
Design of Meta Database Model
and Universal Business Applications

Key Words: Data base design; business logic; abstract design; uni-
versal application.

Abstract. Nowadays the activities automation in a specific business
area is not technological news, but a business need. The necessity
of more and more business applications implies the quest for tools
and techniques for fast and efficient development of information
systems. RapidiU and efficiency are two important directions, in
which business application development technologies are developing
today, aiming at these two important qualities being achieved re-
garding both development prlcess stages and system exploitation.
The effective exploitation is related to real usage of the information
system. And this is available when information decision follows the
pace, in which processes in the business area develop. The achieve-
ment of this aim is a new challenge to the technologies. ln this
paper, some ideas are presented about changing the patterns of
database design, directed to produce applications which are maxi-
mum adaptive and scalable.

1. lntroduction
Problems during Business Applications Development
The fact that the world of business today is binding more

and more tightly with the automation of information processing
is obvious. This commitment is also revealing in the inf luence
of the business over applications, by implying its limitations and
requirements, and changing business processes as a result of
their automation. This tight commitment originates some prob-
lems, which in general terms may be defined as: Eusrness is
changing and is abounding in new prlcesses, but it is not easy
for business applications to follow this natural progress.

A much more detai led glance on the problems, which
business applications developere are facing is necessary. This
would allow to discover directions in which the cross-purposes
between business and applications are most significant and to
find out a new way of their development.

Three main problems which have both their own abstract
and philosophical explanation and concrete practical behavior
may be defined.

r The problem of indefiniteness and narrowness of the
expert knowledge [41

During the process of creation the information system
developers are meeting with insufficient, relatively imprecise and
unstructured knowhow about the business area.

One possible solution of this problem is the development
of generalized data structures, which can describe (at some
stage) a highly varied experl knowledge and which allow rela-
tively simple addition and adjustment, preseruing their correct-
NESS.

. The problem of changing the point of view

A. Murdjeva, M. Tsaneva

This problem has two sides. rvhich may be defined as
Ihe problem of different points of view,and the problem of chang-
ing a particular point of view.

This problem is directly related to the dynamics of the
business environment, some activi t ies of which an application
is intended to automate. lf we examine the user needs and the
ideas of automation, which these needs originate, as dynamic
entities with their own life cycle in practice this life cycle is very
short because of the rapid change of user needs.

This enforces to find out some tools, technologies and
approaches lor information systems development, which provide
that the shortened life cycle ol users need does not significantly
change the life cycle of the inlormation system.

. The problem of similarity
During the elaboration of an information system, the simi-

larities between current and preceding design and implementa-
tion of individual items are often unnoticed. Their un-discovering
leads to over-again creation of uniform already existing items,
which costs recourse and time loses.

An alternative for overcoming this same problem is find-
ing out a general approach for examination of business area
entities.

This art icle suggests an approach to data base design for
business applications, as well as a mechanism for business
logic control in these applications. The aim is to suggest a tool
and a technique to develop flexible and independent applications,
isolated from parlicular business problem and usable in different
areas.

2. Meta Model
The relational data base does not permit to change the

data structures in a business application easy enough, without
causing significant corrections in the application itself. 0n the
other hand, the relational data base is enough abstract regarding
these structures from the point of view of their maintenance, i.e.
it guarantees equally good enough the referential integrity through
foreign keys, uniqueness through primary keys, correct result of
queries and so on, without being interested in the particular
problem, which has been described by the tables in the user's
scheme. Data Base Management System (DBMS) achieves this
by virtue of meta description of its own structures [B].

Similar approach is necessary for data description, so that
the application can transform itself into an abstract interpreter
of these data.

Applying meta-design during data structures design, through
which to abstract objects and their descriptions is the sugges-

? ?008 irrf orrnation technolocries
andconTrol

tion made in this paper. With meta-design the data base converts
into a united structure for storing business objects Meta data and
their particular instances.

A fundamental meta-design approach is business objects
abstraction and treatment not from the point of view of their
semantics in the business process, but regarding their more
general role in it. This more general role is to describe entities.
So the point of view to the object descript ion is changing. Their
description is not specific, but is a meta-description - descrip-
tion of their description.

Proceeding from this assumption and from the necessity
to preserve main functionality of the DBMS, especially the ability
to dist inguish object descript ion and object identi f icat ion, the
following structures for meta-design are necessary and suffi-
cient:

/Types. A nomenclature of different business objects,
which are described in the data base. lt is expandable and is
needed to provide object diversion and typification of their de-
scription.

/Entities. A nomenclature of all business objects, de-
scribed in the data base. lt is arbitrarily expandable and does not
contain a concrete description of these objects.

/ Properties. A nomenclature of necessary properties of
all business objects, which are interesting for the business
application. This nomenclature is also arbitrarily expandable and
thanks to this, the description of business objects can easily be

Prooertv lD
Property Name
Si ng l e
Active
Mandantory
Re lan t io$ ip
Type o f Va lue
Addit ional Con$raints

Propert ies

Spi: Seriat
Variable characters (l 00)

, \ , t ,

' .)
l

1-

Enti tres I

Iin t i tv lD <pi> Ser ia l <M>
I
I' ' ' ' ' ' 1 - - -

l l
_ : : r 1' \ ;

: : : : :- : : : :] :- l :11': .
: : ' : l] :

,li.\ , /\/()
I

I
I
I

I
I
I
I
I

iypes

5gD lnt.g.t
Vari abl e chancters (50)

i -
:
, Tvoe lD
'Type Name

added with new object propefties, To guarantee the quality and
correct interpretation of the data, each attribute must be defined
regarding:

. 0bligatory (Mandatory) for object description.

