Efficient Quantum Computing Simulation

in GRID Environments

Key Words: Quantum Computing Simulation; Shor’s Algorithm

Abstract. We describe an implementation of Shor’s quantum algorithm
for prime number factorization on a portable universal quantum
computing simulator that allows large-scale entirely quantum
computation to be carried out in parallel environments. The quantum
computing simulatar i questian (s a result of aur previous work in
which we speculated that its special design will not only allow running
efficient simulations of various quantum algorithms for large problem
sizes, but will also allow reducing the simulation time further by
parallelizing its execution among multiple computing elements. We test
these expectations by implementing and running Shor’s algorithm for
different problem sizes — up to 59 qubits — in single - and multi-
processing environments, consisting of mainstream computing elements
participating in a GRID infrastructure. The results indicate ideal scaling
of the simulator as a function of the number of the computing
elements involved and thus show that it can be used standalone or
in GRID environment as a valuable research tool for performing large
scale quantum algorithm simulations.

1. Introduction

This paper is a follow up of a previous work [1], in
which the design of a powerful and portable universal
quantum computing simulator has been presented. The simula-
toris specially designed so that the major factor determining the
simulation time be the ,amount“ of superposition and entangle-
ment of the state of the quantum register. Instead of blindly
representing the n-qubit register as a 2"x1 matrix of complex
numbers, the software tries to keep the qubits that comprise the
quantum register in independent sub-registers and only combine
them in case entanglement between qubits of different sub-
registers is necessary. This allows the simulator to handle large
quantum registers. In the present paper, the realization of an
entirely quantum simulation of Peter Shor’s factorization algo-
rithm [2] is given. The simulation is then run several times for
input of different sizes. In the last run the size of the quantum
register was 59 qubits, in contrast to the state of the art systems
in which the absolute upper limit for the size of the register is
set to about 36 qubits. This last limit is imposed by the expo-
nential growth of resource requirements, which amount to 1TB
for 36 qubits in a straightforward 2"x1 matrix representation. If
our simulator worked with such representation, over 8 million TB
(!) would be necessary to represent the 59 qubits in question.
Moreover, each elementary transformation would require the
multiplication of the 2" x2"matrix of the transformation by the
2"x1 column-vector of the quantum register, and there are

V. Paviov

mainstream workstations.

This paper is organized as follows:
« Section 2 describes briefly the quantum simulator and the
Application Programming Interface API it exposes.
« Section 3 describes Shor’s algorithm.
» Seeton &-7 destripes our ymplementation of ne quantum
transformations that are the building blocks of Shor’s algorithm.
« Section 8 shows the results of the simulation,
» Section 9 discusses means for parallelizing the execution and
the results obtained via parallel runs.
« Section 10 concludes the paper.

2. About the Simulator

The quantum simulator described in [1] is realized in
Common Lisp and more specifically using the GNU CLISP Imple-
mentation (http://clisp.cons.org). One of the reasons for prefer-
ring Lisp over other alternatives (e.g. C) is that it offers great
extensibility, including the ability to construct program code in
run-time (through program-writing macros) and its natural ability
to implement embedded languages easily. The former is very
useful for designing quantum algorithms, since in most of them
the structure of the program to be executed depends on some
of the input values (for example, the structure of Shor’s algorithm
depends upon two of its inputs). On the other hand, due to the
second ability, instead of designing a language in which to
express quantum algorithms and then implementing a parser/
compiler for it, we let Lisp manage this. Both classical and
quantum code are thus written in the same language, Lisp.

In contrast with GUI-based quantum algorithm construction
sets, which are quite limited, our approach enables the quantum
algorithm developers to use the full power and flexibility of one
of the most extensible programming languages.

The core of the quantum simulator API consists of the calls
which carry out the 4 elementary transformations from the cho-
sen universal set of gates. Following [3], this set includes three
1-qubit and one 2-qubit transformations, namely:

possibly thousands and millions elementary transformations in HIS 000
every non-trivial quantum algorithm. Still, due to its design, the (1) W d8 H{pR a1 AT
simulator was able to finish the 59-qubit quantum computation SridhsaCio
in less than 1 day using the processing power of 8 ordinary el 0
& 2 2007 information technologies

and control

with the corresponding API calls:

— (ph x &) phase-shifts the amplitudes of qubit X through
angle 3;

— (rz x a) — rotates the probability vector of qubit X around
z axis through angle o/2;

— (ry x ©) — rotates the probability vector of qubit X around
y through angle 6/2;

— (c/c x)controlled NOT with control qubit C and target
qubit X.

The algorithms for applying these transformations are
central for achieving the main property of the simulator — its
efficiency and ability to handle operations with large registers.
Their design is described in detail in [1].

As Barenco et al. show in [3], using these 4 elementary
gates, it is possible to construct any unitary transformation.
Using their approach, we have included several widely used
gates in the core simulator API:

— (h x) - Hadamard transformation, which brings qubit X from a
base state to a state of uniform superposition;

— (g-not x) - a trivial NOT transformation, which unconditionally
negates qubit X;

— (cc-not c¢1 ¢2 x) - controlled-controlled-NOT, this is the uni-
versal gate, which in terms of classical computation corresponds
to the ubiquitous NAND gate. It performs a NOT operation upon the
target qubit X if both controlling qubits C1 and C2 include a non-
zero probability for the state |1 g

The matrices corresponding to these transformations are: -

cenot =

HEOFMOLOIS © SO

Figure 1 shows the implementation of the correspond-
ing Lisp functions in terms of the elementary transformations.

