
Super Light Vi rtual Machine (SLVM) -
Vi rtual mach ine lor M icrocontrol lers with H i ghly
Reduced Resources

Key Words: Virtual machine; SLVM; small devices VM.

Abstract. This arlicle presents a concept of a virtual machine able to
run 0n microcontrollers with very small resources, such as PICIB
family of Microchip. The main features of the VM are real-time
processing, multilasking and memory management which meets the
needs of small embedded projects.

1. Introduction
Nowadays virtual machines technology is becoming more

and more popular. This is possible since the computer field is
developing very fast and the computers are powerful enough, so
we do not have to think how to save computer resources as we
used to do in the past. Now other features of software applica-
tions are more impodant, such as:

FSoftware has to be platform independent.
FThe time for software development must be highly reduced.
FSoftware should be easily reused for different applications.
F Easy software maintenance.
FSoftware reliability and secure execution must be increased.

The virlual machines technology gives us an easy way to
achieve these features. But all good news has its price. The
virtual machine requires much more resources in comparison
to the platform-dependent solutions. The software execution is
slower. The JIT (Just-ln-Time) compilation technique provides
a solution for this issue by intermediate conversion of the byte
code (JAVA) or lL (lntermediate Language -.NET Framework) to
native instructions. This technology gives us an optimal code for
each platform, but we still have a delay provoked by the com-
pilation process just before code execution. There are several
disadvantages caused by JIT:

FJIT requires extra resources for the intermediate code
compilat ion.

D lt can be used for Real-Time solutions only if the whole
program is compiled before its execution.

FJIT compiler is not available for all platforms.

The virtual machines technology is not widely applied in
embedded systems for two main reasons. The first is the
limited platform resources and the second is that most of the
embedded systems require strong real-time work. Actually there
are several solut ions for virtual machines implemented in
multimedia devices as PDAs and smaft phones. ln most cases

S. Rusinov. R. l lar ionov

they are reduced versions of JVM or CLR. The variety of virtual
machines for very small platforms is really small. Yes, there
are some solutions, but in most cases they require at least a
hundred Kbytes footprint and tens of Kbytes RAM. Another dis-
advantage is that in mos{ cases they are not Real-Time. We
believe one of the reasons why these solutions are not widely
used is that their architecture is taken from platforms where
much more resources are available and the application area
does not require Real-Time processing.

Another obstacle to the use of JVM and CLR in the pro-
fessional development of embedded software is that they are
using high level object-oriented programming languages, such
as C# and JAVA. Object-oriented techniques, such as inherit-
ance of objects, templates and virtualization of objects, are not
easi! accepted in small embedded projects. Normally the most
impoftant goals of the embedded systems are high perfor-
mance and reliability. The object-oriented programming lan-
guages provide an easy way for implementation of the pro-
grams, but at the expense of more resources, low performance
and dynamic memory usage which is not preferred in the small
embedded systems design (more often all required memory is
reserved statically before running the program). Forthe concept
described here the ANSI C language is chosen. lt has several
advantages. First, it is the most commonly used language for
embedded projects, and programmers who know it can easily
start to implement applications for the virtual machine. Second,
a lot of embedded projects are already implemented in C and
making them compliant with the SLVM requirements will not be
difficult.

Memory management provided by JVM and CLR (usually
it is HEAP based) is very flexible and convenient for platforms
with huge resources, but for the embedded systems it is not
suitable because:

. The memory becomes fragmented after prolonged
work.
. Some seruicesfor reducing memoryfragmenting and

garbag e collector are started by th e virtual mac h in e automatically.
The execution of these services causes a delay in the execution of
the user program (inadmissible for Real-Time projects).

