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Abstract. This paper analyses and minimizes the exchanging interactions
in the parallel algorithm of type ,,allocation of submatrices with identical
dimensions in the pr1ceSS1rS of computer system with parallel
architecture" of the linear equational system, solved by the method
of sequential interations.

1. lntroduction

An effective method for accelerating the solving a given

task is to use a solution based on parallel algorithms (PA). There
is a growing interest in searching and finding PAfor solving complex
problems in the last years [1,2,5]. PA presents the task as a set
of simultaneously executed subtasks which exchange datathroughout
the process of solving. lt is preferable these data to be minimal

[3,4], because in this way the traffic in the communicational
network is decreased and, in the common case, the control of the
parallel process is facilitated.

2. Aims

The aim of this article is: to analyze and minimize the
exchanging interactions in PA of type ,,allocation of submatrices
with identical dimensions in the processors of computer system
(CS) with parallel architecture" of the linear equational system,
solved by the method of sequential interations. ffhe essence of this
PA is presented below. lt can be referred to the so-called parallel
matr ix computations with checkerboard part i t ioning t1l )
In details, the aim of this paper (of the presented task) will be:
1) determining the number of transmitted and received words
between the threads (the branches) of the PA;
2) analysing the possible allocations of the matrix elements u
(see pt. 3) and suggesting allocations, in which the algorithms for
routing of the exchanged words are simple and the number of the
words - transmitted to and received in the parallel branches is
minimal;
3) analysing the dependence of the number of words - transmitted
to and received in the parallel branches on the submatrix dimen-
sion, aiming the determination of dimension, in which this number
is minimal.
The Solution of the problems, presented above, will be searched
considerin g the following conditions :
1 ) the matrices of the linearequational system do not contain zeros;
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2)the congruity of the solution is acceptable.
Th is paper has an even f urther aim : search ing f orethf or analys is of
the exchanging interactions in PA of complex tasks for finding
optimal PA (according to defined criteria)and optimaltopologies
for communication between the parallel branches of the PA.

3. Method of Sequential lterations for
Solving the Linear Equational System

Let us have the linear equational system:

a , , x , * a , ,  x ,  *  . , . + a r n  x n  =

au x ,*an x ,  *  . . , *ar , ,  x , ,  =

ln matrix form: AX=8, where

v t t r ,

.  Y -

It a,,+ 0,

x,,= F,* d,,t x t* &rz x r* "' * d,,,,

ln matrix form: N=p+aX
The column of free members is considered for zero ap-

proximation: X0)= p. After that, the matrix-columns are com-
puted X1)= f + a)Pt (first approximation) , )(2)= f + a)(t
(second approximation) and s0 0n. Each approximation is cal-
culated according to the formula )(x+1)= F +a Xr), K=7,2,... .

lf the order X0), )(1), )(2),... )(r), ...has a limil X=lim o-*
X"/,this limit is solution of the system. Practically, when finding
an approximation Xlr) i= 7,2, ... n the difference is calculated

bi aii-ll , a,i= : ,f i* j, (u,,a0),
au u  a l l
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AXlrt = X.@ ' X.k-lt. The task is considered solved when the
condi t ion AX,k)<eis  sat is f ied,  where i= 7,2, . . .nand e>0'e
is a given small  number, defining the calculat ion precision.

Solving the task includes n2 multiplications, n2 sums, n
subtractions and n comparisons in one iteration cycle. lt can be
seen that the great part of computing work includes multiplica-
t ions (n2) and summings (n2).

4.Exchanging Interactions in PA 0f Type
"Checkerboard Partit ioning" 0f the Linear
Equational System, Solved by the Method of
Sequential lterations

Let the number of processors be m. The contemporary CS
with parallel architecture are built of dozens, hundreds and,
sometimes, even thousands of processor elements [1] In this
paper, it will be considered that m=n. lt will be shown this does
not influence the generality of the considerations.

ln the checkerboard partitioning, the matrix ais split in n
submatrices with identical dimensions (or dimensions that differ
with 1). For facilitating the presentation, it is assumed that the
submatrices are identical. Let the number of rows of the submatrix
be r,  and the number of columns be c. l t  is not dif f icult  to see
that rc=n. The number of the submatrices in each row of the
checkerboard parlitioning is r, and their number in each column
is c. When r=1 the partitioning is block-rowed (1 x n), and when
c=1 -  i t  is  b lock columned (1 x  n) [1] .

