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Abstract. Fast Hartley transform (FHT) /Real-valued Fast Fourier trans-
form (RFFT) algorithms are important Fourier-related transforms,
because they lower twice the operational and memory requirements
when input data is real-valued. However,  these types of algorithms,
have irregular computational structure, which makes their parallel
implementation a difficult tas The aim of this paper is to show that
these algorithms have the same potential for parallel implementation
as the complex fast Fourier transform (FFT), as well as they share
common natural architectures with FFT, based on the perfect shuffle
permutation method.  Presented is a processor array architecture
based on the “indirect hypercube” concept which is suitable for
realization of fast FHT/RFFT processors for real time applications.

Introduction

Fast Fourier transform (FFT) is an efficient algorithm to
compute the discrete Fourier transform (DFT) and its inverse.
FFT plays significant role in several important scientific and
technical areas as solving of partial differential equations, spec-
tral analysis, digital signal processing, image processing etc.

In many applications, the input data for the DFT are real-
valued and outputs exhibit conjugational symmetry. Specialized
real-valued FFT algorithms (RFFT) have been designed for this
situation [Sorensen-1] to remove the redundant operations, low-
ering twice memory and operational requirements.

The discrete Hartley transform (DHT) [Bracewell-1] is a
Fourier-related transform of discrete, periodic data, similar to
DFT with analogous applications in signal processing and re-
lated fields. Its main distinction from the DFT is that it trans-
forms real data, thus being an alternative for the real-valued
DFT algorithms.

The fast Hartley transform (FHT) was first described by
Bracewell in 1984 [Bracewell-2]. It performs much faster be-
cause it requires only real arithmetic computations compared to
the complex arithmetic computations required by the FFT thus
in theory the FHT like RFFTneeds only half the computer memory
and less than half of computation time in comparison with the
complex FFT.

FHT/RFFT algorithms are important because with their
help other Fourier-related transforms, e.g.  discrete cosine trans-
forms (DCT), discrete sine transforms (DST) etc. can be ob-
tained.

In many cases, from performance viewpoint, a parallel
implementation of these algorithms is necessary. Parallel imple-
mentations of FHT/RFFT have been made for systolic arrays
[Marchesi-1] [Chang-1], hypercuboid multicomputers [Zapata-
1], as well as VLSI implementations [Zapata-2] [Liu-1]. Never-

theless, the literature concerning the parallelization of
FHT/RFFT is not abundant. These algorithms have irregular
computational structure which makes their efficient parallelization
a very difficult task. Thus, in practice, it is often easier to obtain
high performance in such cases with standard  FFT-based
algorithms.

It is known that parallelism is an intrinsic property of FFT.
Natural architectures for a given algorithm are such architec-
tures, which are derived directly from the data flow of this
algorithm. For this reason, they are considered to be the most
appropriate architectures for parallel realization of this algo-
rithm. For FFT, two types of natural architectures - the direct

and indirect hypercube are known.
There are some publications which show that the direct

hypercube can be considered to be a natural architecture for
FHT/RFFT algorithms [Zapata-2], [Arguello-1].

The aim of this paper is to show that the indirect hypercube
can also be considered to be a natural architecture for
FHT/RFFT algorithms, thus showing that the parallelism is an
intrinsic property of FHT/RFFT, as well as that FHT/RFFT
share with FFT the same types of natural architectures. Pre-
sented is a processor array architecture   based on the “indirect
hypercube” concept, which is suitable for realization of fast
FHT/RFFT processors for real time applications.

FHT Description

DHT is defined according to the following formula:
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Sometimes cos(z) + sin(z) is denoted as cas(z).
Generally, FHT is based on the so called Danielson-

Lanczos lemma [Danielson-1] - the base of the Cooley - Tukey
radix-2 FFT algorithm.

FHT splits the N-point sequence  X(n) into two smaller
(N/2) - point sequences X

0
(n) (even) and X

1
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sequences are Hartley transformed into Xh
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combined into X
h
(k)  in accordance with the next relations:
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        for 0≤k ≤N/2-1
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, for N/2 ≤ k ≤ N -1

Equations (2) result in the so called double FHT  but-
terfly  (DFHTB)[Ulman-1]  which is of two types.

