relative change of the model at the
,worst“ combination of parameter values.

(8) , m(?x,ws (ja))S(ja))‘ =i

(9) max

u)

w, (jo)T (jo)|<1;
(10) s%p('ws (jo)S (ja))|+ |wT (jo)T (]Cl))|) 21,
Volwe [0,%),

where:

G, (jo)G(jw.q)-G.(jo)G(j)
G.(jo)G(jw)

1

1) w(jo)=

(12) ¢={alac[q ], i=12..n},

O -interval uncertainty range, » -dimensional rectangle

(1], g, - real, interval parameters, g, ¢ - a priori known

upper and lower uncertainty bounds, respectively.

The pre-filter dynamics corrects the sensitivity functions’
properties and from this point of view, the pre-filter’ transfer
function can be interpreted as a weighting function on S. Taking

F(s) into account, (10) is transformed into (13)

(13) st:)p('F(ja))S(jw)l+|wT (ja))T(ja))])s i,
Vo|we [0,).

The strictness of (13), the robust stability condition, is
justified by clear geometric relations in the Nyquist plane [12].
It includes the sensitivity function, determining nominal perfor-
mance and the complementary sensitivity function of the control
system.

Requirements on control performance, in presence of
uncertainty, can be translated into requirements on the sensitiv-
ity functions Sand T, accounting for the pre-filter's properties,

as in (14) and (15), [2]. The bounds ws, , w; u W, represent

complex transfer functions, known as Horowitz-Sidi bounds [7],
and can also be viewed as weighting functions. They determine
the desired time-domain behavior of the control system, by
shaping its frequency-domain response.

(14) m{gX’F(jw)S(jw,q,- )’S s,

(15) wy, Smj\x‘F(ja))T(ja),q,. )ls W .

The relations given by (13) and (14), (15) show that the
specific properties of the pre-filter play significant part in deter-
mining the robustness of the control system.

5. Characteristic Properties of S and 7

Sensitivity S and complementary sensitivity 7 functions
represent robustness quantitative measures in the frequency
domain. Achieving zero steady-state error (16) is an essential
goal in all control approaches,

E(oo) = }1_)[21:‘(1‘) = 1yiilgsR(s)F(s)S(s)=
(16) =limsR(s)[ F ()(1-T(s))] =o0.

Different functionals, including the € signal are com-
monly minimized using the following criteria - IE, IAE, ISE, ITE,
ITSE, ISTE, ITAE (17).

t

s B L If,{e(z)}dz — min.

0

In order to satisfy (16), it is required for S and 7 to
have zero values.

The identity S +7 =1 shows that there is certain contra-
diction, needing to be balanced by certain compromise, which
is the goal of robust methods, [12]. This balance has its visu-
alization in the frequency domain (18) and (19) and it is usually
realized by special weighting functions.

(18) MSZ max |S(]Cl))|<1’

we[0.0,]

(19 Mr= max [T(jo) <l vy|pe[oe)
and @, > .

The first expression is relative to the low-end of frequen-
cies, where it is necessary to reject disturbances and achieve
satisfactory input tracking. The second limitation acts on the
high frequencies, where it is important to suppress measure-
ment noise effects.

S and T magnitude profiles are very informative. Based
on them, one is able without further calculations to approxi-
mately foresee transient performance. High maximal values
indicate high overshoots, and smoother shapes usually mean
low speed of response. Their correction should be done care-
fully, since improving one performance index usually leads to
waorsening another one.
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6. Numerical Example

The basic problem formulation can be subdivided into two
parts by defining a global performance criterion, guaranteeing
robustness, and a local one dealing with control system’ nominal
regime.

1.1t is necessary to design a controller for the nominal
plant (figure 1), able to achieve speed of response, twice as high
as that of the uncompensated control system.

2.1n presence of a priori bounded uncertainty in plant’s
dynamic parameters, it is required to guarantee transient closed-
loop response, specified by an overshoot o =20%+0.04 .

6.1. Time- and Frequency- Domain Analysis of
the Nominal Uncompensated Control System

Typical plant transfer function [9] is given by the expres-
sion (20)

(200 G(s)=p(s(s+a)(s+B)) -

Proportional controller is considered G (s)=k,=1.

According to figure 1, F(s)=1, D(s)=0 and N(s)=0is

assumed. The a priori uncertainty is obtained as a consequence
of 20% variations of all three of the plant’s parameters (21)

@) G(sa)=a(s(s+a)(s+a))

where the upper and lower bounds of variations are ex-
pressed by (22)

(22) ¢f=y+20%, g5 =aF20%, qi =PF20%.