The values of each submatrix are allocated (saved) in one
of the processors of CS, Each processor calculates one xi,
i --1,2,.. . ,n. The Processor P, wi l l  be considered to calculate x,.

I t  is obvious thatvalue of B,has to be saved in the processor

P,. The allocation of submatrices with dimension 2x3 in proces-
sors of CS (n=6) is shown in figure 1.

The number of possible allocations of submatrices in the
processors is n!, The allocation of submatrices, itself, defines
the quantity of transmitted and received words between the parallel
branches of PA and the loading of the communicational network.

Pt -  l i t .  311, i112, i11r
€ !

br ?zt,Azz,Az.l
& - xr. i l14, i l15,t l16-.

bz A2t,Azs,ax
P r - l r

br
?31,i132 1333

fut,fu:,il+-r

Pl - xl, ili.1,0-r5,.?36

bq fuq,fus,fu0
&-1.. ?51.0s2,251
G'

bs il61,il1;2,c?6,,t

0s,1.0-s5,&56,

fl64,fl1;5,ili;6

Pr, - xr
bn

Figure 1 P-type allocation of submatrices (dimension 2x3, n=6)

Each processor  P in  CS:
1)calcu lates n mul t ip l icat ions;
2)executes (c-1)r summings and, in result,  r  part ial  sums

are calculated;
3)transmits r 0r r-1 part ial  sums respectively to r or r-1

processors, and receives r or r-1 partial sums respectively from
r or r-1 processors;

4)executes r-1 summings of the r part ial  sums in the
processor and, in result, x, is calculated;

5)if the parallel process is over - end, othenruise the 6-th
step of the algorithm is executed for the completion of the next
iteration;

6)x, is transmitted to c or c'1 processors, receives c or
c-1 xu, ,  i= l ,2 , . . . ,c '1  or  1=1 ,2, . . . ,c ' ,  k i  e  {1 ,2 , . . . ,  i '1  , i+1, . . . , [ ]
from c or c-1 processors respectively and goes 0n with the '1-

st step of the algorithm.
The control of the calculation process (the S-th step) is not

a point to be discussed in this art icle. l t  is presented in [3,4].
More attention will be paid to the 3-rd and the 6-th step,

which define the exchanging interactions between the PA
branches, i,e. between the processors of CS,

Each processor P, has to transmit r or r'1 paftial sums
respectively to r or r-1 processors, and to receive r or r-1 paftial
sums respectively from r or r-1 processors (the 3-rd step). lt
is obvious that the case transmit/receive r-1 partial sums is
preferable. This case is an allocation of submatrices, when one
of the calculated r partial sums is in the P, processor and
parlicipates in the calculation of x,. Therefore, such an allocation
of submatrices has to be done that each processor in the CS
P,, i=1 ,2,. . . , i  calculates one of the part ial  sums necessary for
the computation of its x,. Such allocation will be called P-type
allocation,

Rule 1. A P-type allocation is achieved when the index of
each processor P., computing x,,  i=1 ,2,. . . ,1, coincides with one
of the r row-numbers of the submatrix, allocated in this proces-
sor. In other words, each of the r processors in each row of the
checkerboard parlitioning computes one of these x,, whose in-
dices are the r row-numbers of the submatrices, allocated in the
r pr0cessors,

The allocation in figure 7 complies with this condition. The
number of al l  such al locations is (r!) ' .

In this case the number of the transmitted So and received
Ro words (partial sums) to and from each processor P, through
the communicational network is:

S o =  R o =  I ' 1 .
The total number of transmitted So, and received Ro, words

(partial sums) to and from all processors through the commu-
nicational network is:

So,= Ro,= n(r '1) .
Attention should be poid to the fact that through the ex-

change of paftial sums the set of processors n is split to c
independent subsets, each of them containing r processors
(these in the rows of the checkerboard partitioning). This makes
the routing algori thm simpler.