. Repeatability within one and the same object descrip-
t ion (Single or Mult iple).

. Relationship with other objects (i.e. description of rela-
tionships between objects in the 1 to M direction). The relation
of type child-parent is presented.

. Value Type -the type of the value, with which it instan-
tiates in the description.

. Additional constraints on the value (Checks).
/Templates. To ensure an adequate attribute set, but not

a general description, through which to provide the possibility
of specific interpretation of attributes of the same name belong-
ing to different entity types, the meta model maintains a tem-
plate of each business object. The template is a concrete
attribute set for a specific entity type. These templates are
expandable in the terms of a single type. They can be supple-
mented with new attributes or the existing attribute set may be
revised. In conjunction, the template nomenclature is also ex-
pandable regarding supplementation with new templates for
new object types.

/ Description. Through this structure the storage of each
object concrete attribute values is ensured. The content of this

i Propedies

Propertv lD NUMBER(6) sgtp
iProperty Name VARCHAR2(100)
r S i n g l e

Property lD; Properly tD

<M>

<M>

<M>

< tvt>

<M>

< tvt>

<M>

<tvl>

I
I
i

l

i
I

i

l
Descriplion

Fro*rv ro NrMBECioi
--

Enli tv lD NUMBER(6)
Value VARCHAR2(100)

}JiActive CHAH(1)
iMandantory CHAR(I)
r iBelantio$ip CHAH(1)
Type ol Value CHAB(I)

iAddit ional ConSraints CHAR(1)

{openy t0= Property lD
I
I

l
-..-.-,1

;riik1;
<pkfl2>

Entity ID ! Enti ty lD

*
I

l _ . . .
tn l r t res

I i;iiilrp NuMBiR(61- spb
I Type lD INTEGER <flo
1

' ' r v ' v
" r I L v s ' '

i

:
I

rype lu = ryperu----> Tvoe lD
: Type Name

Figure 1. Logical and physical data base meta model

JJ:::' .o; l*- -ryp+rD'=Type,D
y::*:gL- .[

Templates :
' Tvoe lD INTEGEB <okfkt > i
i Prooerlv lD NUMBER{6) <okfla> i

, - - * * ' - i l a - * ,

<M>

<M>

Description

Variable characters (1 00)

technologr ies ?00Einforrnation
and control 32

structure is controlled by the attribute properties, which set in
their nomenclature.

A data model, created applying the approach of meta-
design looks as shown on figure /. lt does not concretize a
particular business area, but using it many different areas may
be described.

The application of the meta model changes the tasks,
which are delegated to the application. Under crassic design, the
application has as a main task to present the data in conjunciion
with the implementation of a significant parl of business logic
related to data value validation and other processing. current
three-layer application architecture permits the application to
discharge from business logic, as it is deregated to a new layer
in the architecture. But nevertheless, this does not provide the
possibility of independent and flexible application development,
so applications are always tighily coupled with business area
and maintenance process. Meta model permits suggestion of
analysis and design techniques and tools to produce applica-
t ions, which are independent from business specif ics, to pro-
duce application shel ls, in which business specif ic functional i ty
is achieved by data entry and maintenance, This way, the appli-
cation is responsible just for presentation and meta model is the
mediator between i t and business logic.

3. Programming Interface for Meta Data
Maintenance and Usage

3.1. Programming Interface Essence
The abstract structure of the meta model permits to design

and implement an additional rayer in application architecture,
which presents and real izes generar and common busrness
logic, which can be isolated from different areas, as well as to
offer a mechanism for implementation of a next level of this
programming layer, in which the specif ic business logic is
separated and represented.

common business logic covers basic operations with data,
which account for the existence of data bases, like data adding,
editing, deleting and querying:

In spite of the concreteness of data, which are stored in
a data base structured according to meta model, thanks to its
unified structure and to common semantics of operations, a
template for operation performance exists.

specific business logic is presented by rules for data
values verification and generation. lt describes rules particular
for the area business, specif ic business logic can be classif ied
according to the level, where it arises and is implemented, Most
often, specif ic business logic in appl icat ions is implemented as
follows.

. 0n entity level i.e. actions, which are being performed
over 0ne and the same entity with parlicipation of all or some
of the attributes, belonging to its description.

. 0n attribute level i.e. actions, which are being per_
formed over a concrete value, belonging to the description of a
business area entity, aiming its verification or calculation.

Via meta model usage in data base design for business
applications, the programming of appl icat ion business logic is

reduced to data tuning, i.e. to configuration of main tables con-
tents, providing the data base with knowledge of the relations
between data and their specific business rogic, This relation
defines which program code must be executed during value
adding or editing of each attribute. The essence of this specific
business logic is an abstract algori thm, which can be com-
pletely defined and implemented for a vast range of business
areas.

3.2.Programming Interlace lmplementation
The implementation . of common and specif ic business

logic itself may be done by a new programming interface to the
meta model. This programming interface has its own architec-
ture, which is determined by the process of abstracting the
specif ic from the common business logic and consists of sev-
eral layers. Each higher layer has higher degree of generalization
and expresses more the common business logic, then the spe-
cif ic one.