. The time for execution of a parl of the user program is
not constant and it depends on the current memory state. At each
iteration the program objects can be located in different places in
the memory and, respectively, the access time to them will be
different.

technologies /l 2007inforrnation
andcontrol l l

2.Virtual Machine for Small Microcontrollers

Here we will try to find a solution to the problems de-
scribed above by introducing a new concept forvirtual machines
targeted for embedded platforms with very small resources. 0ur
concept virtual machine is called SLVM (Super Light Virtual
Machine). This task is a little bit of a challenge, taking into
consideration the requirements of such platforms. Our goal is to
avail ourselves of the advantages of viftual machines in the
specific embedded field. The main objectives of our embedded
virtual machine are listed below:

) Footprint less than BKb.
FVery low RAM usage from the VM kernel -less than 100 bytes.
F Real-Time processing.
F Multitasksupport.
FSimplified and high performance memory management.
FThe necessityformemoryseruices, such as defragmentation and
garbage collector, should be avoided.
)Cooperativeworkof native userprogram and programs stafted on
the vif tual machines should be possible.
) Develop ment of an easy mech an is m f or imp lem entation of VM API
f unctions which can be used by the user appl icat ions.
F Processin g of microcontroller interrupts.
FSupport of shared memory between userVM programs and the
native pr0gram loaded on the microcontroller.
)The viftual machine must be very easily customizable according
to the available resources and the peripheral devices available on
the microcontroller. This is very important since we must meet the
requirement forvery smallfootprint and RAM usage from the VM.
FDynamic and static loading of the user programs. When static
loading is chosen, thewhole pr0gram is loaded on microcontroller
RAM or EEPR0M. Program execution from the RAM memory is the
fastest, but we are limited to program space, since usually 1 or 2
Kb of RAM are available. Through the dynamic pr0gram loading, we
are able to execute larger programs at the expense of slower
execution, becausethe programs are loaded and executed parlicu-
larly on th e mic roco ntroller RAM instruction by instruction orf unction
byfunction.
F The viftual machine should be controlled bythe native pr0gram
loaded on the microcontroller (initialization and controlling VM tasks
priority should be implemented in it).
)TheVM should be developed in ANSI C in orderto f acilitate porting
on different plafforms.
DThe program language used for the concept virtual machine is
ANSI C. Most of the embedded projecti are using this language and
it will be easy for th e em bed ded developers to start writin g p rog rams
for the virtual machine.
FFortranslation of VM programs from ANSI C language into a SLVM-
compatible byte code, a modified SDCC cross compiler is used.

3. SLVM Design

This concept is targeted mainly for 8 bit and 1O bit
microcontrollers with minimum 8 Kb of Flash memories and
minimum 512 Kb of RAM. Such kinds of devices, for example,
are the Microchip microcontrol lers from PlC1B, plC24, dsplC

families and Atmel microcontrollers from the AVR family. This
concept can be easily applied also on 32 bit platforms with
more or equal resources. The architecture of SLVM concept is
given in figure 1.

It is clear that the byte code interpretation will be hun-
dreds t imes slower in comparison with the pefformance which
can be achieved if the program was implemented with native
instruct ions. JIT technique is not appl icable for two reasons,
First, not all microcontrollers are able to execute instructions
from the RAM, and second, JIT requires extra resources which
are not available on such types of microcontrollers, So we have
one choice - the tasks which require fast processing, l ike
interrupts processing, communications, etc, to be implemented
in the native program. lf necessary, SLVM can control (at high
level) these fast tasks by SLVM API functions. Loading of the VM
tasks on the microcontroller is a responsibility of the native
program too. SLVM provides several API functions for initial
loading of the SLVM tasks, That is why the cooperative work of
the native pr0gram and the VM programs is very impodant.

4. Memory Management

The memory management algorithm used in SLVM is very
simple. Each VM task has its own program stack. lts size is
specified statically during the compilation of the SLVM kernel.
In the beginning of the program al l global variables are defined.
They are put in the task stack first and are removed after the
program is over. In the beginning of each function al l local
variables are declared and when it is being called, they are put
in the task stack. Afterthe end of the function. all local variables

trtu
J
J
o
tr
Fz
o()
o
G
I
E

Figure 1. SLVM architecture

l 2 4 2007 irrforrnation tectrnolocries
andconlrol

SLVM TASK

ut
(J
z
ul
3
o
ut
@

z
o

:l()
UJ
x
UJ

Call funcl

Call funcl

data connected with the signaled interrupt,
which is stored in the corresponding inter-
rupt table. This value is put in the table by
the native program when an interrupt is
processed. This data can be a register value
or a state depending on the interrupt type.
The interrupts for all platforms should be
standardized in order for the SLVM byte
code to be platform independent.