{(defun g-not ()

{ph x pi/2)

{e-8rn ¢
tertighyiB2y
{e=sEn"-1 ¢2 %)
(edicheZ)
(c=arn el 'z}

{ef e R}
(rz" ==pi/2)%

Figure 1. Implementation of h, g-not and cc-not in
terms of elementary transformations. The implementation is
created following the rules for arbitrary gate construction
given in [3]

Apart from the transformations, the quantum simulator AP
also includes functions for creation, manipulation, measurement
and optimization of the quantum register:

— *gax* — aglobal variable, quantum register, the defaulttarget
for all transformations. Basically, this serves only as syntactic
sugar — if no register is specified for a transformation, it will act
upon the register in *gax*;

— (make-qreg size) — creates a quantum register consisting of
SIZE qubits. Note that due to the design of the simulator, SIZE can
be arbitrary large — until entanglement occurs, the qubits behave
like ordinary bits and memory requirements grow linearly with SIZE;
— (measure qr) — performs a measurement upon the quantum
register QR. As a result it will return one of the base states that
participate in QR’s superposition, according to the probabilities
encoded in the superposition’s complex amplitudes;

— (minimize qr) — tries to optimize the register representation,
dis-entangling qubits if possible. This function can be used to lower
the complexity of the state, if possible, in order to minimize memory
requirements and reduce the computational times of transforma-
tions to come.

— (bstore/bload qr) — pair of functions for storing and loading the
current state of the quantum register QR in a file;

— (qreg-traverse qr) — prints out all the states that participate in
the quantum register QR’s superposition, along with the probability
for reading them out when a measurement is performed.

This concludes the APl exposed by the quantum simula-
tor. The code spans about 600 lines of Lisp and allows the
execution of an arbitrary quantum algorithm. Using the API, we
implement Shor's factoring algorithm [2] in order to test the cor-
rectness and efficiency of the simulator.

3. Shor’s Algorithm

Shor’s algorithm is concerned with decomposing a
given integer Ninto a product of primes. As Shor argues in [2],
the fastest known classical algorithm for this task is of
exponential complexity, while his quantum algorithm will only
take O((log N)? (log log M) (log log log N)) steps on a quantum
computer, along with some polynomial in log (V) classical
post-processing.

Essentially, the algorithm finds the order of a randomly
chosen element x in the multiplicative group mod (A) ; that is, the
least integer rsuch that x=1(mod N). The input to the algorithm
is the number N'to be factored and x < N, a randomly chosen co-
prime to N/ whose period ris to be found. The algorithm uses two
registers and proceeds as follows:

1. Find m that satisfies:
(3) NZ £ W oyt

The size of the first register is then set to m qubits and
the size of the second is set to / =m/2 qubits.

2. Both registers are initialized to 0. The state }(p}
of the quantum system is thus given by:

(4) |#)=[0)[0)-

information technologies 9
and control =

2007 7

3. Prepare the first register in uniform superposition of

states representing all integers a(mod2™)- The state of the
system becomes:

oM _|

)) = ﬁTZMW>

a=0

4. Compute x?(mod N) in the second register:

(6) \/_ HZ;] a)‘ x“ (mod N)>

5. Perform Quantum Fourier Transform (QFT) on the
first register:

1 g-1 g-1 2%

7 S IO

q a=0 =0

¢)]x* (mod N))-

6. Observe the quantum system, leaving it in a particular

state‘ c>’ x* (mod N)> . From this point forward the algorithm

involves classical post-processing and possibly restarts from
the beginning, so these are of no particular interest in terms of
testing the simulator correctness and performance (see [2] for
full treatment of Shor’s algorithm and its reasoning).

All in all, the quantum simulator needs to: a) prepare the
system in a particular suitable state; b) perform calculation of
exponent modulo A, ¢) perform QFT and d) measure the outcome.
The Appendix to this article includes the complete source code
listing of the implemented quantum algorithm. The following
sections provide details about the implementation.

4. Map of the Quantum Register

Before we proceed any further, a note on the size of the
quantum register required to execute the algorithm and a map
giving the purpose of its qubits must be made. The size of the
register depends on the exact algorithm chosen for implementing
the quantum computation in step 4, since it inevitably requires
some scratch space. We have chosen an algorithm based on
the treatment of elementary arithmetic operations presented by
Vedral et al in [4] and in accordance with it we need 7/+3
qubits, where [is the number of bits in the binary representation
of N. For example, in order to execute Shor’s algorithm for an
8-bit NV, 59 qubits are needed. Figure 2. depicts the structure
of the quantum register for a 4-bit N.

The simulator uses a notation in which the qubits in the
register are numbered starting from 0 from left to right, most
significant bits first (left). Having in mind this ordering, the
purpose of the qubits is as follows:

—the leftmost m = 2 qubits (A,—A,,) correspond to the
first register in Shor’s algorithm;

—the following / +1 qubits (C,, R,—R_,) correspond to the
second register in Shor’s algorithm, along with an additional
qubit (C,) used throughout the execution of the adder subroutine
to contain the most significant carry bit;

—the following [+1 qubits (C,, Y,— VY, ,) are temporary scratch

space used as a second operand in the expt-mod subroutine;

—the following / qubits (C,—C,,) are temporary scratch space
used to store the carry bits throughout the execution of the adder
subroutine;

—the following / qubits (M, —M,,) are temporary scratch space
used as a second operand during in the ctrl-mult-mod subroutine;

—the following / +1 qubits (T, N,—N) are temporary scratch
space used as a second operand in the adder-mod subroutine,
along with a temporary qubit (T), used in the same subroutine.