Type A  DFHTB (k = 0)
(3a) X
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Type B  DFHTB (0 < k ≤ N/4-1)

(3b) Xh(k)= Xh0(k)+ cos((2π/N)k).Xh1(k)+ sin((2π/N)k).Xh1((N/2)-k)

X
h((N/2)-k)

= X
h0((N/2)-k)

– cos((2p/N)k).X
h1((N/2)-k)

+ sin((2p/N)k).X
h1(k)

Xh(k+N/2)=Xh0(k)– cos((2π/N)k).Xh1(k)– sin((2π/N)k).Xh1((N/2)-k)

X
h(N-k)

= X
h0((N/2)-k)

+ cos((2π/N)k).X
h1((N/2)-k)

– sin((2π/N)k).X
h1(k)

Real-valued FFT

The Discrete Fourier Transform (DFT) (direct and inverse)
is defined as:
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W = ei2π/N  =  cos(2π/N) + isin(2π/N).

When the initial sequence X(n) is real-valued, we have

a) For k = 0, F(0)  and  F(N/2)   are real numbers,

b) For 0 < k < N/2, F
(N-k)

  =   F
(k)

* (conjugated complex
numbers), and
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From (5) it is very well seen how the information in this
case is doubled.

As it was mentioned, efficient FFT algorithms have been
designed for this situation. One approach consists in taking an
ordinary FFT algorithm (e.g. Cooley-Tukey) and removing the
redundant parts of the computation [Bergland-1]. Alternatively, it
is possible to express an even-length real-input DFT as a
complex DFT of half the length, followed by O(N) post-process-
ing operations.

We examine the first approach.
The simplified butterfly for radix-2 DIT  FFT

(Cooley-Tukey)  operates as follows:

(6) X
f(k)

 =  X
f0(k)

 + e-i(2π/N)k.X
f1(k)

X
f(N/2+k)

 =  X
f0(k)

  - e-i(2π/N)k.X
f1(k)  

,     0 ≤ k ≤ N/2 - 1.

For  k = 0 and  N/4, inputs are real numbers and we have
the following real system:

X
f(0)real

 = X
f0(0)real

  +  X
f1(0)real

X
f(0)imag

 =  0

(7a) X
f(N/2)real

 = X
f0(0)real
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X
f(N/2)imag

 =  0
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X
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X
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X
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For 0  ≤  k  ≤  N/4 – 1, combining symmetrical butterflies,
we have the following real system:

(7b)   Xf(k)real = Xf0(k)real+  cos((2π/N)k).Xf1(k)real+ sin((2π/N)k).Xf1(k)imag

Xf(k)imag=Xf0(k)imag + cos((2π/N)k).Xf1(k)imag– sin((2π/N)k).Xf1(k)real
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X
f(N/2+k)imag
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X
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X
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 + cos((2p/N)k).X
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–sin((2π/N)k).X
f1(N/2-k)imag

X
f(N-k)imag
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Removing redundances in (7a) and (7b), and making the
following substitutions:

we get the final systems:

For  k = 0 and  N/4

(8a) X
f(0) 

  =  X
f0(0)

   + X
f1(0)

X
f(N/4)

  = X
f0(N/4)

X
f(N/2)

   =  X
f0(0)

  –  X
f1(0)

X
f(3N/4) 

 =  –  X
f1(N/4)

For 0 < k ≤ N/4-1

(8b) X
f(k)

 =  X
f0(k)

+cos((2π/2N)k).X
f1(k)

+sin((2π/2N)k).X
f1(N/2-k)

X
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X
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– cos((2π/2N)k). X
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 + sin((2π/2N)k).X
f1(k)

Comparison between systems (3.x) and (8.x) shows that
(3b) and (8b) are equivalent (structurally and arithmetically).
(8a) and (3a) are structurally equivalent and differ in arithmetics.
Besides this, they are equivalent somehow to a standard sim-
plified FFT butterfly operation. Despite differences, systems
(3.x) and (8.x) presuppose the identical flow of data (whatever
it be) of FHT and RFFT, and it is a reason FHT and RFFT to
be considered as one algorithm with two versions.

