
4 2011 9information technologies
and control

Volterra Model Predictive Control
of  Lyophilization Plant:
A Newton Optimization Method Approach

Y. Todorov, S. Ahmed, M. Petrov

Key words: Fuzzy-neural models; Newton method; Predictive control;
Lyophilization.

Abstract. The lyophilization process is widely used by pharmaceutical
and food industries preparing stable dried medications and important
biopreparations. Recent advances in lyophilization technology impose
the application of innovative strategies for reliable determination of the
current process conditions and control of the drying cycles. This
paper describes a method for designing a nonlinear model predictive
controller to be used in a lyophilization plant. The controller is based
on a truncated fuzzy-neural Volterra predictive model and a simplified
Newton method as an optimization algorithm. The proposed approach
is studied to control the product temperature in a lyophilization plant.
Several simulation experiments have been performed in to demon-
strate the efficiency of  the proposed approach. The obtained results
are compared with the classical Gradient optimization procedure.

1. Introduction

Nearly 70 years ago, lyophilization began to change the
way scientists developed food products and drugs. Since then,
the use of lyophilization has resolved several problems in  food
and pharmaceutical industries. However, from a process point
of view, lyophilization also has created some challenges.

 Early uses of freeze-drying involved the naturally occur-
ring processes of freezing and dehydration. For example, resi-
dents of the Andes recognized the phenomenon and used it to
preserve vegetables. Other references cite the industrial appli-
cation of freeze-drying in the 1920s, forecasting it as a means
of preserving grain crops and other foods on a large scale. The
basic process has been used at least since the 1930s for
commercial purposes. Several theoretical applications have also
been recognized, including military purposes for the develop-
ment of offensive weapons as an adjunct mechanism for deliv-
ering stable, viable microorganisms or chemicals as well as its
use in the field of medical treatment [1].

Lyophilization is nearly always investigated as an alterna-
tive to a frozen product for extended clinical trials and for com-
mercialization. The process can reduce or eliminate the need for
difficult storage and handling arrangements and may provide a
pathway to a drug product with  favourable shelf life.

Lyophilization is a drying process in which the solvent and/
or the suspension medium is crystallized at low temperatures
and thereafter sublimed from the solid state directly into the
vapour phase. Freeze-drying is mostly done with water as a
solvent. From the phase diagram of water it can be seen the area
in which this transfer from solid to vapour is possible. The drying
transforms the ice or water in an amorphous phase into vapour.
The goal of lyophilization is to produce a substance with good
shelf stability unchanged after reconstitution [2].

On the other hand, the lyophilized products are very expen-
sive due to the high energy demands to maintain vacuum and
refrigeration processes and  the latent heat for sublimation, as
well. For this purpose, it is needed to be used  improved control
strategies based on intelligent control methods, such as Model
Predictive Control.

 The model Predictive Control (MPC) has received a strong
position when it comes to industrially implemented advanced
control methodologies [3-4]. The main reason for this is the
intuitive way MPC incorporates the process model in the control-
ler design. In many problems relevant to the process control
field today, the plant under control shows a strongly nonlinear
behaviour. As a means to handle this, the Nonlinear MPC (NMPC)
is an often used method. The NMPC, simply put, is model
predictive control, where a nonlinear process model is used for
prediction purposes, as opposed to a linear model for basic MPC
[5-7]. Recently, several researchers report different applications
of NMPC on lyophilization plants [8-10].

Most of industrial processes are nonlinear and the system
nonlinearity cannot be ignored in practice. This has stimulated
work in synthesizing MPC for use with a nonlinear analytical
Volterra model and in Volterra series modelling. The main criti-
cism in using Volterra series as nonlinear models lies in its
large number of parameters needed to represent the kernels
[11]. For this reason, in most practical solutions some structural
restrictions to Volterra type models are imposed in order to
attend a better model accuracy using a small number of param-
eters and to facilitate the identification procedures in notion to
the computational effort. It has been shown, that any time-
invariant nonlinear system can be approximated by a finite Volterra
series to an arbitrary precision. Volterra models have the prop-
erty to be linear in their parameters, i.e. the coefficients of their
kernels, so that standard parameter estimation methods can be
used [12].