Common business lclgic

Specific>Common BL Specific>Commcln BL

i Speci i ic BL i 5peci f ic BL , Speci f ic BL i 5peci f ic BL 5pecr f ic BL
' - * " l i * - -n, i -

Figure 2. Business logic architecture

The highest layer of this architecture is mostly isolated
from business area semantics and is used together with the
application as a relation between data behavior and their presen-
tation.

Common business logic from the highest layer may De
preliminary implemented and integrated into the meta model. lt
covers two main tasks:

o Maintenance of the content of each meta modeltable,
regarding data consistency in cases, when the relational data
base cannot guarantee i t . This task includes main data manipu-
lat ion operations l ike inserl ing, delet ing and edit ing.

. Navigation within meta model data. This task is re_
lated to disposal of a clear mechanism for discovering the data,
following meta model abstract structure,

The implementation of common business logic may be
presented by a set of stored procedures, which use both declara-
tive and procedural tools of Relationar Data Base Management
system. The choice of this mechanism is not casual. 0n one
hand, it is enough powerful regarding syntax and on the other
permits program code and logic abstraction from the applica-
t ion, which results in f lexible and easy maintenance, tuning and

: ltavigation with in meta rnotJel data

IVlainlenance of the content

Veri f icat ion C. r lcu la t io r rs j . . .
"'

!**#,-*@*
4 *r!@,a,t* 14fe!.. \k{,11*6w-a1

Figure 3. Program code architecture for meta
model usage

2 ?00E irrforrnation tectrnologies
andcontrol

Maintenance of the content includes basic abstract opera-
tions for data adding, editing and deleting in each meta model
entity, which implement the following functions:

. To guarantee the mandatory of dynamic values.

. To guarantee the uniqueness of all entered values - both
of dynamic attributes.

. Control over dynamic value entry, according to specific
business rules, implemented as a part of specific business
logic.

. Control over data consistency.
Each of these common algorithms may communicate (call

in a standard way) with preliminary implemented specific busi-
ness logic.

An example for procedures implementing common busi-
ness logic for content maintenance is presented on figures 4
and 5.

The operation of deleting meta model data performs the
main task related to maintenance of dynamic data consistency
and its implementation is presented on figure 6.

0perations related with navigation within meta model data
perform the main task of discovering entities by their description.
The navigation within meta model is an operation of very high
level of abstraction

This is achieved by examining the searching criteria set
and finding them out in the model as a specific type of entity,
which specific type of entity has also an analogica|attribute-
value' description i.e. uses the meta model itself for searching
criteria definition. creation of such an entity is done using the

ALTER PROCEDURE [dbo].[sp_tnserrEnrityDescrBytD]
@ENTITY_ID in t ,
@ PROP_ID int,
@ DESCR_VALUE varchar(MAX),
@ DESCR_lD in t OUTPUT
AS
DECLARE @ mandatory cha(1)
DECLARE @err in t
DECLARE @ prop_name varchar(1 00)
DECLARE @MSG varchar(100)
DECLARE @ fi l led_count int
BEGIN
Select @mandator! = p.prop_mantantory,
@ prop_name - p.prop_name

from properties p
where p.prop_id = @pROp_lD

if @mandatory is nul l
BEGIN

RAISERROR ('Mul t i user conf l ic t , 16, 1)
END

select @fi l led_count = count(*)
from description d
where d.prop_id = @pROp_lD
and enti ty_id = @ENTlTy_lD
and d.descr_value = @DESCR VALUE

programming interface, which implements the common busi-
ness logic - adding new searching criteria set (new entity) and
adding new lookup values (entity description), The algorithm for
searching is based on the data of one entity of this type and
transforms the logical relations between criteria (AND, 0R) into
plural operations section and union.

The lookup operation may be reduced to meta model data
fill ing and has two forms:

r Searching for a particular entity by its identification.
. Searching for a set of entities by criteria set.
Searching for a particular entity has as a main task to find

out the attribute set, which describes an entity including both
attributes with values set and empty attributes. Meanwhire it
pedorms the specific task to retrieve the lookup criteria (ac-
cording to abstract interpretation of this search). An example for
procedures, which implement comm0n business logic for
searching a concrete entity, is presented on figure 7.

Looking up for a set of entities, which satisfy criteria set
by applying plural operations comprises of:

. Creating an entity of specific type (f.e, Filter).
o Fill ing in its description, which serves as a lookup

criteria set.
. Pedorming a general algorithm to form a dynamic data

base query according to the criteria being specified.
An example of procedures, implementing common busi-

ness logic for searching a particular entity is presented on
figure B.

--Uniquness Check
if @fi l led_count > 0

begin
SET @ MSG = "Dupplicated value f or

" '+@prop_name+"" + ' : '+ isnu l l (@DESCR_VALUE, , ,)
RATSERROR (@MSG, 16 , 1)

end
--Mandantory Check
if @mandatory = 'Y'

and (@DESCR_VALUE is nu l l or @DESCR_VALUE =, ,)
BEGIN

Select @fi l led_count = count(.)
from descript ion d
where d.prop_id = @PROP_ID

and enti ty_id = @ENTlTy_lD
and d.descr_value is not nul l

i f @fi l led_count = 0
begin

SET @MSG = 'Mandantory Value not eneterd for
" '+@ prop_namg+""

RATSERROR (@MSG, 16 , 1)
end

END
--Execute Specif ic Business Logic
insert into descript ion (prop_id, enti ty_id, descr_value)
va lues (@ PROP_ID,@ ENTtTy_tD,@ DESCR_VALUE)
SET @DESCR_ID = @@IDENTITY
SELECT @err= @@error
lF @err <> 0