The following sections explain in detail the subroutines
involved in the exponent modulo N calculation. For full treatment
of the algorithms involved see [4].

5. Main Routine

The main algorithm routine is found in the function shor,
which receives x and N as arguments. Step 1 of Shor's algorithm
is a trivial classical computation concerned with computing the
number of bits /in the binary representation of N (carried out
by hitsize) and doubling it in order to find m.

The simulator’s APl call make-greg automatically puts the
system in the trivial state given in (4), which takes care of step
2. As explained in Section 4 above, the size of the register is

set to 7/ +3 qubits.

Step 3 is- another trivial computation, this time quantum,
and all it involves is a sequence of m Hadamard transformations
h, each of them bringing the corresponding qubit from state

|0> to state %i0)+
these on the m qubits of the first register is exactly the state
given in (5).

Step 4, the exponent modulo N, is computed in a separate
sub-routine, expt-mod, which is described in detail in
Section 6.

Step 5 is computed in a separate sub-routine, gft, which is
described in detail in Section 7.

Instead of getting a single particular

%11). The collective result of performing

result

f c>1 ;o (mod N)> from the measurement, as in a real quantum

computer, in Step 6 we are more interested in looking at all
possible results for some x* (mod N), along with their
probabilities. This is what shor-result does, taking for
definitiveness x*(mod M) to be 1. Note how bit-reverse is used

A A A A S R R Y A B S A A e
REu ?:1 REG #2 amx%l ¥ c-a"% %M a+h%l
Figure 2. Map of the quantum register for running the algorithm with a 4-bit N
8 2 2007 information technologies

and control

upon the first register, since the QFT as implemented (and as
prescribed by Shor in [2]) produces its result in reversed-bit
binary notation.

6. Exponent Modulo N

Step 4 of the algorithm is implemented using the
quantum algorithms for arithmetic operations given in [4]. These
are fairly complex algorithms build bottom-up from simpler
operations. Our implementation strictly follows the original
prescriptions in the mentioned paper.

There is a fundamental complication in all quantum
algorithms that need scratch space for temporary storage of
intermediary data. Since quantum computation is reversible in
nature, erasing (which is in essence an irreversible operation)
is not allowed. This means that in order to be able to reuse the
scratch space in further invocations, it has to be first brought
back to its original state without erasing. As Bennett has shown
in [5], this can be done by running the algorithms that changed
it in first place, backwards. In terms of our simulation, this
means we have to implement a ,backward“ version of the
corresponding algorithms. A convention is adopted, in which the
.backward" version of algorithm carried out by a function x is
to be found in a function named /x.

This said, the most primitive operations involved are
the carry and sum operations, along with their ,backward”
versions, /carry and /sum. Like their classical counterparts
they are used to build a full adder block (the adder sub-routine)
in very much a traditional way. The only complication arises
with the need to reset the scratch space used to contain the
intermediary carry calculations (the C,—C,, block in the map,
see figure 2) back to the initial state of 0.

Using adder and its counterpart /adder, the more
complex adder-mod algorithm is implemented. One of the
features in the adder-mod algorithm is that at certain stages it
needs to perform a summation (subtraction) in which the value
N participates. This can only be done by the adder algorithm if
N is loaded in a quantum register. This requires the execution
of certain transformations that bring a 0-initialized temporary
sub-register (the N,— N, block in the map, see figure 2) to a
state in which it contains N. A gate (at certain stages g-not, at
other c-not) needs to be present at the corresponding places in
the adder-mod algorithm for each 1 that appears in the binary
representation of N. This is one example in which the structure
of the quantum gate sequence depends on its input arguments
and itis here that Lisp’s ability to have the program dynamically
construct its code during the execution proves very helpful. The
0->N and ¢-0->N functions with the help of the map-1s macro
emit the proper set of g-net gates (correspondingly ¢-not gates)
which is then executed using Lisp’s apply dynamic execution
mechanism. adder-mod also uses one additional temporary
qubit, T, as described in [4].

The next set of sub-routines, ctrl-mult-mod and /ctrl-
mult-mod, are constructed in similar fashion. As with adder-
mod, at certain stages they need to perform a quantum operation
involving one of its arguments, this time however conditionally
(either 0 or y*2" is used as an operand, controlled by certain

qubits). The ce->0->N function is used to emit the set of gates
that will bring the 0-initialized temporary sub-register denoted
by M,—M,, to the required state. The sole difference between
the 0->N, c-0->N and cc-0->N functions is that they emit
different gates, but they do so for each 1 in the binary
representation of its argument. That is why the same macro,
map-1s, is used in all of them.

Finally, expt-mod is constructed using ctrl-mult-mod and
/ctrl-mult-mod, as shown in [4]. Note how x, which is an
argument to the function, becomes effectively built into the
structure of the quantum algorithm through computing x%(mod
N) and its inverse' at each step and passing it as argument to
ctrl-mult-mod, which in turn uses the aforementioned cc-0->N
to emit the needed quantum gates in run-time. The other
classical argument — m (computed in Step 1) is also effectively
built into the structure of the algorithm through the various loop
constructs found throughout the sub-routines. This is entirely in
correspondence with Shor’s insight that? g, x and N need not
even be stored in the quantum register; instead they are to be
built into the structure of the network — their values determine
the sequence of quantum operations to be performed.