Afterthe k-th approximation 0f x,, i=1 ,2,...,fr is calculated
(the 4-th step), if the parallel computing process has not fin-
ished, a new iteration cycle starts. For this purpose, the CS
processors have to exchange the k-th approximations of x,. Each
processor P, has to transmit the calculated by it k-th approxi-
mation of x,, to c or c-1 processors and has to receive c 0r c-
1 values of the k-th approximations of x, (these that are neces-
sary for the calculation of the n multiplications, defined from the
submatrix in the processor) from c or c-1 processors respec-
tively (the 6th step). The case transmit one value to c-1 pro-
cessors and receive of c-1 values of the k-th approximations of
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x, is preferable. This case finds its place when the k{h approxi-
mation of x, is used in processor P, for the calculation of r from
the n multiplications of the (r+1)-st approximation of x,. There-
fore, such an allocation of the submatrices has to be made that
the above-stated condition is complied with all the processors
of CS. Such allocation will be called ltype allocation.

Rule 2. An ltype allocation is achieved when the index of
each processor P., computing x,, i=1 ,2,...,fr, coincides with one
of the c column-numbers of the submatrix that is allocated in
this processor. In otherwords, each of the c processors in each
column of the checkerboard partitioning computes one of these
x., whose indices are the c column-numbers of the submatrices,
allocated in the c processors.

The allocation in figure 2 complies with this condition. The
number of all such allocations is (c!)'.
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Figure 2. l-type allocation of submatrices
(dimension 2x3, n=6)

In this case, the number of the transmitted S, and received
R, words (unknowns x,) to and from each processor p,through
the communicational network is:

S, = 1 (to c-1 pro.rtrors), R, = c-1.

The total number of transmitted S,, and received R,, words
(unknowns x,) to and from all processors through the cbmmu-
nicational network is:

Si ,= n,  R, ,  = n(c- l ) .

One should to the fact that through the exchange of the
unknowns x, the set of processors n is split to r independent
subsets, each of them containing c processors (these in the
columns of the checkerboard partitioning). This makes the rout-
ing algorithm simpler.

The allocation rn figurel is not optimal regarding the
exchange of the unknowns x,. The processors p, and pu have
to transmit the calculated by themselves values o? x, and xu, to
c(3) processors: Prto P,, P, and Pu, and puto p, po ind pu, and
have to receive c(3) values of unknowns: P, - *0, ru and xu, and
Pu - x.,, xrand x'

The allocation in figure 2 is not optimal regarding the
exchange of the partial sums. The processors p2, p' pnand pu
have to transmit partial sums to r(2) processors and have to
receive partial sums from r(2) processors: p, transmits to p,
and.P4, receives fr9! p_' and po; p, transmiis to pu and pu,
receives from Prand Pu; Potransmits to p., and p' rece-ives frorir
P, and Pu; Pu transmits to P, and po, receives irom p, and pu.

5. PA of Type ,,Allocation of Submatrices with
ldentical Dimensions of Rearranged by Rows
and Columns Matrix"

A question arises: could it not be found an allocation of
submatrices that would comply with both rules? lf it could, that
would be the best allocation because:

the number of exchanged words would be minimal;
the routing algorithms would be simpler.

Applying both rules simultaneously in increasing order of
the row numbers and column numbers is apparently impossible,
because the solutions are mutually exclusive. This can be done
only if these numbers are rearranged. In processor P,, comput-
ing x,, there really have to be a submatrix, containing the number
of a row and a column of the matrix, coinciding with the index
i. ln other words, the indices of the processors on a given row
(column) in the checkerboard partitioning define the numbers of
the rows (columns) of the submatrices, allocated in the proces-
sors 0n the row (column) of the checkerboard partitioning. The
aforementioned defines the rules for finding the submatrices at
a given checkerboard partitioning, i.e, the rules for rearranging
of the rows and columns of the matrix. In this case ,,a submatrix"
does not include only sequential rows and columns.
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Figure 3. P-type and l-type allocation of submatrices
(d imension 3x4,  n=12)

A rearrangement of rows and columns of the matrix (n=12),
is shown in figure 3. The proposed allocation of submatrices
with dimension (3x4) between the processors of CS complies
with both rules. lt can be seen that the numbers of the rows
(columns) of the matrix in each row (column) of the checker-
board partitioning are identical with the indices of the processors
in this row (column). For example, they are 7, 3, j0 in the
second row, and 12,7, 1, 5 in the f irst column. The order of
the row (column) numbers of the matrix in the rows (columns)
of the checkerboard partitioning does not matter. The number of
the possible rearrangements of a given checkerboard partition-
ing is (r!) ' (c!) ' .