The nominal dynamic parameters of the plant have the
following values ¥ =24, a=3, B=5. These values determine
indirect performance indices — phase margin PM, gain margin

GM, bandwidth @, and @gy, , maximal sensitivity Mg ,

complementary sensitivity M., summarized in the table, figure

2
These frequency domain defined indices guarantee tran-
sient performance with overshoot & =20% and settling-time

t,£2% =4.39s figure 3.

The maximal value of the sensitivity function M, figure

2 is quite high, which means that small variations in plant

parameters will lead to considerable changes in transient per-

formance compared to the nominal regime of the system.
The P controller is able to improve the speed of response

to its maximum at G (s)=0.344. In this case, the control
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system will be characterized by a critically damped transient
response, with settling-time still far from the required, figure 4

(root locus for the uncompensated control system G(s) in

green).

The properly designed PD controller will ensure desired
settling time, but there will be no reduction in sensitivity, since
no poles are added at zero.

Reversely, a Pl control will reduce sensitivity, but the
settling-time requirements will not be met.

According to the preceding considerations and the speed-
response requirements, PID controller design represents 3
convenient possible solution. A proper selection of its param-
eters will lead to relocating the nominal dominating closed-loop
poles to the left, thus ensuring the effective functioning of the
pre-filter in presence of a priori interval uncertainty. This is a
necessary step since there is a theoretical stability loss pos-
sibility for the uncompensated control system for certain com-
bination of parameter values in presence of uncertainty.

12 1 2008
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6.2. PID Controller with Pre-filter Standard Design

In this specific case it is appropriate to choose a PID

controller with time-constants ratio of 7,7,;' >0.25 .

A delicate moment requiring certain intuition from the
designer is the positioning of controller zeros, since there are
many possible combinations. Purpose - wise it is suitable for
the first zero to be located sufficiently close to the origin of the
complex plane in order to eliminate the additional zero root
influence on transient responses. The other zero is positioned
from the right of the third pole of the uncompensated system,
so that a valid second-order system approximation is obtained,
figure 4.

In order for the PID controller to be physically imple-
mented, a filter with transfer function (23)

@) Gy, (s)=(Tps+1)", Tr =000Ls

The pole of the filter is chosen so that it sits far left in the plane not

influencing the properties of the designed control system. The PID
controller design represents a pole-placement problem, sol-ved by
satisfying modulus and argument conditions (24), (25), graphically
represented in figure 4, ( <6, = 8, =117.13°, %6, =68.7°,
£B, =4T1%, Ly, =53.3%,

k=0.5).

B =02°, Ly, =117.13°,

(24) |GP1D (s)G (s

2 5
= Hls+ zi[/H|s+ pi| = |k|—l
izl i=1

(25) LGpyp (s

qu/, i =+(2k+1)7

The transfer function of the obtained controller is given by (26).

(26)  Gpyp (s)=0.5(s+0.02)(s +4.5)s (0.001s +1)”"

It is seen in figure 5, that the PID controller is able to the
necessary phase margin pps ~ 50° , which guarantees an over-

shoot o = 20% . The new crossover frequency @, =2.73r/sis

twice as large as that of the uncompensated system @, =1.4r/s,

which leads to achieving the required settling — time.

Both PID controller real zeros introduce additional dynam-
ics improving the speed of response and according to Bode
relation, given by (27)

27)  £Gpp (jo)G( jw)=n90°
where =2 is the slope of |Gy (j@)G( ]a))] the
compensated system has a an infinitesimal gain margin,

GM — oo
That means that the nominal system remains stable for
each value of the generalized gain figure 5.

Nichols Chart
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On the other hand, these appropriate values of gain and
phase margins do not guarantee a low value of M of the

system, though the PID controller additional zero pole reduces in
certain degree the sensitivity. The compensated system is char-
acterized by performance indices, summarized in the fable, fig-
ure 5.

The M,and PM values are the same as those in the

uncompensated system, due to overshoot criterion, the charac-
teristic frequencies are twice as large, due to speed of response
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requirements and the maximal sensitivity M is about 1dB

lower.

Figure 6 shows comparative transient performance curves
of both compensated and uncompensated control system. It can
be concluded that the frequency domain design carried out is
correct.