It is not difficult to see from (3a) and (3b) that:

1. Inputs (X
h0(k)

, X
h0((N/2)-k))

 and  (X
h1(k)

, X
h1((N/2)-k)

) form
two pairs of signals that come from two butterflies from the
previous stage;

2. Outputs (X
h(k)

, X
h(N-k)

) and  (X
h((N/2)-k)

, X
h(N/2+k)

)  form
two pairs of signals that go to two butterflies from the next stage;

3. If we assume that inputs (X
h0(0)

, X
h0(N/4)

) and
(X

h1(0)
, X

h1(N/4)
) form two pairs of signals that come from two

butterflies from the previous stage, then outputs (X
h(0)

, X
h(N/2)

)
and (X

h(N/4)
, X

h(3N/4)
)  will form two pairs of signals that go to

two butterflies from the next stage.

These ascertainments permit the double butterfly from
(3.x) and (8.x) to be reguarded as a standard simplified FFT

 
Xf(0)  = Xf(0)real       
Xf(N/2)  = Xf(N/2)real       
Xf(N/4)  = Xf(N/4)real  =  Xf(3N/4)real      
Xf(3N/4) = Xf(N/4)imag   = - Xf(3N/4)imag   
Xf(k)  = Xf(k)real  = Xf(N-k)real     
Xf(N-k) = Xf(k)imag   = - Xf(N-k)imag   
Xf(N/2+k) = Xf(N/2+k)real   = Xf(N/2-k)real    

Xf(N/2-k) = Xf(N/2+k)imag  = -  Xf(N/2-k)imag   

 

Xf0(0) = Xf0(0)real   
Xf1(0) = Xf1(0)real   
Xf0(N/4) = Xf0(N/4)real   
Xf1(N/4) = Xf1(N/4)real   
Xf0(k) = Xf0(k)real  =  Xf0(N/2-k)real  
Xf0(N/2-k)  = Xf0(k)imag =  -Xf0(N/2-k)imag 
Xf1(k) =  Xf1(k)real  =  Xf1(N/2-k)real   
Xf1(N/2-k) = Xf1(k)imag =  -Xf1(N/2-k)imag 
 



2 2011 9information technologies
and control

butterfly of type (6), assuming that signals contain two compo-
nents - P  and N - which are composed in accordance with the
following conventions:

1. For inputs, P components are the parts with 0 ≤ k < N/4;
2. For outputs, P components are the parts with 0 ≤ k < N/2;
3. For k > 0, the N complement is N/2 -  k for inputs and
N -  k for outputs;
4. For k = 0, the N complement is N/4 for inputs
and N/2 for outputs.
If we want to create with the help of the PN butterfly regular

and easily parallelizable structures, it is necessary to answer the
two following questions:

1. How the signals in the PN butterfly should be identified?
2. What are the properties, which signal identifiers should

possess, that would guarantee intrinsic regularity and parallel-
ism for the created structures?

Let us see what is the answer to these questions in the
case of Cooley-Tukey FFT.

FFT Identifier Analysis

Radix-2 DIT (Cooley-Tukey) FFT, as FHT, is based on
the already mentioned Danielson-Lanczos lemma -  formaton
of two N-point sequences (X

f(k)
 and  X

f(N/2+k)
) on the base of two

(even and odd) N/2-point sequences (X
f0(k)

 and  X
f1(k)

).
 Let N = 2n.
The signal identifier is an n-bit binary number and con-

tains two fields - S field and K field. S field is the sequence
number, while K field identifies the parameter k (the transform
parameter).