Figure 3 shows the basic mecha-
nism for processing interrupts for a single
task of SLVM.

6. Shared Memory

The communication between the sepa-
rate SLVM tasks and the native program is
very important. That is why SLVM provides
a RAM area which is accessible from all
running processes on the platform. This
area is named ,,Shared Memory". lts size is
defined statically during SLVM kernel com-
pilation. The access to this memory is
performed using SLVM API functions. They

Figure 2. SLVM Memory management

declared for it are removed from the stack. Temporary variables
can be specified inside the functions. When the code execution
engine meets them, they will be put in the task stack too. They
can be removed from the stack by a special instruction. After
the end of the main function, all global variables are removed
from the task stack.

Figure 2 shows how exactly the memory manager works
with a simple program which includes three functions that are
called consecutively one from another.

5. lnterrupts Handling

Handling microcontroller intenupts is
very important for embedded systems. SLVM
provides a way of processing interrupts. Each
VM task can be registered for interrupts by
configuring a specilic interrupts table. Each
task has its own intenupt table. The configu-
ration of the table can be done by the con-
crete task or by the native program using
SLVM API functions. When an interrupt oc-
curs, the processing routine from the native
program will update all interrupt tables of all
SLVM tasks which are registered for the
current intenupt.

0n the next execution of instruction from
the task with signaled interrupt, an interrupt
handling function will be called, specified in
the corresponding interrupt table. Interrupts
can be disabled or enabled by calling SLVM
API functions. The interrupt processing func-
tions from the SLVM tasks can read some

can be called both from any running SLVM task and from the
native program. lt is possible for a part or the whole shared
memory to be located at EEPR0M if it is available on the platform.
This will provide an opportunity for data to be kept after the
platform power supply is switched off.

Figure 4 shows how the shared memory works.

RAM (task stack)

technologies 4 ?007

Figure 3. Handling CPU interrupts

l 3inforrnation
andcontrol

NATIVE
PROGRAM

Virtual,machine

MICROCONTROLLER

Figure 4. Using SLVM shared memory

7 . Byte Code Generation

It is not useful to write user programs for the SLVM directly
in byte code. That is why a modified version of the open source
cross-compiler SDCC (Small Devices C Compiler) has been
developed, which is able to generate SLVM compatible byte
code. There are several reasons why this compiler has been
chosen.

The first one is that it is open source and can be modified
easily. Secondly, it is ANSI C compiler for B bit microcontrollers,
which is exactly what we need for our concept viftual machine.
And last, it is module based and the development of a new back
end part for it is not a hard task. Figure 5 presents the main
architecture of SDCC.

8. Test Platform
The above-described concept of virtual machine is tested

on a platform based on a PlC18 microcontroller of the Microchip
company. The VM tasks are loaded on the test platform via USB
interface available on the P1C18F4455 microcontroller. The plat-
form is equipped with an alphabetic display A-1628 of the Ampire
company, which is compatible with the famous HD4470 LCD
controllers. lt is used as an output device of the platform. There
is an additionally attached JOG button on the microcontroller.

Actually this is a passive rotary encoder, which generates
composite 900 pulse sequences through which it is possible to
determine the direction of the JOG button rotation. An axial
switch is available on the JOG button too. The JOG button is used
as an input device for our test platform. The microcontroller can
communicate with another device via a USART interface avail-
able on P|C18F4455 device. SLVM Task can use this commu-
nication interface to send messages to another device (for

example PC) by calling SLVM API function. The block diagram
of the test platform is given in figure 6.