7. Quantum Fourier Transform

The Quantum Fourier Transform (QFT) implementation is
found in the gft sub-routine and follows the design given by Shor
in Section 4 of [2]. It uses two types of quantum gates:

— a 1-qubit gate R which acts upon qubit j;

— and the 2- qublt gate S, | WhICh acts upon qubits k
and j.

The transformation matrices of the two gates are as follows:

(8) E7REgY 1Y 0
6l B

).

O 1 L E

The gate RJ is just the Hadamard gate, while S, . IS a
controlled gate, which changes the phase of qubit]S [1>
amplitude in case qubit k's superposition includes |1>. The
amount of phase shift depends on the difference between the
indices k and j. Shor then shows that the sequence

(9) RI—ISI—Z,I—IRI—ZSI«3.I—1SI—3,[—2R/—3"'
& 'Rl S(J,I—l S().I—?_ i "S(),Z SO.l R()

1
! The multiplicative inverse of X 2 modulo N is computed by the sub-
routine inv, which implements the classical extended Euclid algorithm for
finding the greatest common divisor of two integers.
2 In Shor’s paper, g is used instead of m, where e

information technologies 9
and control =

2007 9

effectively implements the Fourier Transform taking the state
‘a,_la,ﬁz...ao> to

3 ac
1271—‘

K=

g~ e

e

The R and S gates are implemented by the sub-routines
qft-R and qft-S correspondingly. The only difference with Shor’s
treatment comes from the qubit labeling — in Shor’s article 0
denotes the least significant (rightmost) qubit, while in our
simulator 0 labels the most significant (leftmost) qubit. This
has two implications: a) the sequence (9) is changed accordingly:

(11) R()Sl.()RlSZ.0S2,1R2”'
"‘RI—Z S[—I.()Slvl.l “‘Sl—l.l—3SI—l./—2RI—I

and b) since now j > k inside S, a minus sign has to be

incorporated in the phase shifter exponent in order to preserve
the angle as it appears in (8). These two implications are
visible in the implementation of gft and gft-S.

Ski is implemented out of elementary quantum gates
following the gate construction recipes found in [3], see the c-
phasor subroutine.

(10) ¢)q=2"

8. Results

The described algorithm was run several times for
differently sized N. The results prove the correctness of the
simulator (and the algorithm implementation) and provide a
measure for the simulator performance.

As an illustration regarding the correctness of the
simulation (and the algorithm), figure 4 shows the probabilities
measured in Step 6 for a run with input parameters x=7 and
N=55. The size m of the first register is 12 qubits. This means
that after QFT is performed in Step 5, its value ¢ can be any
number from 0 to 2'-1. Certain values however have much
larger probabilities than the rest and these values are located
around multiples of ~ 205, which gives a correct answer for the
wanted period 2'2/205=20. See Shor [2] for detailed
interpretation of the results and compare figure 4 with his
figure 5.1.

Regarding the performance of the simulator, table 1
shows the execution times for running the algorithm with
differently sized N.

9. Parallel Execution

A quantum mechanical system is by definition a linear
system (see for example [6] for a formal description of Quantum
Mechanics). The state of the system can be represented as a
vector in a complex vector space of suitable dimensions and
its evolution until an observation is made is given by a sequence
of unitary transformations. The implications are that the
superposition principle holds for quantum computations.

Table 1. Execution times for tasks with
increasing number of qubits in the quantum register

x* mod N | # of qubits time, s
7 mod 15 o 301.4688
5% mod 21 38 1 705.0469
7* mod 55 45 13 905.8910
13" mod 119 52 62 684.9840
00030000000
|
OO0 |-+~ v SR S
L
P 001500000 |- J T 1} e s 1 ‘ Lol l
| | | | | | bl
oomooooooo! ey £ J b 11 14 } i i
| | | Al
oooosoooooo}r : | I s | - | i i ; ’ i
o‘oooooooooo% | ;
11150 317 475 633 791 49 11071265 1423 1981 1729 16672055 22132071 25282687 2845 300 3161 3019 477 3635 5793 351

Figure 4. Probability P for observing the value ¢ in the
first register after Step 5 for x=7, N=55

The superposition principle states that the net result caused
by two or more independent events is the sum of the results
which would have been caused by each event individually.

We can directly use the superposition principle to parallelize
the quantum computing simulation for any given task. Consider
a computation in which the quantum register has to be prepared
in a state of superposition given by:

(1) |®,) = Puo]00..0)+ @y, ,|00...1)+
it it L s

An unitary transformation U is then to be applied, which
would bring the register to the state:

(12) 1®{M>:U’(D,,,>-

The superposition principle states that:

l‘bw} T U@)o‘..o’OO---O) =1
U@y, 00...1) +
e s i

U, |11...1).

Each row in (13) is an application of U upon a certain
base state and all these applications can be executed in parallel.
Moreover, the superposition principle allows us to
group the inputs to the different jobs in whatever fashion we like

10 2 2007

information technologies
and control

as long as they collectively form the initial state. For example,
(13) can be rewritten as:

lq)w"> :U’¢<)>+U’q)1>
‘CDO> = (poou.o’oo---o> F (000m1’00...1> +...