Amplitude

B s S s = e
d

439 5 o
Time (sec)

Figure 6

6.3. Assessment of Control System Dynamic Properties
in Presence of Uncertainty

Due to the large value of the sensitivity, the presence of
uncertainty in plant's dynamical parameters results in significant
changes in the nominal control system performance.

In figure 7 are shown the frequency responses of the
system, and the respective frequency responses of both sensi-

tivity and complementary sensitivity functions S and T, where
the interval uncertainties are accounted for.

Nichols Chart
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Figure 8

In dark the responses for the worst combination of pa-
rameters’ values are visualized which leads to reduced values
of stability margins and speed of response. The other boundary
combination, given by a -20% variation in each parameter, also
results in significant differences in comparison with the nominal
system (represented with dashed line).

In the table are summarized all frequency domain indices
for the cases of variations in plant parameters corresponding to
the upper and lower bounds of their respective interval sets. It
is seen that the control system does not exhibit robust proper-
ties, and that the PID controller is not able to achieve the desired
performance in presence of uncertainty.

Some transient are shown in figure 8 responses of the
system with interval uncertainty. The transients for

GP,D(s)G(s,q,-‘) and GPID(S)G(s,qi+ ) are visualized with dark

lines. The hatched areas enclose the upper and lower bounds
of both direct performance indices - overshoot and settling-time
respectively, It is seen that their variation ranges are significant.

The zone corresponding to o =20% +0.04 s a visualization
of the performance criterion and determines the robustness in
this case, representing a time domain interpretation of the Horowitz
boundary [2-4], [6-7].

6.4. Pre-filter Design and Performance Assessment

Introducing a second degree of freedom by a pre-filter in
the control system aims at achieving robustness in a concrete
sense. That is, maintaining the overshoot in the pre-specified

limits 0 =20%+0.04 in presence of a priori uncertainties in
plant parameters. A suitable choice for the task is a pre-filter
with transfer function (28)

(28) F(s)=w} (s2 +28w,5 + 0} )_1

4

14 1 2008

information technologies
and control




The considerations leading to this choice are obvious in the
complex plane, taking into account the overall conditions, that a pre-
filter dynamics must satisfy in order to be effective, figure 9.
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Figure 9

The repartition of characteristic equations’ roots of (29) are
shown in figure 9,

(29) EK(s,qi )=1+keGP1D(s*)G(s*,qi )=O i

corresponding to variations of +20% in all plant parameters. The
™ symbol indicates the roots specifying nominal performance. The
roots determining the transient responses when plant parameters
are set to their nominal values are marked in pink.

According to the “dominating poles” concept, both

F (s) poles must lie in specific regions to the right of the zone of
uncertainty in conformity with the desired performance i.e.

0 =20% . Since in all cases there has to be a compromise with
the speed of response, a conditional speed of response is targeted.

A specific aspect that has to be taken into account comes
from the fact that the overshoot determined by the pre-filter must be
from 3 to 5% less than the desired, in order to achieve optimal
results The configuration of a pre-filter is an iterative procedure,
requiring the engineering intuition of the designer. After a couple

of steps into it the pre-filter transfer function F () is specified by
a damping factor £=0.5and an undamped natural frequency

@, =1 which lead to transient performance characterized be an
overshoot and settling-time (30), (31)

-0.5
(30) o= exp{—ﬂf(l—fz) ]100% =163%

(B1) 1, +2% ~4(éw,) =8s.

The choice of a pre-filter by complex plane specifications
is a possible alternative to the frequency-domain approach, since

the complex plane gives an explicit interpretation of the time domain.
That is why, if a model of the plant is available, it is convenient to
configure the pre-filter in the complex plane. The design usually is
reduced to specifying £ u @, parameters, related to the most

important characteristics of the transient response — overshoot and
settling-time.

6.4.1. Frequency-Domain Analysis

The bounds on the sensitivity functions in (14) u (15), are
chosen as shown in (30) and (31), a choice determined by the

nature of the performance criterion o =20% +0.04 . Negative
values of Ms( ja),q,.,F) over the entire frequency range are
required to obtain a significant reduction of S . The bounds on
M. ( jo,q,,F)are determined by the overshoot specifications.