Let us look at the work of one of the processors - pe. lt
computes the following three partial sums:
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0rz Xz*0r, Xr*o,, Xnf0,1o Xo

Onz Xr*On, Xr*0nn Xe+CI,e4 X4

Ouz Xr*Ou, X,*0un Xri0uo Xo

The processor Pe transmits the first paftial sum t0 P,, and
the third one t0 P' i.e. to the processors that are in its row of
the checkerboard partitioning. The second partial sum stays in
processor Pn. lt is necessary for the calculation of xn. The other
two partial sums, necessary for the computation 0f xe:

0n,rz X,r*0nz Xz*0sr x1+q'es xs

Onu Xu*On,,0 Xro*0g, Xu*0n,,, X,',

The processor Pe receives from the processors P, and Pu
respectively. When xn is calculated, the processor Pe transmits
its value to processors Pz, P, and Po, i.e. to the processors that
are in its column of the checkerboard partitioning.

The other 11 processors have the same work organiza-
tion.
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Figure 4. P-type and l-type allocation of submatrices
with rearrangement only 0f the column numbers of the matrix

(dimension 3x4, n=12)

The allocation in figure 3 is incidentally chosen in order
to il lustrate the rearrangement 0f the numbers of rows and
columns of the matrix. The most probable rearrangements are
shown in figure 4 and figure 5.

The allocation in figure 4 complies with the conditions of
Rule '1. That is why, in this case, only a rearrangement of the
column numbers of the matrix is necessary.

The allocation in figure 5 complies with the conditions of
Rule 2. That is why, in this case, only a rearrangement of the
row numbers 0f the matrix is necessary.
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Figure 5. P-type and l-type allocation of submatrices
with rearrangement only of the row numbers of the matrix

(d imension 3x4,  n=12)

It can be seen that the order of the rearranged numbers
of the rows/columns is cyclic. For the rows (figure 5) the cycle
is 4(c), and for the columns (figure a) - 3(r).

An incidental allocation 0f the submatrices without rear-
rangement complicates the routing algorithms and the number
of exchanged words in PA is not minimal.

6. Dependence 0l the Number 0f the Ex-
changed Words 0n the Dimension 0f the
Submatrices of Allocation

The dependences of the number of the exchanged words
for one branch of PA and for all branches 0f PA, go in pt,4, are
shown in table 1.

A processor (branch) transmits least number of words
when r=1, and i t  receives least number of words when y=1ft2.
Practically, this means that r and c are necessary to be close
by value in order a minimal number of received words to be
achieved. For example, if n=900, the processors will receive
minimal number of words 58, when r=G=30. l f  n=800,
because 8001/2 .-28,3, i .e. i t  is not an integer, one good choice
is r=25, c=32.In this case the number of received words is 55.

The number of exchanged words (received and transmit-
ted) is minimalwhen r=(nll)1t2. Therefore, c=(21)1n,i.e. clr=2.
For example, i f  n=800, the best case is r=20, c=40. The
number of exchanged words from each processor (branch) will
be 78, 20 of which will be transmitted and 58 - received.

Table 1. Dependencies of the number of the exchanged words on the dimension of the submatrices

For  one  b ranch  o f  PA For  a l l  b ranches  o f  PA

Transmiu.ed words S Received worcls R Transmi t ted  words  S Received words R

Part  ia l  sums S,,  =  r - l R
l )

= r-L S , r , =  n ( r - l ) R' ,  =  n( r - l  )
Unknowns  x .

I
S i =  1 R i  = c - l = n / r - L s,,= n Ri t  =  n (n / r - l )

T o t a l S = r R = r+n/r-2 s r= n r R, = n(r+n/r-2)
Total  exchanged words S+R = 2r+nlr-2 S,+R, = n(Zr+nlr-2)

".. '"'
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The block-row partitioning and, especially, the block-col-
umn partitioning are the most unfavourable - the quantity of

exchanged words is maximal (see figure 6) and each processor

has to exchange (transmit and receive) words with each one of

the other processors,
The dependences of the number of exchanged words on

the number of the rows (r) of the matrix of allocation for one

branch of PA when n=16 is shown in figure 6'

7. Avoiding the Restrictions in the
Proposed PA

At the end, the two restrictions will be discussed:
the number of the processors is eqUal to the number

of the unknowns x,, i.e. m=n (m,n - integers);
the dimension of the submatrices of allocation is

identical.
The removing of th,e firs-t re-sJrletlo-n puts ahead the ques-

tion for the following dependences.
1. m>n. This case is not very probable. (Solving tasks with

PA makes sense only when they involve a great number of
operations, i.e. they are tasks with great dimensions.) The ex-
ecution of PA of the task will engage n of the m processors, i.e.
this will be the aforementioned case.