BEGIN
RAISERROR ('DB operation error, 16, 1)

END

END

Figure 4. Program code for data adding, implemented by a stored procedure

ogtres 2 ?008
inforrnationn-TEEffi
and control

ALTER PROCEDU R E Idbo]. [sp_U pdateE nti tyDescrByl D]
@DESCR-ID in t ,
@ DESCR_VALUE varchar(MAX)
AS
DECLARE @err int
DECLARE @ mandatory char(1)
DECLARE @ prop_name varchar(1 00)
DECLARE @ MSG varchar(1 00)
DECLARE @fi l led_count int
BEGIN
Select @ mandato{ = p.prop_mantantory,
@prop_name = p.prop name
from properties p, description d
where d.descr_id = @DESCR_ID
and p.prop_id = d.prop_id
if @mandatory is nul l

BEGIN
RAISERROR ('Mul t i user conf l ic t , 16, 1)

END
select @filled_count = count(*)
from description d
where d.prop_id =

(select prop_id
from description
where descr_id = @DESCR_ID)

and entity_id =
(select entity_id
from descript ion
where descr_id = @DESCR_ID)

and d.descr_value = @DESCR VALUE
and d.descr_ id <> @DESCR_lD

if @fi l led_count > 0
begin

SET @MSG = 'Dupplicated value
"'+@prop_na1ne+"" + ' : '+isnul l(@ DESCR_VALUE, ")

RATSERROR (@MSG, 16 , 1)
end

ALTER PROCEDU R E Idbo]. [sp_DeteteEnti tyByt D]
@ENTITY_ID int
AS
DECLARE @err int
DECLARE @E_TYPE int
DECLARE @USED_COUNT int
DECLARE @ MSG varchar(1 00)
BEGIN
Select @E_TYPE = e.type_id
from entity
where enti ty_id = @ENTITY_ID

Select @USED_COUNT =
count(.)
from description d, properlies p
where d.descr_value = @ ENTITY_|D
and prop_id = prop_id
and prop_rel_type = @E_TypE

i f @USED_COUNT > O
BEGIN

SET @MSG = 'Ent i ty used '
RATSERROR (@MSG, 16 , 1)

END

delete from entity
where enti ty_id = @ENTITY_ID

SELECT @err - @@error
lF @err <> 0
BEGIN

RAISERROR ('DB operat ion er ror , , 16, 1)
END

END

VALUE is nu l l or @DESCR VALUE
if @mandatory =
and (@DESCR_

BEGIN

_ J

Select @fi l led_count = count(*)
from description d
where d.prop_id =

(select prop_id
from description
where descr_id =

and entity_id =
(select entity_id

from description
where descr_id =

and d.descr_value is

@DESCR_rD)

@DESCR_rD)
not nul l

for

i f @fi l led_count = 0
SET @MSG = 'Mandantory Value not eneterd for

" '+ @ prop_name+""
R A T S E R R O R (@ M S G , 1 6 , 1)

END
update description
set descr_value = @DESCR_VALUE
where descr_id = @DESCR_ID

SELECT @er r= @@er io r
lF @err <> 0

BEGIN
RAISERROR ('DB operat ion er ror ' , 16, 1)

END

END

ALTER PROCE DU R E [dbo]. [sp_DeleteEnti tyDescrByt D]
@DESCR_ID in t

AS
DECLARE @err in t
BEGIN
delete from description where descr_
SELECT @er r= @@er ro r

lF @er r <> 0
BEGIN

@DESCR ID

RAISERROR (DB operat ion er ror ' , 16, 1)
E N D

END

Figure 5. Exemplary program code for data editing, implemented by a stored procedure

Figure 6. Exemplary program code for deleting, implemented by a stored procedure

a
0 2 200E

ireforrnation teclrnolocries
and con:[rol

ALTER PROC EDU R E Idbo]. [sp_G etEntiryDescrByld]
@ENTITY_ID int
AS
BEGIN
if @ENTITY_ID < O

i f @ENTITY_ID = -100
Select p.prop_id as prop_id, null as entity_id,
" as descr_value, null as descr*id,
p.", @ENTITY*ID as enti ty_type,
" as descr_text,
isnul l(p.prop_order, 99) as prop_new_order
from properties p
where p.prop_activs ='y'
order by 17 asc, S asc

else
Select p.prop_id as prop_id, null as entity_id,
" as descr_value, null as descr_id,
p.", t.type_id as entity_type,
" as descr_text, isnull(p.prop_order, 99)
from template t, properties p
where t.prop_id= p.prop_id
and t . type_id = @ENTtTy_tD.(-1)

order by 17 asc,3 asc

e lse

C R EATE PHOCE D U R E [dboj . [sp_G et l is tByFi t ter]
@ F ILTER_ lD in t
A S
D E C L A R E @ c u r s o r C U R S O R
DECLARE @ sq t va rchar (max)
DECLARE @ prop_ id i n t
DECLAR E @ descr_value varchar(max)
D E C L A R E @ c o u n t i n t
DECLARE @ sq l_oper va rchar (max)
B E G I N
lF @ F ILTER_tD i s no t nu t l
B E G I N

S E T @ c u r s o r = C U R S o R F o R
select prop_id, descr_value
from descr ipt ion
where en t i t y_ id = @FtLTER lD