Sequence numbers are formed in the following manner.
From an N-point sequence are formed two (N/2)- point se-
quences - even (0) and odd (1). From the even (N/2)- point
sequence are formed two  (N/4)-point sequences - even (00)
and odd (10). From the odd (N/2)-point sequence are formed
also two (N/4)-point sequences - even (01) and odd (11). This
procedure continues up to the enumeration of all the points.

Signal identifiers are organized according to the following
rules:

1. The S field is the most significant part of the signal
identifier.

2. The K field is the least significant part of the signal
identifier, and it is the bit-reversed value of the k parameter.

With every stage K field increases with one digit and the
S field decreases with one digit. So, the initial identifiers contain
only the S field (the point index), while the final identifiers contain
only the K field (final results in bit-reversed form).

The following two properties of the signal identifiers are
very important:

1. In a given butterfly enter two signals, whose identifiers
are equal with the exception of their most significant digit;

2. The identifiers of the output signals of a given butterfly
can be obtained by means of left cyclic rotation of the identifiers
of the respective input signals.

These two properties identify  the perfect shuffle. It is the
perfect shuffle that ensures the perfect regularity and the intrin-
sic parallelism for the FFT flow of data [Stone-1].

Now, let us see one of the ways  with the help of which
the perfect shuffle ensures the intrinsic parallelism for FFT. We
describe the concept of the indirect hypercube.

FFT Analysis

Usually, the flow of data of the radix-2 DIT FFT algorithm
is presented with the help of the respective butterfly diagram.
However, this method somehow hides the parallelism as an
intrinsic feature of FFT. In [Phil-1] is described the method for
dataflow presentation and analysis of radix-2 DIT FFT, based
on Omega network. This method leads to parametrical synthesis
of the indirect hypercube. Here we describe in brief this ap-
proach.

The Omega network is a multistage interconnection net-
work [Bhuyan-1] which is used in multiprocessor computer
architectures and whose basic property is the perfect shuffling
of the input signals. Its main characteristics are:

• It has 2k = N inputs and so many outputs;
• It is composed of log

2
N stages  each stage including

N/2 switching elements (crossbar switches);
• Every crossbar switch has two inputs (0 è 1)  and two

outputs (0 è 1);
Technically, the interconnection between the switching

elements of successive stages is accomplished in correspon-
dence with the following procedure:

• Every switch receives a number (binary) within a given
stage;

• With every input/output of a given switch a personal
identifier is associated;

• Input identifiers include the input number (0 or 1) as
most significant digit, followed by the switch number;

• Output identifiers include the switch number as most
significant part, followed by the output number (0 or 1).

• Output identifiers of a given switch can be obtained by
means of a left cyclic rotation of the respective input identifiers.

• The interconnection between consecutive stages is ac-
complished on the basis of coincidence of input and output
identifiers.

The Omega network is a perfect model for viewing the flow
of data o the radix-2 DIT (or DIF) FFT. Each stage of this
network is associated with the generation of a given group of
sums. Every switch of a given stage receives two partial sums
from the previous stage and sends two sums to the next stage.
Figure 1 shows well the FFT parallel intrinsic features - the
parallel threads as well as the homogeneity of the flow of data
from stage to stage.  This homogeneity makes possible the
operation of all the stages of the FFT algorithm to be performed
by one physical stage. This is accomplished when the outputs
of one stage of the Omega network are fed to the inputs of the
same stage in accordance with the presented manner of inter-
connection (figure 2). The structure, presented on figure 2, is
known as the indirect binary hypercube [Pease-1], and it can
be regarded as the maximum parallel structure of 8-point FFT
of this type (8-point FFT on 4 processors).

It is clear that the  maximum parallel structure is not
the best solution, and that it is preferable (recommendable) that
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we could effectively use the structure from figure 2 (including 4
PE and very well suited for 8-point FFT) for FFT of greater
number of points - 16, 32, etc. In other words, it is necessary
to have a method for parametrical synthesis of such structures,
where the parameters are the number of points and the number
of processors.

Parametrical Synthesis of the Indirect

Hypercube

The above mentioned problem (the parametrical synthe-
sis) is solved in [Phil-1]. Here we repeat in brief this solution.