(14)
+¢()1,..1’01"'1>
‘(D,> = @,0“‘0’10~-0> 52 (ﬂlo...lllo”‘l> e
+¢HWJ11“1>

In (14), ,CD(,> is a superposition of all states for which the
most significant bit of the binary representation of their index is

0, and [CDI> is a superposition of all states for which this
same bit is 1. Collectively, these two states form the initial

superposition ’CI)i,,>. The simulation is then run twice with

’CI>0> , respectively]CI),) as an input, and the superposition

of the outputs forms the outcome of the computation.
In effect, what happens in (14) is that instead of
allowing the most significant qubit to go to the superposition

%’O) +¢1‘1> , it is being fixed to a predetermined state

- %IO) in the first run and §01|1> in the second. We call

the process of splitting the input superposition ,inhibition“ and
the corresponding rules ,inhibitors“. Thus, for the first run the
inhibitor is ,the most significant qubit must be fixed to 0“ and
for the second — ,the most significant qubit must be fixed to 1.

Of course, this is not the only way of parallelizing the
execution of (12). The most significant qubit is by no means
special — any other qubit can be fixed instead in order to
perform 2-way parallel execution. In a similar fashion a 4-way
parallel execution can be achieved by fixing two qubits and in
general, a 2™-way parallel execution can be achieved by fixing
n qubits — as is the case in (13).

Using the idea outlined above, we have prepared a
version of Shor’s algorithm suitable for parallel execution. The
only change is in Step 3 of the algorithm, where instead of
preparing the register in a state of uniform superposition (hon
all qubits), we set the k least significant qubits to some
predetermined fixed state in order to allow for 2*way parallel
execution. The set of fixed values for the k least significant
qubits are given as arguments to the main function. The
corresponding qubit is then left alone if the its value is fixed to
0 and transformed via a g-not if the fixed value is 1. Figure 5
depicts the main function modified accordingly.

All that is left to do is to run the simulation 2* times,
calling shor with all binary combinations of k bits as inhibitors.
The results for the execution times are summarized in table 2.
The results clearly indicate that the simulator exhibits more
than ideal scaling — in all -way parallel executions, the speedup
factor is more than n. Moreover, there are cases in which the
speedup factor enormously exceeds n — the 4-way and 8-way
runs for 13* mod 119, in which the speedup factor is around

(defun shor (a N &rest inhibitors)
(let® ({1 (bitsize N))
(I Gy 20.100
(*qax* (make-qreg (+ (* 7 1) 3)))
{iinh 0))
(dolist (x inhibitors)
(if (= x 1) (g-not (- m 1 iinh)))
{incf iinh))
(dotimes (i (- m iinh))
{(a"x%N a 0 Nmm)
(minimize)
{gft 0 m)
(minimize)))

(h 1))

Figure 5. Slight modification to the main function in order to
allow parallel execution

600 instead of 4, respectively 8. This is to be attributed to
following fact: the period of 132 mod 119 is exactly 4. On the
other hand, since the inhibitors are placed on the least significant
bits, each 4-way (8-way) run contain in the first register only
values whose difference is exactly 4 (8), thus they all produce
the same result for 132 mod 119 in the second register. This
means that there is no superposition in the second register. The
fact that this leads to great speed up proves that the simulation
execution time depends mostly on the amount of superposition
in the quantum register.

A slowdown factor of 5—8 is seen when the size of
Nis increased with 1 bit. Thus, it can be calculated that about
6 —7 days would be needed for a non-parallel run for 8-bit N/
(for example 172 mod 253). Parallelizing its execution between
8 workstations, the correct result was obtained in less than 12
hours. This proves that parallelizing the execution can not only
decrease computation time for smaller tasks, but by doing so
it enables computation to be carried out for tasks, whose
execution would otherwise be impractical, if not impossible due
to resource requirements.

Keeping track of the memory consumption was more
difficult, since Lisp has a dynamic garbage collection facility in
place and it is hard to calculate the exact amount of used
memory, but even for the 59-qubit simulation the peak memory
usage of each of the processes never exceeded 250MB. The
parallel runs were conducted by the computing elements of the
SEE GRID (http://www.see-grid.org), access to which was kindly
provided by the Institute for Parallel Processing at the Bulgarian

Academy of Science.

10. Conclusion

We have demonstrated an entirely quantum simulation of
Shor’s factoring algorithm by implementing all required quantum
transformations. The largest number factored was the 8-bit
number 253 and for this task a 59-qubit quantum register was
used. We have thus shown the efficiency and correctness of our
general purpose portable quantum computing simulator and

information technologies
and control

2 2007 -

have also shown how easy it is to run simulations for even algorithm simulations. We believe that our simulator can be

larger tasks by means of simple parallelization based on the used as a valuable tool for quantum algorithm researchers and
linear superposition principle. By running the independent parallel

jobs in Globus-derived GRID environment, we have also shown
that such environments can be used for the purpose of quantum

for the purpose of teaching quantum computing.