S E T @ s q l = "
S E T @ c o u n t = 1
SET @sq l_oper = "
OPEN @ curso r
F E T C H N E X T F R O M @ c u r s o r
INTO @ prop_id, @descr_value
W H I L E @ @ F E T C H - S T A T U S = O
B E G I N

l F @ c o u n t > 1
SET @sql_oper = ' in tersect ,

S E L E C T @ s o l =
case @ prop_id

when -1 then
@sq l + @sq l_oper + , se lec t en t i t y_ id f rom

descr ipt ion d where d.ent i ty_id = ,+ @ descr_value
when -2 then

. @sq l + @sq l_oper + , se lec t en t i t y_ id f rom en t i t y d
where d . t ype_ id = '+ @desc r_va lue

E lse

@sq l + @sq l_oper+ ' se lec t en t i t y_ id f rom desc r ip t i on d
w h e r e d . p r o p _ i d = ' + c € l s t (@ p r o p _ i d a s v a r c h a r) + ' a n d
d .desc r_va lue l i ke "o /o ' + @desc r_va lue + ' 7o ' , '

end

Select d.*,p.", e.type_id as enti ty_type,
isnull((select dbo. uf_entity_descr(er.entity_id)

from entity er
where er.entity_id = cast(d.descr_value as int)
and p.prop_relantionship =,y,), d.descr_value) as
descrJext,

isnull(p.prop_order, 99) as prop_new_order
from description d, properties p, entity e
where d,prop_id= p.prop_id
and e.entity_id = d.entity_id
and d.enti ty_id = @ ENTITY_|D
union al l
Select p.prop_id, @ENTITY_ID, ", nul l , p.. , e.type_id as
entity_type, null, 99
from properties p, entity e, template t
where p.prop_id not in

(select prop_id from description d
where e.entity_id = d.entity_id)
and e.enti ty_id = pENT|TY_|D
and t.type_id = e.type_id
and t.prop_i6 = p.prop_id
order by 17 asc,3 asc

END

F E T C H N E X T F R O M @ c u r s o r
INTO @ prop_ id , @ desc r_va lue
S E T @ c o u n t = @ c o u n t + 1
E N D
SET @sq l = @sq l + ' se lec t e .en t i t y_ id ,

dbo.uf_ent i ty_d escr(e. ent i ty_id) , et . type_nam e f rom ent i ty e
, ent i ty_types et where e. type_id = et . type_id and ent i ty_id
in (' +@ sq l+ ') '

EXEC (@ sq l)
E N D

ELSE
B E G I N

select e.ent i ty_id, dbo.uf_ent i ty_descr(e.ent i ty_id) ,
e t . t ype_name
from ent i ty e, ent i ty_types et
where e. type_id = et . type_id
un ion a l l
select " , 'empty '

, "
order by 1 desc

E N D

DEALLOCATE @curso r

E N D

Figure 7. Program code for searching a concrete entity implemented by a stgred pr6cedure

Figure 8. Program code for searching entity set, implemented by a stored procedure

ogfles ? ?008
inforrnation

-tEEEno

andcorrtrol

!t
. l

t

Sp_Navigation
()

Passing Filter Entity Data

A generalizatidn of program code architecture, implemented
by stored procedure is illustrated on figure 9.

user intedace, which contains the necessary and sufficient func-
tionality, according to common business logic, which is charged
with the execution of abstract operations on data, and which is

sp_GetE nti tyDescrByld(- 1 00)

Figure 9. Program code architecture for meta model data maintenance

4. User Interface for Meta Data Usage and
Maintenance

Taking the business logic out of application, appropriating
it to the description attributes and implementing it by a specific
data base function, permits the design and development of an
application, which is as much as possible independent of area
and i ts business processes changes.

The high degree of meta model abstraction allows the
investigation of decisions directed to design and implementation
of a user interface with unified functionality, applicable to a wide
range of business areas. This means to suggest a universal

not 'interested' in a parlicular business problem. The abstract
approach suggested, allows an easy implementation of a user
interface with unified preliminary defined functionality and vari-
able set of user forms for visualization, which are placed over
abstract functionality. While using meta model, the process of
user interface design and implementation is transformed to a
process of user interJace tuning, which tuning is basically re-
lated with data entry, and requires less programming,

An application based on the meta model suggested, may
provide the needed functionality by a minimal data entry forms
set of two basic types:

. A form for viewing/edit ing/f i l ter ing of a single business
entity (figure 10).

Passing function lD

Passing entity data

sp_GetEnti tyDesc rByld(1 3836)

Figure 10. Form business entity maintenance

E ? ?008
irrforrnation teclrnolocries

andconlrol

lt02g A"t{cdtr fl0:1{}28l,,p4a oob'r*.Pdrov.,StdtEStcicltrv,Ro{cinStrudwqShildty0ctrd@UrhqAlgmddS6mdry
,...:----.:_:::::i_ql11fg-{9-qF$41.-q1.lhf_6f1Plt{.n9psltr.t.ftp*f.sgflpsy.Teh.mr.m7.M8'1 vr86

, rrore ruu'*- lfff,|H#ffikffii#"-tri$i* ; ;abo*tm ro auorac osiqm ot re'*s

'* ;r- p;'r1;;;ffib;1fr,h:r1'Wd tubo @dc; rd uMTs rido.rc,.rtrc.r'.td il;dd ft€ednus

,r:ssr nn""-,[Dj-S];ffi'r:#r:$i1 $Ttrtllodooasarcc0*ttrrdilutin€d'stemddol&cts.Pr@!di4r.