Let N = 2n, n = n
1
 + n

2
, 1 < n

1
 < n - 1. We intend to

construct an analogous parallel structure for N-point FFT on the
basis of 2n1 generalized crossbar switches.

The generalized crossbar switch (GCS) of 2x2 dimension
(two inputs and two outputs) is an integrated object, including a
set of ordinary 2x2 crossbar switches whose n

1
 least significant

binary digits of their numbers coincide (GCS number). GCS is
considered as a complex structure which includes one simple
2x2 crossbar switch, performing the functions of a processor
element (PE), and one dual-port memory (DM) witch serves for
reading of input data for PE and storing of intermediate or final
results.

From the global identifier two types of identifiers are ex-
tracted - the Group identifier and the Local identifier.

The Group Identifier (GI) includes the  n
1
 + 1  least

significant digits of the global identifier.

• The GI identifies the groups of signals entering/exiting
given GCS input/output and is of two types - input GI and
output GI.

• The Input GI includes the GCS input number as most
significant part (0 or 1), followed by the GCS number.

• The Output GI includes the GCS number as the most
significant part (0 or 1), followed by the GCS output number
(0 or 1).

• The Output GI of given output is obtained through a left
cyclic rotation of the corresponding input GI.

• The GCS interconnection is based on the coincidence of
input and output GI.

The  Local identifier (LI) includes the n
2
 most significant

digits of the global identifier.
• The LI identifies the signals inside GCS.
• The most significant digit of LI indicates the PE input

number.
• The least significant digit of LI indicates the GCS input

number.
• The basic property of LI - left cyclic rotation at transi-

tions from stage to stage.
Now the question is:  Can we use effectively the concept

of indirect hypercube for the purposes of parallel FHT/RFFT?

PN Butterfly Identifier Analysis

In the case of PN butterfly any signal contains two
parts - P and N. So, its identifier should contain n-1 binary
digits. We can assume the same structure of the signal identifier
consisting of two parts - the S field and the K field. S field is
again the most significant part of the identifier, and the K field
is the least significant part. The K field is the bit-reversed code
of the transform parameter k. The S field is the same as in the
FFT case. Problems arise with  the K field. In a PN pair, the
two parts - P and N - are quite differently identified, so, before-
hand it is not clear how the pair should be identified - on the
base of P values, on the base of N values, or somehow in
another way. The P-based  (respectively N-based) identification
does not  fit the case - P values generate P and N values
(respectively N values generate N and P values).

If we analyse  k-values in PN pairs, we see that these k-
values in a given pair always belong to two different classes. The
first class, say  the D (direct) class, is generated by  a ‘0’- value
of the parameter k. The second class,  say  the C (complemen-
tary) class, is generated by a ‘1’-value of the parameter k. In
a given PN pair, when the P part is a D-value, the N part is a
C-value, and vice versa - when the P part is a C-value, the N
part is a D-value. The D-values generate always D-values and
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Figure 1. 8-point Omega network Figure 2. 8-point indirect hypercube
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the  C-values generate always C-values - that’s what is neces-
sary - identification can be performed either on the base of
D- or on the base of C- values.

It is not difficult to see that classes D and C can be
characterized in the following manner:

(9)    k ∈  D :   {k = 0 or  k = (4p+3)2q, for some p,q ≥ 0}
k ∈  C :   {k ≠ 0 and k = (4p+1)2q, for some p,q ≥ 0}

Now we apply  D-value based identification of  the K field.
Since we want to identify  pairs of signals, it is evident that the
identifiers of a pair of signals should contain one digit less than
the identifiers of single signals. The S field is OK and it should
not be modified. This means that one digit should be removed
from the K field. Analyzing (9) we see that we can remove the
least significant ‘1’ in the binary representation of a given
D value, when it is not zero, or just remove one binary zero when
it is zero.

Very important is the fact that this type of identification

possesses the two mentioned properties which idenyify the

perfect shuffle.