Table 2. Average execution times and speedup factor for 2-, 4- and 8-way parallel execution as compared to the
non-parallel times

x* mod N # of Average time, s Speedup factor, times

qubits 1x 2x 4x 8x 2x 4x 8x
7*mod 15 3] 301.46 20.60 1831 17.34 14.63 16.46 17.39
5* mod 21 38 170504 703.03 322,97 21024 243 528 8.11
7* mod 55 45 13 905.89 655251 | 3273.74 1575.33 21 4.25 8.82
13*mod 119 2 62 684.98 24 803.42 105.85 103.66 2.53 592.21 604.72
17* mod 253 59 . 5 7 46 982.43 g : 3

Appendix: Source Code Listing

sk Kk ok k Kk Kk hkhkhk kA kA Ak kk k kA h kA h kk k ok ok hh ko kA kkhkk ok ok ok ok Kk Ak hhk kA Ak ARk kA kA kkkkhkk kkkkk kk k& % &k %%
By

i; |Shox's- Ufactoring' dligorith

;AR fimplemenitation)l lofi Shor/ sasfactoring adlgorithm on the CL-QGP guantum
+ii incomputiing . nsimulator .. (slightly . modified to . save ' space).

;i Author: Valentin N. Pavlov
;7 Affiliation: Institute for Parallel Processing, Bulgarian Academy of Science
;; Contacts: vpavlov@acad.bg, vpavlov@rila.bg, x.pavlov@gmail.com

;7 o This .source “‘code, along with' the" sourcefVcodecERiCEcIEE-0CPIOisa avaiablie
AL from the author upon request.
l.;*************‘k***
(logd. «tcl=aagp «disp)

(use-package WG fon o)

{defun ; shor, (x, . N)
Cleedmn O GE HibnEsaaer ()i
B s i pat il LA S

[*gason: (makegreg i+ d%) 71HANIZ3)1)))
{dotimes O (il m) ~1hi +&))
(expt-mod x 0 N m m)
(minimize)
(G, o 0,)
(minimize)

(shor-result m *gax*)))

(defun bitsize (N)
fido MmO ELa Ty)
(S0n et ba (2 i50s 1 2 X0
{ {20 HMECAD))

;i MODULAR EXPONENT

12 2 2007 information technologies
2 2007 and congtrol

(defun ‘earry

(c-not ai

(defun /carr
{(ce=-not. . ¢
(c-not ai

(defun sum
(c-not a
(c-not ¢

(defun /sum
(e~fot '©
(c-not a

(defun adder
(toop for

(c-not a0
(loop for

(sum

(lioew Eor
(/sum

led® tad " bd el k)

fee-not ai’™ bl “Tel+l)

bi)

{ec-not . ci. bi cisi))

Vagledyal” bit ci+l)
1 Y b ed+1)
bi)

(cc-not [aiftbi ‘ei+l)")

(le’= e)
b)
1508

(el a *b)
b)
b))

fab b6 €0 1)
i “frem (1-_ 1) downto 0 (o

(IE L ylegnlly i @)

(carryviw 0, ab « 1+ bo) bO) :
(Cammyg Ghy €O A (@0 1) (£UiB0 i O +0+ 60 &8 -—d)) o)
(1+ b0))

i from 0 Dbelow 1 do
(AE " (motryEeal =iy = Q)
(icarry (+° tO' i) (+ a@ 1)y ¢+ VOO DOL) s(isped T4x) -1)))
(SRR S ps X+ (L alle 190° i+ (B0 T82)1)K)

(defun /a@dexr® (R0 <D0 *t0' 1)

1 from (1= 1) .downte , 0 . do
{4 20 1) (= @0hii)y (+ BO i 1))

(LE_ Jnek, _legl. i . @)

(Eamny: - (& 080 aael e m@s il s B0 d 1) e t0UEE)08

(c-not a0 (1+ Db0))
(loop ifex .1 , frem (0 . belows 13 ido
(A dlead iy 0y

(/eaxry £07 ad* (1. .DBO) £bH0)
(Vearey (+ €0 d) - Gk ol) O3+ +Ib0 (& B)0X(+e)ED i | =300)))

(defun” adder-mod- ' (a@ b N €0 _17)

flet (ftol {(0->H. M. (+. &80 21)._..1)
le=Eoliaie -GN 3 »(Eadmll ~ (3 20 STy N e k0 e 1)
(mapcar #'(lambda (x) (apply (car x) fede |, x)XL) StoR)
(addexr “a@ bO,:£0. 1)
(/adder (+ t0 1) b0 t0 1)
(a-net BO)
fe—net" BT i+ £0 (& 2. 1)))
(g-not b0)
(mapcar #' (lambda (x) (apply (car %) fede x)))JI)c-koNy
faddex (+ €0 1) b0 ‘B0 &%
(mapcar #'(lambda (x) (dpply Aearidx) {cl@rimx)))4 c=tol)
(/adder a0 b0 t0 1)
fe-nmot DO (% EO. . (*. 258000
(adder a0 b0 t0 1)
(mapcar #'(lambda (x) (apply (car x) (cdr x))) toNjas
(defun /adder-mod (a0 b0 N t0 1)
(let ((toN (0->N N (+ t0 1) 1))
fe-toll {e-0->H (+ 0 (* 2 13} B {+ ®0 1) 13}
(mapcar #’(lambda (x) (apply (car x) (cdr x))) toN)
(/adder a0 b0 tO0 1)
fe=mot bl N €0 (* 2 1)7))
(adder a0 b0 t0 1)
(mapcar #’(lambda (x) (apply (car x) (cdr x))) c-toN)
(/adder (+ tO0 1) bO t0 1)
(mapcar #’(lambda (x) (apply (car x) (cdr x))) c-toN)
(g-not bO)
(e=not Bl ((H €O (* .2 1)))
(g-not bO)

information technologies
and control

2 2007

(adder (+ t0 1) b0 t0 1)
(/adder a0 b0 t0 1)
(mapcar #’(lambda (x) (apply (car x) (cdr x))) toN)))