2.n>>m. l twi l l  be considered that n/m = t is an integer'
(This condition is connected with the second restriction, which
will be discussed below.) ln this case, each processor will
compute the values of t unknowns xi. Therefore,

rc = tn: r.c)t
ln comparison with the case when lrl=ll, the quantity of

work for each processor increases t times.
The dependences ofthe number of exchanged words for

one branch of PA and for all branches of PA is shown in table
2.

The number of exchanged words is minimal when
r=(tnll)112.
3. n>m>n/2. This time it is appropriate PA of the task to

be executed by m, of the m processors (m,<m), where
m.,< nlL. There is maximal acceleration when mr=nlL' (lt will
be considered that n/(2m.,) is an integer.)

1 2

1 0

S,R

I

6

A
+

2

0

Figure G. Dependencies of the number of exchangrd *ori, on the number of the matrix rows (r) for one branch of PA (n=16)

Table 2. Dependencies of the number of the exchanged words on the dimension of the submatrices (n>>m, n/m=t - integer)

Fol  one branch o f  PA For al l  blanches of PA

T ransrn i t ted

rcrds S

Received wr l lds

R

Transmitted words S Received words R

Part ial  sums S,. = r-t R,, = t-t S.. ,  = m(r- t ) R... = m(r-t)

U n k n o w n s  x , S i =  t R i = c - t = t n / r - t S , , =  m [  =  n Ri r=  m( tn / r - t )

T o t u l S = r R = r+tn/r-2t S r =  m r Rr =m(r+tn/r-2t)

T o t a l

exchanged words S+R = 2r+tnlr-2t S,+ R,= m(2r+tn/r'2t)
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The removing of the seqondi-qs_trie-tlon puts ahead the
need of the task analysis, which will be done in another article.
Apparently, the restriction for identity of the dimensions of the
submatrices can not be fulfil led by any n (for example, when n
is a simple number), and in some cases it is far from the
optimal solution (for example, when n=2k, where k is a simple
number).

The avoiding of the restriction (still keeping the advantages
- simplicity of the routing algorithms and minimal word ex-
change) is based on the possibility for each n, when (nl?|tz it
not an integer, an allocation with rearrangement to be made,
including submatrices with 4 dimenions: rxc, (r+1)xc, rx(c+1)
and (r+1)x(c+1). The row (column) number of the submatrices
in the rows (columns) of the checkerboard partitioning has to be
identical.

Let n be given, where (nlz|rz is not an integer. The num-
ber of the processors m and the dimension of the submatrices,
i.e. r and c, have to be defined. Using the condition for minimal
exchange, r=l(nl2)lrz[ is computed. (The sign ][ is for the near-
est smaller integer.) The integers n1, c and n2 are computed
using respectively the dependences r=(n.,12)1t2, rc=lr., ?fld
,a1 =(n/2)1/2. Apparently, n.,.[.[r. When n=n,, optirTlal solution
is achieved if the dimension of the submatrices is rxc, and when
r=r, - i f  the dimension is (r+1)x(c+2). nlr=(r+1)c=r(c+2) is
computed. lt is clear that n.,.r'r.r'

Now the number of the processors m can be calculated.
When n<n12,  f f i= [ r .When n>n12,  f f i= [ r .  When n=nlz ,  f f i= f l r r .

In the first case, Q=r-rr of the n1 processors (q<2r) have
to compute one more xi, i.e. two unknowns x,. This means that
in q rows and q columns of the checkerboard partitioning the
number of the submatrix rows of the checkerboard partitioning
will increase with 1, and the number of the submatrix columns
- with 1 when q < r and with 2 (when q>r+1) in comparison
with submatrix of nr. Let the numbering of the unknowns in the
checkerboard partitioning be sequential, horizontal, This means
that only the columns of the matrix have to be rearranged. The
processors (q in number), that will compute two unknowns x,,
have to be one in a row and one (when q< r) ortwo (when q>r)
in a column.

ln the second case, g=[r-r of the n2 processors (q<2(r+1))
do not have to compute x,. This means that in q rows and q
columns of the checkerboard parlitioning the number of the
submatrix rows will decrease with 1, and the number of the
submatrix columns - with 1 (when q <r+1) and with 2 (when
q>r+1) in comparison with the submatrix of nr. Let the number-
ing of the unknowns in the checkerboard partitioning be sequen-
tial, horizontal. This means that only the columns of the matrix
have to be rearranged. The processors (q in number), that will
not compute x., have to be one in a row and one (when q < r+1)
or two (when q>r+1) in a column.