(32) mgx'F(ja))S(ja),q,. )’ £
(83) 1122<max|F(j)T(jo.q, ) <1259

Figure 10a is shows sensitivity functions and on figure
10b it can be seen the Nichols plot of the open-loop system

Gpyp (J@)G( jow,q; ) frequency accounting for the presence of

the pre-filter.
It is seen, that complementary sensitivity function’s
supremum has its maximal and minimal values of

M, =f(q,.+,F)=1.62dB and M, :f(q;,F):ude respec-

tively, meaning that (31) is satisfied, and the transients will
present overshoots in the required range. The supremum of

M g for the pre-specified interval uncertainty is under 0dB, which

meets condition (30). This result guarantees, that the control
system will be practically insensitive to variations in parameter
values, which itself guarantees meeting the time-domain perfor-
mance specifications.

6.4.2. Time-Domain Analysis

In figure 17 the transient responses of the two degrees
of liberty control system in the case of variations in plant param-
eters are shown. The uncertainty in plant parameters results in
an overshoot variation of about 1% when the pre-filter is added,
which is a lot less than the case without it - from 0% to 51.4%.
The local performance criterion & = 20% +0.04 is met, since
all transient curves are found in the specified zone. When speed
of response is considered, the control system is robust, since
the settling-time varies in a very narrow range.

Figure 12 visualizes the evolution of the error in the time domain.
It is seen that the introduction of the pre-filter reduces the error,
respectively the system’s sensitivity.
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6.4.3. Robust Stability and Performance Analysis

Figure 13 presents a graphical expression of robust sta-
bility and robust performance conditions (9) and (13).

The robust stability condition, given by (9) is satisfied
(figure 13a). Condition (13), concerning robust performance,
obviously is not strictly met.

On the other hand, figures 10 and 771, and the table
indicate that the control system possesses robust properties,
since it is practically insensible to variations in plant param-
eters. It is possible to satisfy the requirement, given by (13) by
introducing additional weighting functions. In this case, the time

domain requirement o =20% +0.04 Wwill be violated since the

magnitude |T(j60» q; )ldB <0, which means an under-damped
(apérodic) transient.

7. Analysis of Disturbance and Measure-
ment Noise Effects

Let D(s)=-03s"", as in figure. When disturbance

rejection is considered, the pre-filter F(s) does not affect con-

trol system performance, figure 14.
The output reaction of the system to disturbance signals
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at the worst combination of parameter values is not altered by
the presence of the pre-filter in the control system. In both cases
it takes the same amount of time to reduce the disturbance
related deviation of the output.

Output reactions to noise in feedback measurements are
not affected either by the pre-filter ((1) u (2)). At ¢ =0 (high
frequencies), noise level is lower since the magnitude of

]T|«OdB , figure 10. At # — o (low frequencies) the influence of
the noise is stronger since the system presents good tracking
and ||~ 0dB .

8. Conclusion

This paper presents an engineering procedure for config-
uring robustness properties in control systems by using pre-
filters. An original aspect of the proposed approach is the use
of complex plane tools for the pre-filter design. It is shown that
this idea leads to a straightforward choice of a pre-filter, ensur-
ing frequency-domain robustness, and to a much clearer inter-
pretation of the resulting time-domain performance and robust-
ness.

A short systematization of the properties and the capabili-
ties of the pre-filter, as a specific functional element in control
systems is done. This enables assessing and properly reflecting
the impact of its presence in robustness related conditions and
their frequency-domain graphical interpretations. It is shown how
pre-filter's characteristics shape sensitivity and complementary
sensitivity functions in the frequency domain, as well as system’s
frequency response in order to obtain desired performance in the
presence of an a priori uncertainty. The relations between time
and frequency domains and the complex plane are efficiently
exploited through the respective performance specifications.

Control system’s dynamic properties are compared in configurations
with and without a pre-filter in the structure, for all combinations of
parameter values in the a priori uncertainty range.

The following conclusions can be drawn from the study presented
in the paper:

1.The specification of a pre-filter presents a not trivial,
iterative problem, though unambiguous and clear. Introducing a
pre-filter in the control system does not affect disturbance and
measurement noise influence on the output.

2.The use of a pre-filter in presence of parametric uncer-
tainty requires minimal relative stability margin of the closed-
loop system, which can be ensured by a proper choice of control
law.

3. The study, presented in the paper, shows that meeting
simultaneously time-domain and robust frequency-domain speci-
fied criteria is contradictory and ambiguous. That is why usually
robust criteria are formally guaranteed in the frequency domain,
while a less severe inter-pretation of robust properties is accept-
able in the time domain and its direct relation with the complex
plane.
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4.The results drawn from this typical control system study
can be generalized and applied to any SISO control system, y hs
whose sensitivity function presents no particularities from inter-
pretation point of view. Figure 14
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