'l3rz
p"br"yil3ifl*frH-,i#ffJr#ii,

hti{:llil:!;*o**wrhs,Nndr.il!.ed@d'omcd{.,
,r*ro n*"- $Dllfllflp.F.S4M.k.h.vLLeppdEn.EddncYi*@C6sC*rsian**ria,co4'vslen2S7

20rJi

Dsrs pLdEds [t;3I]s0effi:1offil1fi]t#fi:,tlil1fl+$idd0c$$unncui;LoroTesr'RorirurdhsdDr."
,tSS t**-,$]$jio+er.ImsKadaclvalalnck.onobq,tas.dApsmhloAdpl.td,.P'EddrEsCornpsyslcch200T.

l3g7Z publcdn llDtSiTl.p.p.J.SdmrP&t.Eur AxdqUraru [dqd.tBdai. SdtH.r.Jhg6tr9itq.oc0C[
trlb.its .r drle!. Pr@ecrl4s CupIysT cch 2007 2Si Vl 4.1 . Vt 22.6

tG1 p.s,-{l0l3$llpaer.PhfrEnPi*dcv.AnatdiAdmy.lrcr.osirg[rpalqnw.dfi.rpliationldd4{catim
derect'o. Pr@e&Es Coesplech 2tr7,2u)7,Vt 2t.l .M 21.8

r384s pLuEro
[tJffilffitfJ##ffii",fl#tl#'"MttMdEt'oFnicTmevcviloMilketBeseieddttr

1lon
r*-,f?#f1,ffi1fii15,:#:hff11r#:F:'jzzvneF*'rarsrdcb*iriciodsoeEuserrohrs

iraz rn***'!$ffill$i:,tfit*.",**."sJ*rk.PodloPeasinu{ic\'raseach.PracdqiCo"eiv,i#zmr.

;rom e*r".r*,![0.!ffffil"Sttq$ilrttl',tlif $XH,,l- 9fi.ilffi:ffiifliHjv,r"
,','* .*;, gJ:jrut'&liflH'#ih,'-$:1i1fr";ff ; i;;;c';r;;h'"q, n I'u*imacs.
' rrru ruu-, [0,iffiffir%9*ru:;f$m"rora"** ltrcitioo*re"lcctmor

t'bocodci'

,,,,1 *,-,lo,i"]llx,ffisff{:trffi:T**-,ji$fr*3ffi j#,l,ffifi,!fi $1,n:w :*gy
: r 37i6 p,6bd- : f l,l iff,lffj,i$-,*"H":*H#,1#,tetffi :;ToTlrclnra

sn* r" n",a* a u"
, r m e,u.**, l0j3iffil'i'*,?:H;:'#$ri*:ffi illn"rlrffiru;'$,TJ:ii:i1f "' *. o.u*
r:za e"u"**'!$]3l$|.ffiiil*Ti.8**'k4tdlwr'moddrsdsrocridiccrMicpr{as.s Pltr.ecinesCmpSvrlcch

,t:m r"u.**,$orl?.ff);ppr'LenkaHapdwr.lvoJdrck.ssu{icrcbec*ssedctm,fteeedi$tryS$I;h:mi.2m7.

1'a"',r**;$?"l,ffJ,lffifi8trJi]lH&ri,ffi"ililirff,iffit:i,::ilii:1i*v.upskiriryroor*cr'0icrrcdsorrwd.

,t*r,"il'8t#1fi;:;ft9.ffir1f1!i1;?i'bbr".;
*ropio'";'guoddwor"@kinoldhk'rBio@r,iccode. P,@eed;rus

I'za's c,u",*,Hi1i:H.Es',flTnf,ffi;lilgrr.H,'&xg.i, Siffi;rj.T:fl,."r*il*c,apocias
, r; ,.;.,,- {lO 122CBI p.pe'. Nikol. P.wsic. Srobods Fb.rE tlcq#i6rod. Curp*bm i pca .. uDr .. -d Ro]-Ol . oasco

!''""-'*-I'.,.itiltarit$'.*!tor.4ec-99.c,lPrrdllC:bagdPi.lr{F-lF999er-lt@,4999!dirEjcg$pJ:l-.J!.4pl,4lv,l:,,,,,,,,,,,,,,,,,! :.v3.7
lrarez e*n.,'".1ffillbiffit#rt#i,t3:Affiirl,fii#:1fi*^ilctic+s*"tii"in"ni.c"iooris,s"io^$,ae"
,r,r, ,*a- [tJflflftft3;$1i#1#fr,1.i:fi:uos'rye BMbxov chss d'End6d r.du'|. weqrxs.v.ru.rff

:rasr e"**i- tfo]2$|ffil,1til?ar,tinov,An€liolvry.,AVHOLlraiineModcldaPmess.Pr@eedrurcompsysTech
:':',s e*,"o- [0,ff11f]J,lfill"#1ff"':f';iitrjrli:; i:f.Hil;""fj,,Tr'fiffi',H'i;cfiy:ltw.''cuiveorcv
i faZl puUf"a"":[0r.12124].prpcr, lryaGcoEcv.lvoGcdg;cv,\d.bActiv. lcchuloqcs,ProccdngsCmpSysTcch20rlT,2rl0T,p2.l

t?l?t F&jh [0: l212l].gopr.PlmnV.lchlov,FlmnJri lmv.NatimalProgrolorAccfler.ted0.yclopmeddtnlqaElos@Ery
ao, Prmeedngs CorpspTech 2007, 2m7. P.t I . P.1-5