The difference in the computing work of the processors at
such an allocation will be as follows. The processors with di-
mension of the submatrices (r+1)xc calculate c multiplications
and c-1 sums more than the processors with dimension of the
submatrices rxc. The processors with dimension of the
submatrices rx(c+1)-r mult ipl icat ions and r sums more. The
processors with dimension of the submatrices (r+1)x(c+1) -

r+c-l multiplications and sums r+c more. With the increasing
of n the relative differences in the computation work of the
processors will decrease. There is difference in the computation
work of the processors also because of the differences in the
number of the computed x,. For each of them r-1 sums are
calculated.

The dependences of the number of exchanged words for
one branch of PA in table 7 and table 2 are actual for the
proposed allocation. However, the number of exchanged words
in PA is not this one. lt is the sum of the exchanged words in
all the parallel branches and, in this case, not all submatrices
have identical r and c.

Another allocations can be made, of course, but in the
common case, they will not be optimal.

The allocation for n=11 is shown in figure 7, and for n=14
in figure L For both cases [,=8, nr=18, [,r=12. When

n=11, [ . [ . ,r .That is why m=n.,=8. The processors Po, Pu and
P, (Q=3) compute two unknowns xi. When n=14, rrr,r. That is
why m=nr=l8. The processors Pn, P,o, P.,o and P.,, (Q=4) do not
compute x,.

Column

Row

|  2  3  4  5  6  7  8  9  t 0  l l

I  3  6  7  I  2  4  5  8  l 0  l l

t . 2 P , - X , P . -  X "

3 . 4 . 5 P 1 X. P1 -  X4 '  Xs

6 , 7 , 8 P5 -  X( , ,  X? P n -  X *

9 , r 0 ,l l P r - X o P 8  -  X r o ,  X r

Figure 7. Allocation of submatrices for n=11

Column

Row

|  2  3  4  5  6  7  8  9  l 0  l l  t 2  1 3  t 4

|  4  7  t t  1 3  2  5  8  9  t 4  3  6  l 0  t 2

1 , 2 ,  3 P r - x r P ,  - X 2 P.r - Xr

4 , 5 , 6 P4 x4 P .) X-
J

P6 * X.

7  , 8 . 9 P7 x7 P s x8 P e  - @

9 ,  t 0 P r n  -  A P , ,  -  X e P , , X , u

T I .  1 2 P r , X , , P , o a P , , X , ,

1 3 ,T4 P , u X , , P , , X , o P r ,  -  @

Figure 8. Allocation of submatrices for n=14

8. Conclusion

In this afticle the exchanging interactions in PA of type
,,allocation of submatrices with identical dimensions in proces-
sors of CS with parallel architecture" of the linear equational
system, solved through the method of sequential interations are
analysed.
' The number of transmitted and received words between
the threads (branches) of PA is calculated.

Allocations of submatrices are suggested that facilitate the
routing algorithms and minimize the number of exchanged words.

to be continued on page 39
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As the results show, the LFU-RBH outperlorms the other
algorithms.

Conclusions and Future Work
The conducted experiments show that the introduced im-

provements result very well in the behavior of the algorithm. Even
without the newly proposed MRU section the LFU-RBH achieves
very good hit ratio, in most cases better than some existing
algorithms. Running with the MRU section gives a leading posi-
tion of the LFU-RBH, compared with the experimented algo-
rithms.

The use of data pooling results in a reduced utilization of
the buffer memory. Also, the results for the different reference
strings (RSl and RS2) state that the LFU-RBH carries better the
simulation of a large area scan situation.

|\4any other experiments can be copducted to tune the
algorithm and to balance between different parameters - hash
bits, the length of RB, the number of sections, the length of MRU
section and etc.
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continuation from 15

The dimension of the submatrix is determined that defines
minimal number of exchanged words.

This article ,,hints" for future directions of work, as.
analsying the other possible allocations of the infor-

mation in the parallel branches of the given task;
analysing the exchanging interactions in pA of other

tasks in order to find optimal algorithms.
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