9. Results 0btained
Several tests have been performed on the specified tests

platform based on a PlC18 microcontroller.

A performance test has shown that SLVM is approximately
600 times slower than the native code execution. This is not
a surprising result, taking into consideration that, for example,
each access to the program stack requires the execution of
hundreds of native instructions.

The byte code size of SLVM compared to the native code
for an equivalent program generated with a C compiler for
PlC18 is approximately 25o/o smaller. This is normal since the
SLVM byte code is more complex than the PlC18 instructions.
For example, in SLVM the calling of a function is represented
by a single instruction in which all parameters are specified.
Another feature which reduces the byte code size is that the
internal conversion of the operand types is suppotted by the
SLVM.

According to the memory used (task stack), SLVM is
using about 30% more memory that an equivalent native pro-
gram. The reason for this issue is that the C compilers used
for PlC18 microcontrollers are optimized to use first CPU reg-
isters and then RAM memory. SLVM cannot use such kind of
optimization but in feature can be improved by introducing
additional optimizations in SDCC.

A preliminary test was performed with SLVM plafform in
order to compare it with other virtual machines. The results
obtained may not be accurate since in feature SLVM will be
expanded with additional features and the indicators Pedor-
mance, Footprint and RAM usage may become worse.

inf orrnati on teclrnolocrie s
andcon-:troll4 4 2007

- - - { f l

ANSI C source
code

Lexical analysisct)

(d F

+ F g . '
b i 6 s
" - g d)P c L c
b o s
q a
Y , Z
LL. <

The table below is a comparison of SLVM and nanoVM
virtual machines. The results for the nanoVM performance are
extracted from the WEB site:

http://wunu. har:b-aum. org/tiUnan ovm/in dex. s htmI.
(*) 300 bytes intended for task stack are included in the

specified RAM usage. The actual memory used from the SLVM
kernel is about 120 bytes.

Modules added to
SDCC compiler in
order to enable
compilation of
SLVM compatible
byte code.

Figure 5. SDCC architecture

(**) The performance tests cannot be precise, since they
are performed on different platforms, based on different
microcontrollers. Accurate results can be read only in case both
concepts are tested on the same hardware with equivalent test
programs.

The footprint of SLVM kernel is a little bit smaller than
nanoVM. The differences are more evident in the RAM usage.

Optimi2ation Of the,,
intermediate code for

SLVM
(at instruction level only)

Code
generation for
btnei'systims

Generation of byte
code for SLVM

{l
It

tly
j ; l

*ii
i$

Itb"

technologies { ?002 l 5
inforrnation
andcontrol

Figure 6. SLVM test platform

SLVM kernel needs only 120 bytes of RAM. The size of the tasks
stack depends on the complexity of the running programs and
can be configured during SLVM kernel compilation. Features
like multitasking, real-time work, and handling CPU interrupts
give advantage to SLVM concept.

SLVM has advantages in the embedded area, since it is
designed to work on real-time embedded systems; while nanoVM

users. ln other words, software upgrade will
be easy.

SLVM is a complete solution for PLC
(Programmable Logic Controller) products,
With appropriate SLVM APlfunctions, the user
can configure and control different kinds of
machines and processes. Now only ANSI C
compiler is available for SLVM compatible
byte code. For users who are not experi-
enced in C programming it will be difficult to
configure PLC based on SLVM, A graphic-
based language will be more comfortable for
PLC solutions.