(defuncerl-mult-mod "Wi(c'® xR0 N 0" E0 1)
(dotimes (i 1)
e S\ 2 i dimodl " (> s liexpt 2300)
(x*27i-gates (ecc~-0->N ¢ (+ a0 1 -1 (- i)) x*20il+e0 19))
(mapcar #’(lambda (x) (apply (car x) (cdr x))) x*2”%i-gates)
(adder-mod t0 y0 N (+ t0 1) 1)

(mapcar #’(lambda (x) (apply (car x) (cdr x))) x*2"i-gates)))
(g-not c¢)
(dotimes (i 1)
{ce—not - g—{+—al---dfrlH—Fph=r3-—1-)9-)
{(g-net 35c))

fdefun. —/Ctrl-milt-mod (e —al - N - 0. . t0 =)
(g-not c¢)
(Yoop Sfor il EfEomii@- 1) dewhtel) 0 do
(ccgmot @l (3~ a0) 1«6+ 0 i p&)))

(g-not c¢)
floep ™ Eor - & from (1= 1) idownte 0 do
(ieiax Uik 2 0 valimedie (> % silespt . 2) SN

(x¥2i*gates (ca-0=N 40 (4 @0 Ly -Lp (a4 1)) k224, £0 L 1))
(mapcar #’(lambda (x) (apply ([{caxr o) (cdr x))) x*2"i-gates)

(/adder-mod t0 y0 N (+ t0 1) 1)
(mapcar #'(lambda (x) (apply (car x) {cdr x})) . x*22i-gates)idn

(defun expt-mod (x a0 N t0 m)
[flfle = S 2
(g-not (B (E0- 1))
(dotimes (i m)

(Rl S i e gl (mod (expt x (expt 2 i)) N))
{x*=2%4 (imv W »°2"i})
(eerli=muife-mod * (+ af " m® -IHSEESihe Spsiiie: Loy e N
(+#+¥E0T1 1Y) (RS0 i 2T A

(minimize)
(/ctrl-mult-mod (+ a0
(minimize)
(dotimes (j 1)
te-nott " (+ t0 (Uod2 (Ihx (4b=t0 0 338
LS of el S (0SS e R R e Rt) T)

me = -) A2 e B0 B D) CORa iy et lE M ki)

(defun inv (a b)
(Tre* Tfass “H Mt w1 0 IV
(bs (LossE S0P b))
(loop while (/sHol-s(thixd bah) do
(Tet™ (g (floor 1/ [ERizrd = ag) (third " Bs)nk)
(ts (mapcar #’(lambda (a b) (- a (* b q))) as bs)))
(setf as bs)
(setf Dbs ts)))
(if (< (second as) 0)
(+ a (second as))
(second as))))

(defmacro map-1s (op)
(Tet “((res nil))
(dotimes (i 1)
(if (logbitp i N)
(setf " 'res' (coms ',op ‘res))))
(nreverse res)))

(defun 0->N (N q0 1) (map-Ts'2 M (G=noEs ! , (P! qoBlamealy) " H — a5l
(defun " c0="N"S(c) N Sqgras (map-1s = ‘(c-not: Jed M& qb @1 -1 EBBEH)))

2 2007 information technologies

2 2007 andco(l)‘l%rol

(defion & ¢c™-0-=N» R i ic2 ¥ iV ot a1 (map-1s “{ec-not,cl,c2, (+ @0l-1(-1i)))))

A QUANTUM FOURIER TRANSFORM
(defumcraft o gbiciOn, .. 19
(dotimes (i 1)
(dotimes (j 1)
(oo T o (0) R (- o (0 o
etaR . gt e 3))

(defun qft-R (3)
(s = g

(defun gqft-8 (3 k)

(c<phaseor j k angle)))

(defun' ' e-phager' N (e X Mitheta)
P2ty GRS, G Eliet ante2) E)
(ph. Qoo theea 4))
(rz X (- theta))
{e-mok .. C , X}
trz., X {/ theta 2))
(C-niat™ (=)
(rZ= X SV eSS o))

(defun shor-result (sizel &rest registers)
(let* ((res (apply #'qreg-combine registers))

(size (slot-value (first registers) ‘cl-qggp::size))

(size2®' (15! Y70 54 el DN}

(maskad™ (T (expt - 20 adiged)))y

(mapcar

#’ (lambda (elem)

(let ((state (car elem))
(prob (cadr elem)))

(if (= (logand

(truncate state (expt 2 (- size sizel size2))) mask2) 1)

(format t “~a~c~a~%"
(bit-reverse sizel

(let ((angle (/ pi (expt 2 =2 3 kYY) i 111 because of reversed notation

(truncate state (expt 2 (- 'size sizel))))
#\Tab
prob))))
res))
nil)
(defun bit-reverse (n int)
CLE O ST eSOy (return-from bit-reverse 0))
tlet™) ((xes 079
(dotimesyy (1" @)
(1€ 'O {Eogbitp 3 int)
(setf res (logior res (expt 2 (o aem Elamarib i) D0FSY NiEy
res))
information technologies 95 by '
and control . 2 2007 9

References

1. Pavlov, V. Efficient Quantum Computing Simulation.Proceedings of
IEEE John Vincent Atanasoff 2006 International Symposium
on Modern Computing. IEEE Computer Society Press, 2006,
235-239.