irzrri e'or"a- [o,j1rliru3*il*Ul_"rgt';1l1tl;tt**"*rdtsu'rirdtro{Fr"\r'.scsiF*s.drosFFrdftEt
i rrru o,*r* {10 l2l l l lpaper. lvusmmv,HiuoKli lury.Fictroidiorcv,Abollnicreal izdiondsystcmlosi l i tamrcltha
, - - - ' -- lq.c.stng.Pr@o.dingscdnpsysTech2m7.m7.t.3.1.|3.6

i : - r (10:12101J, p+cr, Mohmd l,lehd , Hesrci Reza EaanOr, lrprovrq thc C0WLS dgollm lo hadwae soltwoe
i12101 'Putlcils!@syitfpsitg.Tt2tcJicri-rdvdryitmsiqtrda?rceveclosadpeakposi{omain.PrceedirpsConpsyslech

:rzas p**ri-
!il}]ffi|'ffilfirlitget.JuhtMVRcd.ModrvineTwrietoAddessThir*lresr4s.Precearqs-mpsyilciii

i r zcz , n ur"a- i l[ff]]"569$i:tl, llly
i"d.;.'e ",ih R;od.; drop,ecso usru t'tpr turrtns. Fircccdmes

sp_GetListByFilter (null) sp_GetlistByFilter (1 28)

Figure 11. Form List of business entities

Figure 12. Interaction between user interface forms in the business application

r A list of business entities, obtained after applying a filter
(all entities or entities satisfied the criteria set) as shown on
figure 11.

Both types of forms are bound by a mechanism-for param-
eter delivery aiming to identify the entity type - entity of type Firter
or entity for data manipulation.

lmplementing the possibility to use different presentation
styles over one and the same data structure and functionality
becomes possible by integrating of a non visual component in

the user interface architecture. lt implements the binding with
the highest abstract layer of programming interface and it de-
livers data to the forms for presentation and respectively deliv-
ers data to the meta model. This layer in the architecture
ensures the next level of isolation of the application from the
business logic and the isolation 0f presentation from process-
ing (figure 12).

An exemplary implementation 0f a non visual object, which
provides the basic functionality over meta model may be pre-

inforrnatign technologries
andcontrol

I
I

t

,)2 2008

sented by a .NET DataSet component.
As main characteristics of a user interface based on meta

model may be generalized:
. Completely expandable - both from the data point of

view and from the functionality point of view.
. Independent of data structures in the data base
. Sparing/Minimal regarding interface components
. Resistible to business area changes

5. Database Meta Design and Information
Security Requirements

Traditional approach to data base and information sys-
tems design offer some opporlunities to guarantee the security

of data, which are restricted by database management systems
mechanisms.

Main restrictions, which may be provided, are at following
levels: Entity level, provided by internal DBMS mechanisms for
data access organization.

Record level , provided programmatically and specifically
forthe particular application based on the values of a given data
record. More often there takes place the process of work out in
details of the restrictions to data access, which requires accent
on smaller items of an entity and a record namely one property
(property level) and one value (value level). Achieving such a
level of detailisation of the control over information also requires
a more detailed approach to its representation and design.

Meta design provides enough precise rever of data de-

rt prop id

entity_id

descr_value

descr_id

;I PROP IDl

PROP-NAME

PROP-sINGLE

FROP-ACTIVE

FROP-MANTANTORY

PROP-RELANTIONsHIP

PROP-VALUETVPE

FROP-REL-TYPE

PROP-DEsCRIPTION

PROP-ORDER

entity_type

descr_text

prop_new_order

sp_GetEntityDescrByldTableAdapter TebleAdaoter

E tcde $nneratisn

BaseClass

Connectionl"lodif ier

lvlodif ier

nldme

E {}dt i \

El Connerti,:'n

El DeleteCommand

CommandText

CommandType

Parameter!

GenereteDBDirecil4ethods

";;i;;;*;ilr;ir, t.ii ,"1,.", tLii rr::. ,tlt ,".,iri l ,. : .ii*;*;l:k;:,.:.

5),stem, ComponentModel, Comooneni
Iriternal

Public

sp_GetEntityDescr8yldTableAdapter

f M5f onnect ion5tr ing (Set t ings)

(DeleteCommand)

dbo.sp_Dele t eEnt ityDesc rBy ID
5toredProcedure

(f ollection)

True

(Insertfommand)

dbo.sp InsertEntityDescrBylD

StoredProcedure

(Eollection)

(Selectfommand)

dbo,sp_GetEntityDescr8yld

5toredProcedure

(Collection)

Fill, GetData (@ENTITy_ID)

sp_GetListByFilterldTableAdapter TableAdapter

5ystem, ComprrnenHvlodel, Component
Internal

l,uDfic

sp_GetIistByFilterldTableAdapter

EMSfonnertion5tring (5ettings)
(None)

True
(None)

{SelectCommand)
CommandText

CommandType

Parameters

:::::::::l:|::1::.::'::::::.::::':1::::::
SelectCommand
SQL command to fill in the DataTable

Fill,GetData (@FILTER ID)

Figure 13. Non visual common logic object

l 0 2 ?008 irrforrnation tectrnologies
andcontrol

script ion, which pernrrts to implement programmatical ly the
property level and value level of information security preserving
existing control or enirty level and record level.