11 . Acronyms and Abbreviations

SLVM - Super Light Virtual Machine
API -Application Programming Interface
PLC - Program Logical Controller
JVM - JAVA Virtual Machine
CLR - Common Language Runtime
CPU - Central Processing Unit
VM - Virtual Machine
USART - Universal Synchronous Asynchronous Receiver
Transmitter
SDCC - Small Device C Compiler
EEPR)M - Electrically Erasable Programmable Read-only
Memory
RAM - Random Access Memory
J lT - Just-in-time compilation
PDA - Personal Digital Assistant
PWM - Pulse-width modulation
ADC - Analog-to-Digital Converter
CCP - Capture/Compare/PWM module
USB - Universal Serial Bus
CAN - Controller Area Network
SPI - Serial Peripheral Intedace
l! C - lnter-lntegrated Circuit
LPT - Line Print Terminal

Ref erences

1. Veners, Bil l. Inside the Java Viftual Machine. McGraw-Hill Press,
2000, tsBN 978-0071350938.
2. Blunden, Bil l. Virtual Machines Design and lmplemetation in C/C++.
Wordware Publishing, 2002, ISBN 978-1556229039.
3. Smith Jim, Nair Ravi. Virtual Machines: Versati le Platforms for
Systems and Processes. Morgan Kaufmann, 2005, ISBN 978-
1 5586091 05 .

to he continued on page 24

Feature nanoVM SL\A,I

8 tit MCsupport Yes Yes

l6 bit MC srpportNo No

32 bit MCsrpport No Yes

Real-Time No Yes

Footprint 8K 7r4K

RAMmage 68.$&?:r,i420*

Multitask No Yes
Source lan$nge JAVA ANS C

Handling CPU
interrtpts No Yes
Performance **

(for lMHz in

IWPS) 0.002s 0,0032

architecture is taken di-
rectly from JAVA where
the requirements are dif-
ferent.

10. SLVM Solu-
tions

A wide range of in-
telligent products can be
created with SLVM. Nowa-
days product platforms
solutions are becoming
increasingly popular. lf a

company has ready product platforms, it can customize them
easily to end products. In this way, the time for new product
development will be shorter and its quality and reliability will
improve, since an already existing product platform (optimized
and well tested) is being customized in order to satisfy specific
customer requirements. SLVM is very suitable for customization
of product platforms.

For example, if a company is producing car alarm sys-
tems, and has a platform based 0n some microcontroller, the
use of SLVM can provide a wide range of products with a different
number of security zones, logic and peripheries by simply modi-
fying SLVM tasks working at a higher level. So if you have well-
designed product platforms, using SLVM can easily provide a
wide range of products based on this platform. They will be more
reliable because the same firmware will be loaded on them and
only the SLVM tasks will be different. lf necessary, the byte code
of the SLVM task can be updated without much difficulty by the

irrforrnation teclrnolocries
andcoritrol

l 6 rl ?007

t

,,-{Id

0f
CA,

. Reno: adds modification to Fast Recovery'

. New-Reno: enhanced Reno TCP using a modified version

of Fast Recovery.
The comparative study of the above-mentioned algorithms

is done. The advantages of the Reno and New Reno algorithms

are proved. The simulation results show that when the probability

for packet loss is high the New Reno one is the most effective

because it has very low probability of retransmission timeouts'
The simulation results will help experts make well-in-

formed decisions on how to manage an Ethernet network and

fine-tune the network parameters'

Ref erences
1. Douglas, c. Internetworking with TCP/IP (2). Prentice-Hall, Inc,, 1991,
2. Dou[hs, C, Intemetworking with TCPiIP (3), Prentice-Hall, Inc., 1991,
3. Eweilid, A. Reliable Communication over Wireless Links, in Nordic
Radio Symp. (NRS). Sweden, Apr. 2001.
4. Fall, t<., S. RoyO.simulation-based Comparisons of Tahoe, Reno, and
SACK TCP. - Computer Communication Review,26 (3), July '1996,

5-21 .
5. Firoiu, v., M. Borden. A study of Active Queue Management for

Congestion Control.Proc, IEEE |NFOC0M, March 2000'
6. Jicobson, V. Congestion Avoidance and Control, - Computer Com-
munication Review, 1B (4), August 1988, 314-329.
7. Jacobson, V. Congestion Avoidance and control, in Proceedings
SIGC0MM '88 Workshop. ACM SIGC0MM, ACM Press, Stanford,
1988. 314-329.
8. Mo, J. and J. Walrand. Fair End-to-end window-based congestion
Control. - IEEE/ACM Trans. Netvvorking, B, 5 (Oct' 2000), 556-567'
g. Morris, R. scalable TCP Congestion control. IEEE |NF0COM 2000, Tel
Aviv.
10. Padhye, J., S. Floyd.0n Inferring TCP Behavior' - Computer Com-
munications Review ACM-SIGC)MM, 31, August 2001'