In this paper, the proposed Volterra Fuzzy-Neural (VFN)
model is implemented in a MPC control scheme by using a
simple fuzzy-neural approach and theNewton method as an
optimization procedure. The efficiency of the presented approach
is proved by simulation experiments in Matlab & Simulink en-
vironment to control the  product temperature in a lyophilization
plant. The results obtained during the simulation experiment are
compared to the case when a standard gradient optimization
procedure is used.

2. Design of Fuzzy-neural Volterra Model

Volterra models are widely used to model nonlinear pro-
cesses. Since, with the increasing level of model nonlinearity,
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the number of its parameters increases sharply, in practice
mostly used are truncated Volterra models [13]. In this ap-
proach, the fuzzy-neural implementation of a second order Volterra
model is considered. As is well known, a wide class of nonlinear
dynamic systems can be described in discrete time by the NARX
(Nonlinear AutoregRessive model with eXogenous inputs) input-
output model. The model used in this paper is also taken in NARX
type:
(1)  y(k)=f

y
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The unknown nonlinear functions fy can be approximated
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Finally, the actual implementations of the relevant fuzzy

predictions have been obtained by appropriately shifting the in-
puts of the model. Therefore, a sequential algorithm based on the
knowledge of current values of the regression vector, along with
the fuzzy inference, computes:
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where     is the normalized value of the membership function
degree μyi upon the i-th activated fuzzy rule which can be ex-
pressed as
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where N is the number of the activated rules. Fuzzy implication
in the i-th rule can be realized by means of product composition
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2.1 Fuzzy-neural Model Identification

The identification procedure involves structure identifica-
tion of the process and estimation of the unknown parameters.

μ
yi

The structure of the neuro-fuzzy model depends on the number
of membership functions, their shape and the coefficients into
the functions f

y
 in the consequent part of the rules (2). The task

of model identification is to determine both groups of param-
eters of the Gaussian membership functions in the rule premise
part and the linear parameters in the rule consequent part of the
local models. A simplified fuzzy-neural approach is applied in
this work, because of its simplicity and recurrent implementa-
tion of a tuning procedure for on-line applications [14].

The learning algorithm for the fuzzy-neural model is based
on minimization of an instant error measurement function be-
tween the real plant output and the process output, calculated
by the fuzzy-neural model

(8)   2/))(ˆ)(()( 2kykykE −=
where y(k) denotes the measured real plant output and    (k)ŷ

is calculated by the fuzzy-neural network. The algorithm per-
forms two steps gradient learning procedure. Assuming that βij
is an adjustable ith coefficient for the Sugeno function f

y
 into

the jth activated rule (2) as a connection in the output neuron,
the general parameter learning rule for the consequent
parameters is
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After calculating the partial derivatives, the final recurrent
predictions for each adjustable coefficient βij(a(i), b(i) or c(i))
and the free coefficient are obtained by the following equations:
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The output error E can be used back directly to the input
layer, where there are the premise adjustable parameters (cen-
ter - Ω

ij
 and the deviation - σ

ij
 of a Gaussian fuzzy set). The error

E is propagated through the links composed by the corre-
sponded membership degrees, where the link weights are the
unit. Hence, the learning rule for the second group adjustable
parameters in the input layer can be done by the same learning
rule:
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3. Basics of the Applied Model

Predictive Control Strategy

 During the past years, the Model Predictive Control has
received a lot of attention in the control theory and ap-
plications. A model of the controlled process provides
the forecast of the process output signal and the control
signal is calculated in every step in a way that the
difference between the reference and the output signal is
minimized. The good system performance depends on
the model accuracy and parameters in the objective
function. NMPC as it was applied with the VFN process
model can be described in general by a block diagram,

as it is depicted in figure 1.Figure 1. Block diagram of the proposed MPC system
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The selection of a minimization algorithm is a crucial
issue in MPC, since this feature affects the computational effi-
ciency of the control loop. Using the Newton method as an
optimization algorithm reduces the iterations to convergence in
contrast to other techniques. The main cost of the Newton algo-
rithm is the calculation of the Hessian matrix, but even with this
overhead the low iteration numbers make the Newton  algorithm
faster for real time control [15]. As is well known, the Newton
method is based on a quadratic approximation of an objective
function as described:

(14)                                              .