This type of identification leads to a variant of the de-
scribed Omega network, let us say DC Omega network. The
difference is that the DC Omega network (figure 3) has one
stage more than the conventional Omega network. This is due
to the presence of one preliminary stage in the FHT/RFFT
algorithms. In any case, both networks result in one and the
same type of indirect hypercube, including the parametrical
synthesis of this indirect hypercube.

Processor Array Architecture “Indirect

Hypercube”

The discussed model of the indirect hypercube can be

used for different type of concrete implementations, where GCS
play the role of a processor block. Analysis shows that this type
of topology is very suitable for realization of fast
FFT/FHT/RFFT processors for real-time applications. It
enables the optimization of resource utilization, ensures low
latency and high efficiency - the main requirements for such
systems.

In [Phil-2] it is described a parallel SIMD processor array
radix-2 FFT architecture based on the indirect hypercube
interconnection pattern. This architecture with very slight
modifications fits directly for the  radix-2 FHT/RFFT parallel
implementation.

The basic building block of this architecture is the proces-
sor block (PB). PB (figure 4) includes one processor element
(PE) operating as a butterfly unit and two dual-port memories
(DM). For a given stage of the transform one of these two DMs
is used by PE as a source of data for the current butterfly
operations and the other DM is used for storing the results of
the current butterfly operations of other PBs (two), which are
connected with the given PB. DMs alternatively change their
role on stage basis.

PE is realized as a 7-stage linear pipeline. It computes
radix-2 butterflies and yields a result every cycle. Input data, as
well as intermediate results are presented in fixed point, 2’s
complement format. Twiddle factors (unique for different PEs)
are held in CLUTs. From coefficients viewpoint, the stages are
divided into two classes: low stages and high stages. Low
stages are the first n

1 stages. High stages are the remaining n
2

stages. For the low stages every PE needs one coefficient pair
(e.g. sinx and cosx) per stage. For the high stages every PE
needs totally 2n2-1 coefficient pairs. The set of coefficients for the
high stages of given PE includes all the coefficients, whose
arguments have as most significant digits of their binary presen-
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Figure 3. 16-point FHT - 8-point DC Omega network
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tation the bit reversed number of PB.
The control unit provides the necessary control information

for PBs - synchronization of the arithmetic pipelines, addresses
for DMs and CLUTs, etc.

The DM addressing is based on the main property of the
local identifier - a left cyclic rotation on transitions from stage
to stage. Generated are four address sequences for DMs - two
read address and two write address sequences. The algorithms
for generation of these address sequences are similar to the
respective algorithms in the scalar case (one PB) - a left cyclic
rotation of store address sequences. The addresses of the low
parts of CLUTs follow the stage number. The algorithm for
generation of the address sequence for the high parts of CLUTs
is similar to the respective algorithm in the scalar case.

The resource utilization is a linear function of all input
parameters.

The system latency (L) and the  throughput (T) are as
follows:

L = n.(2n2-1 + P
l
).t

clk
,

T = N.L-1 ,
where Pl 

is the pipeline length - 7 cycles, t
clk

 is the system clock.

Conclusions

The described systems provide the following advantages:
• parametric generation and utilization in a wide opera-

tional range of input parameters;
• the utilization of distributed shared dual-port memories

as well as their connection with the processor elements accord-
ing to the perfect shuffle rule solves efficiently the two basic
problems - switching of intermediate data between processors,
and memory conflicts;

• uniform control for the different  PBs - realization of
SIMD architecture;

• theoretically, the architecture allows unlimited scalability
depending in practice only on the FPGA capabilities;

• system performance is a linear function (increasing)  of

the number of PB;
• optimal resource utilization which is a linear function of

all input parameters;
• optimization of the parallel system, based on the opti-

mization of the scalar system;
• implementation of block-floating point provides efficient

strategy for treating the overflow problem;
The comparison between the two (complex FFT and

FHT/RFFT) architectures (as for the performance and effi-
ciency, so for the resource utilization) shows that an N-point
FFT architecture in practice is equivalent to a 2N-point
FHT/RFFT architecture.
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