1 1, Schilke, A. TCP over Satellite Links. Seminar Broadband Networking
Technology, TU Berlin, 1997.
12. Stevens, W, TCP Slow starl, congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms. RFC 200'1, 1999,
http ://wvwv.f aqs,org/r1cs/tJc 2 0 0 1 .html.
13' . Wang, R,, et a l l . TCP with Sender-s ide Intel l igence to Handle
Dynamic, Large, Leaky Pipes . - IEEE Journal on selected Areas in

Communications, 23 (2), 2005, 235-248,

Manuscript received on 14.02.2008

Georgi Kirov received his M. S. in Computer
Technologies from the Technical University of
Sofia, Bulgaria. He obtained his PhD degree in
the fietd of the lntelligent Technologies and
Computer Networks from the lnstitute of Com'
puter and Communication Systems at the Bul'
garian Academy of Sciences. Dr. Kirov is cur'
rently a research fellow at the Department of
Knowledge Based ControlSysfems, lnstifttte of
Control and System Researches of the Bulgar-
ian Academy of Sciences (BAS) wittt publica'
tions in the fields of intelligent technologies in
computer simulation, system researches and
communic atio n networks.

eontacts:
tnstitute of Control and System Research,

Bulgarian AcademY of Sciences,
Acad. G. Bonchev str., bl. 2, P.O.Box 79,

1 113 Sofia
e-mail: kirovoicsr.bas.b g

continuation froml6

4, Mac,Ronald. Writing Compilers and Interpreters. Wiley, 1996, ISBN
978-0471 1 1 3539.
5. Louden, Kenneth C. Compiler Construction: Principles and Practice.
Course Technology, 1997, ISBN 978-0534939724.
6. Aho, Alfred V. Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools (2nd Edition)' Addison
Wesley, 2006, ISBN 978-0321486813.
7. Muchnick, Steven. Advanced Compiler Design and lmplementation.
Morgan Kaufmann, 1997, ISBN: 978-1558603202.
8. Appel , Andrew W., Maia Ginsburg. Modern Compi ler lmplemen-
tation in C. Cambridge University Press, 2004, ISBN 978-0521607650.
9, Cooper,Kei th, L inda Torczon. Engineer ing a Compi ler . Morgatt
Kaufmann, 2003, ISBN 978-1 558606982.
10 . Cra ig , la in D. V i r tua l Mach ines . Spr inger , 2005, ISBN 978-
1 852339692,
1 1 . L i n d h o l m T i m , F r a n k Y e l l i n . J a v a (T M) V i r t u a l M a c h i n e
Specification.The (2nd Edition). Prentice Hall PTR, 1999, ISBN 978-
0201432947.

Manuscript received on 13.1 2.2007

Svetozar Petrov Businov born in 1980. 0b'
tained M. Sc. Degree in Computer Systems and
Technologies in 2007 at Technical University of
Gabrovo. He worked at Senior R&D Engineer in
Johnson Controls lnc. His main research inter'
ests comprise the area of software architecfure,
softvvare engineering, software reliabiltty and
embedded and real time softvvare systems.

Contacts:
e-mail: svetozar rusinov@nail.bg

Baycho Todorov llarionov (born 1957) rs Assoc.
Prof. in department Computer systems and tech'
nologies of Technical University of Gabrovo. His
research interests include Computer Periph-
erals, Multimedia Systems, Digital Circuit Devices
& Microprocessors Devices.

Contacts:
e-mail: ilarotugab.bg

irrforrnation technolocries
andcon--trol?4 zl 2007