This requires the evaluation of the Hessian and the gradi-
ent of the objective function. To implement the Newton method
as an optimization algorithm the following recurrent equations
are used:
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where H is the Hessian matrix with the second order partial
derivatives as elements. An important principle in the Newton
method is that the cost function must be quadratic one and the
Hessian matrix must be positive by definite.

Using the VFN model, the Optimization Algorithm com-
putes the future control actions at each sampling period, by
minimizing the following cost function:

(17)

where  is the predicted model output, r is the reference and
u is the control action. The tuning parameters of the predictive
controller are: N

1
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2
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u
 and ρ. N

1
 is the minimum prediction

horizon, N
2
 is the maximum prediction horizon, N

u
 is the control

horizon and ρ is the weighting factor penalizing changes in the
control actions. When the criterion function is a quadratic one
and there are no constraints on the control action, the cost
function can also be minimized analytically. If the criterion J is
minimized with respect to the future control actions, then their
optimal values can be calculated by applying the condition
∇J(k,U(k))= 0, where each element of the gradient vector can
be calculated using the following equation:

(18)

where R(k) is the system reference vector, 

 

 is the vector

of the predicted model output and U(k) is the vector of the
control actions.

Since, the VFN model consists of a set of local sub
models an explicit analytic solution of the above optimization
problem can be obtained. A simplified method for calculation of
the elements of ∇J(k,U(k) based on the VFN model, is pro-
posed here. Hence, according to f

y
 function (3) the unknown

elements in (18) can be evaluated as follows:
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Since, Δu(k) =  u(k) - u(k-1) then ∂Û/∂U  represents a
matrix with zeroes and ones. As Newton method imposes the
implementation of the second order derivative of the cost func-
tion we can rewrite
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The Newton algorithm then iterates using the following
expression:

 

)1(

)(

)()1(

)(

)(

)(

)(

)(

)(ˆ

)(

)1(ˆ )(

1

)(
1,2

2
)(

1,1

)(
1

)(
1

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
−∂

+

+
∂

∂+

+
∂
∂

+
∂
∂

=
∂

+∂
∑

=
k

ku

kuku
c

ku

ku
c

ku

ku
b

ku

ky
a

ku

ky i
y

N

i

i

i

ii

μ

 

)2(

)(

)1()(

)(

)(

)(

)(

)(

)(ˆ

)(

)1(ˆ

)(

)2(ˆ )(

1

)(
1,2

2
)(

2,2
)(

1

)(
2

)(
1

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
+∂+

+
∂
∂+

∂
∂+

+
∂
∂+

∂
+∂

=
∂

+∂
∑

=
k

ku

kuku
c

ku

ku
c

ku

ku
b

ku

ky
a

ku

ky
a

ku

ky i
y

N

i

i

ii

ii

μ

 

)(

)(

)2(ˆ

)(

)1(ˆ

)(

)(ˆ
2

1 2)(
2

2)(
1

2 Nk

ku

Nky
a

ku

Nky
a

ku

Nky
y

N

i i

i

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
−+∂

+

+
∂

−+∂

=
∂

+∂
∑

=

μ

 [ ] ⎥
⎦

⎤
⎢
⎣

⎡

∂
∂+

∂
∂−−=

∂
∂

)(

))(ˆ
)(2

)(

)(ˆ
)(ˆ)(2

)(

))(,(

kU

kU
kU

kU

kY
kYkR

ku

kUkJ TT
ρ

 
∑∑
==

−+Δ++−+=
Nu

Ni

N

Ni

ikuikyikrkukJ
1

2

1

   )1( ))(ˆ)(())(,( 22 ρ

 
⎥
⎦

⎤
⎢
⎣

⎡

−+∂
∂

∂
∂=∇

)1(

))(,(
,....,

)(

))(,(
))(,(

2

2

2

2
2

uNku

kUkJ

ku

kUkJ
kUkJ

 
[ ]

( )
 

)(

))(ˆ
)(2 

)(

))(ˆ
2

)(

)(ˆ
)()(2

)(

)ˆ
2

)(

))(,(

2

2
2

2

2
2

2

2

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂
∂

+
∂
∂

−−⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛

∂
∂

=
∂

∂

kU

kU
kU

kU

kU

kU

kY
kYkR

kU

kY

ku

kUkJ

Tρρ

 )()(2)()()()( )()(
2

1
)()()(

~ kkTkkkТk xxPxxxPxPxP Δ∇+Δ∇+=



4  201112 information technologies
and control

(27)  

 
)(

)(

))(,(

)(

))(,(
2

2

kU
kU

kUkJ

kU

kUkJ Δ
∂

∂=
∂

∂− .