6. Conc lus ion
Sug;esiec reta model and both types of user interface for

i ts rna'":e^ance and usage are tested in dif ferent information
sys:?-s ! ' rng over dif ferent data base management systems.
l:a i -g tnis idea leads to a considerable change of business
aJ3rrcation life cycle stages duration in favor of significant short-
e"rng of development time and augmentation of exploitation time
r,,' ith easy maintenance from the developers.

Meta design is a real alternative to the classical data base
design for business applications. Endorsing on the data struc-
tures, i t real ly grants new possibi l i t ies for design and implemen-
tation of all items of application architecture - user intedace and
business logic. The suggestion made in this arl icle is entirely
based on the relational data model, but a more courageous
glance fonruards, may find out some ideas for a new data base
engine.

The application of meta design may lead to design and
implementation of reach mult i functional general purpose l ibrar-
ies to maintain all the necessary data structures.

Ref erences
1. Jeliazkov, J., A. Murdjeva. Unified Format for Storing Data and Data
lntegration. lnternational Scientific Conference ,,Management, Information
and Marketing Aspects of Economic Development of Balkan Countries",
Sof ia, November 2004. (in Bulgar ian)
2. Murdjeva, A., M. Tsaneva. 0ptimization of Business Application.
Aspect of 0pt imizat ion and 0pt imizat ion Techniques. - C10,2008,
No 4, 90-93 (in Bulgar ian)
3. Murdjeva, A., M. Tsaneva.Principles of User lnterJace Design for
Business Informat ion systems. Internat ional scient i f ic conference
,,Management, Informat ion and Market ing Aspects of Economic
Development of Balkan Countries", November 2004, Sofia, 3l g-331.
(in Bulgar ian)
4. Murdjeva, A, Spl i t t ing Business Logic in Mult i layer Appl icat ions.
Stored Procedures as a Tool for Business Logic lmplementat ion.
Preprints of Jubilee Scientif ic Conference ,,40 years Deparlment of
lnformatics", 0ctober 2007, Sofia.(in Bulgarian)
5. Murdjeva, A., E. Denchev, M. Tsaneva, D. Velev, K. Stefanova, V.
Lazarova. Splitt ing Business Logic and Contemporary Technologies.
Preprints of Jubilee Scientif ic Conference ,,40 years Deparlment of
lnformat ics", 0ctober 2007, Sof ia, 231 -242.(in Bulgar ian)
6. Murdjeva, A. Distribution of Business Logic in Information System.
Bus iness Log ic Conta iner . Research Papers , UNWE,200B (under
or int) . (in Bulgar ian)
7. Murdjeva, A. Symi lar i ty and Dynamics of lnformat ion 0bjects.
Design of Uni f ied Relat ional Structures. Research papers, UNWE,
1999.(in Bulgar ian)
B. Tsaneva, M., A. Murdjeva. User Useful Report - Strategies for
Design. Symposium Articles ,,35 Years Specialty of lnformatics",
UMWE, Sof ia, 2003, '175-183.(in Bulgar ian)
9. Tsaneva, M., A. Murdjeva. Technology for Invoice Generation Based
on Dynamic Data about clients Duties Balance.-Bulgarian Accounrer,
2008, No. 6.(in Bulgar ian)
10.Tsaneva, M. Organisation of User 0riented 0perations Log in
Business lnformation systems.- cl],z00B, No. 3, 75-78.(in Bulgarian)
11.Gennick, J. The Master Key to Oracle's Data Dictionary.
h t t p : / w w w . o r e i I I y n e t . c o m I p u b l a l n e t w o r k I 2 0 0 2 I j 0 I Z B
data_dictionary.html, 2002.

Manuscript received on 07.07.2008 r.

Alexandrina Murdgeva PhD is chief assistant in
department of lnf ormation Technologies and Com-
munications of Unwersity of National and World
Economy, Sofia.
She defended a disseftation an the subject of
,,An approach for abstract description of infor-
mation objects and its application in the Economy"
in 2000 year.
She has taken part in design and implementation

of more than 10 Business lnformation Systems, The areas of her
scientific and practical interests are design, usage and optimization of
data bases, design and development of business applications and
applying abstract approaches to their design and implementation.

Contacts:
Department "lnformation Technologies and Communications"

University of National and World Economy (UNWE),
1 700 Sofia, Studentski grad "Hr. Bltev",

e-maiL amurfuvaoabvhg

Monika Tzaneva PhD is chief assistant in depaft-
ment of lnformation Technologies and Commu-
nications of University of National and Woild
Economy, Sofia - she teaches System prlgram-
ming, Sof tware Pro ject Management and
lnformatics.
She defended a dissertation on the subject of
,,0rganization, Design and Development of 0b-
ject-oriented Distributed Systems in Econiomy" in
1991 year

She has managed and has taken part in design and implementation of
more than 15 Business lnformation Systems incl. ,,Nuclear Fuel Man-
agement", ,,Human Resource Management" and ,,Document Flow
Management" adopted in NPP ,,Kozbduy", Encashment systems adopted
in NEC and Bulgargaz,)perational Management System of TBI Credit
and others. The areas of her scientific and practical interests system
programming, software project management, interoperability of busi-
ness applications, S0A, CASE technologies for system analysis and
design.

Contacts:
Depaftment "lnformation Technologies and Communications"

Universrty of National and World Economy (UNWE),
1 700 Sofia, Studentski grad "Hr. Bltev",

e -m ai I : mo nik a_Zan eva@yaha o. c o m

inforrnat ion technolog
andcontrol 2 200E