2. Shor, P. Algorithms for Quantum Computation: Discrete Logarithms
and Factoring. Proceedings of the 35" Annual Symposium on
Foundations of Computer Science. IEEE Computer Society Press,
1994,124-134. (http://xxx.lanl.gov/pdf/quant-ph/9508027).

3. Barenco, A., C. Bennett, R. Cleve, et al. Elementary Gates for
Quantum Computation. Physical Review Letters A, 52, 1995, 3457.
4. Vedral, V., A. Barenco and A. Ekert. QuantumNetworks for
Elementary Arithmetic Operations.
(http://xxx.lanl.gov/pdf/quant-ph/9511018).

5. Benett, C. Logical Reversibility of Computation-/BM Journal of
Research and Development, 1973,17,525-532.
(http://www.research.ibm.com/journal/rd/176 ibmrd1706G.pdf).

6. Dirac, P. A. M. The Principles of Quantum Mechanics.

Oxford University Press, Oxford, 1947.

Additional Sources

7. Lenstra, H., H. Lenstra, Jr., M. Manasse, et al. The Number
Field Sieve. Proceedings of the 22™ Annual ACM Symposium on
Theory of Computing, ACM, New York, 1990, 564-572.

8. Pavlov, V., H. Turlakov and K. Boyanov. Quantum Computation
and Quantum Computers (KBaHTOBO M3uYnUCAEHWE W KBAHTOBM
Komniotpu).-Engineering Sciences, XLIl, 2005, 2, 5-28.

9. Deutsch, D. Quantum Computational Networks. Proceedings of
the Royal Society, Ser. A, 425, 1989, 73-90.

10.Benioff, P. The Computer as a Physical System: Microscopic
Quantum Mechanical Hamiltonian Model of Computers as Represented
by Turing Machines.-Journal of Statistical Physics, 22, 1980,
563-591.

11.Feynman, R. Simulating Physics with Computers Iiternational
Journal of Theoretical Physics, 21, 1982,46-488.

12.Deutsch, D. and R. Jozsa. Rapid Solution of Problems by
Quantum Computation.-Proceedings of the Royal Society, Ser. A,

439, 1992, pp. 553-558.

13. Landauer, R. Irreversibility and Heat Generation in the Computing
Process. IBM Journal, 1961, 183-191.
(http://www.research.ibm.com/journal/rd/053/ibmrd0503C.pdf).
14. Eisert, J. and M. M. Wolf. Quantum Computing.
(http:xxx.lanl.gov/pdf/quant-ph/0401019).

15. DVincenzo, D. Two-bit Gates are Universal for Quantum
Computation. (http://xxx.lanl.gov/pdf/quant-ph/9407022).

16. Barenco, A. A Universal Two-bit Gate for Quantum
Computation. (http://xxx.lanl.gov/pdf/quant-ph/9505016).

17. Deutsch, D., A. Barenco and A. Ekert. Universality in Quantum
Computation. (http://xxx.lanl.gov/pdf/quant-ph/9505018).

18. Deutsch, D. and A. Ekert. Machines, Logic and Quantum
Physics (http://xxx.lanl.gov/pdf/math.H0/9911150).

Manuscript received on 12.06.2007

Eng. Valentin Pavlov (born 1974) has gradu-
ated from the Technical University of Sofia
during 1997, ,Computing Systems" special-
ity, with MSc thesis ,Algorithm for discover-
ing the generators, orbits and the order of
the automorphism group of a graph”. Since
1999 he is working in Rila Solutions EAD,
currently occupying the Chief Technology
Officer position. Since 2002 he is a PhD
student at the Institute for Parallel Processing
at the Bulgarian Academy of Sciences. In July
2007 he passed the preliminary defense of his PhD thesis ,Quantum
Computing Simulation”. He is the laureate of the 2005 ,John Atanasoff*
Award of the President of Republic of Bulgaria for scientific and pro-
fessional achievements in the IT field. His scientific interests include:
quantum computing, GRID, distributed systems, computer and network
architectures, protocols and standards.

Contacts:
e-mail:_vpavioverila.bg

continuation from 5

Kalinka M. Kaloyanova received her M.Sc. in
Computer Science from University of Sofia
(1981), and her PhD degree in Computer
Science from the Central Institute of Computer
Technique and Technologies, Sofia(1989). She
was Research Fellow in the Central Institute for
Computing Technics and Technologies, Sofia
(1981-1995) and BTC - Institute for Scientific

e Research of Telecommunications (1995-2003).
Since 2003 she she has been working as Assoc. Professor at the
University of Sofia, Faculty of Mathematics and Informatics.

Contacts:
e-mail: kkaloyanova@fmi-uni-sofia.bg

Prof. DSc Kiril Boyanov is a Academician at the
Bulgarian Academy of Sciences. He is Director of
Institute for Parallel Processing.He is the Bulgar-
ian Representative in IFIP; Chairman of Bulgarian
Computer Society of IEEE; Chairman of National
IFIP Committee; National Coordinator of IST
Programme; Member of IST Advisory Group
(ISTAG) - European Commission. He has more
than 100 publications in Bulgarian, more than
40 publications in foreign scientific magazines

and international conferences proceedings.
Author and co-author of 36 books and manuals (in Bulgarian mainly,

several of them published in Russian). Editor of 4 books of conference
proceedings published by North-Holland.Chief Editor of journal ,Infor-
mation Technologies and Control* - Bulgaria.

Contacts:
e-mail: boyanoveacad.bg

15 2 2007

information technologies
and control