Using the last notation a simple analytical solution of the
above optimization problem can be found iterating along the
control horizon:

(28) 
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The whole control sequence is calculated consequently
starting from the last element of the control horizon and then only
the first element of the control vector is sent to the plant.

4. Simulation Experiments

4.1. Experimental plant description

During the last years, extensive efforts by industry and
research have been made to predict and optimize the course of
the lyophilization cycles in order to control the quality of the
product and to minimize the costs [16-17]. In figure 2 a sim-
plified diagram of the main components of a lyophilization plant
is shown. The plant consists particularly of a drying chamber (1);
temperature controlled shelves (2), a condenser (3) and a vacuum

pump (4). The major purposes of the shelves are to cool and
freeze or to supply heat to the product. This is supported by the
shelves heater and refrigeration system (5). On those shelves
the product is placed (6). The chamber is isolated from the
condenser by the valve (7). The vacuum system is placed after
the condenser. When the product is entirely frozen, the chamber
is evacuated in order to increase the partial vapour water pres-
sure difference between the frozen ice zone and the chamber.

The shelf heating system starts to provide enthalpy for the
sublimation process. The sublimation takes place at a moving
ice front, which proceeds from the top of the frozen material
downwards. The stage in which the remaining water content is
further reduced is called secondary drying, which takes place at
higher temperature. In this contribution only the first stage of the
drying process called primary drying is assumed.

The considered plant is a small scale lyophilization appa-
ratus, for drying of 50 vials filled with glycine in water adjusted
to pH 3, with hydrochloric acid. The schematic diagram in
figure 2 depicts the sublimation process occurring at the
interface which is located at a distance x from the vial bottom.
During sublimation the interface moves in a negative direction,
while the product height remains constant.

4.2. Simulation experiments

Simulation experiments in Matlab & Simulink environ-
ments to control the heating shelves temperature depending of
the temperature inside the frozen product layer are made.
According to this circumstance, the system is nonlinear and non
stationary and this is because during the sublimation process
the properties of the product are changed.

The following initial conditions for simulation experiments
are assumed; N

1
=1, N

2
=3, N

u
=3, system reference r = 255 K,

initial shelf temperature, TSin
 = 228 K, initial thickness of the

front  x = 0.0023 m, thickness of the product  L = 0.003 m. In
the primary drying stage it is required to maintain the shelf
temperature about 298 K, until the product is dried. This circum-
stance requires about 45 minutes of time for the primary drying
stage of the process.

The aim of the control system is to reduce the system
error between the reference product temperature and the current
product temperature at each sampling period, by calculating an
appropriate control action, which will drive the drying process as
fast as possible. The physical explanation of this is minimizing
the energy for the drying process, as computing the optimized

Figure 2. Schematic diagram of a simplified lyophilization plant
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values for the heating shelves temperatures. According to this a
criterion is defined in which the efficiency parameter Eef repre-
sents a notion between the cumulative energy which is mini-
mized and the energy provided for the heating process [14].

(31)  
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where Ts - temperature of the heating shelves, Tr - reference
product temperature, Tp - product temperature. As a reference
criterion for the process it is also taken the settling time of the
process (tp). Evaluation of the model performance is demon-
strated by the Root Mean Squared Error (RMSE) and the
Root Squared Error (RSE) plots of the model.

Comparative experiments with the proposed VFN model
using the Newton method as optimization algorithm and the
standard Gradient optimization algorithm as reference, for two
different values of the penalty term ρ, are made. The validated
plant model used as the plant process for simulation in this
study was derived from the physical laws of heat and mass
transfer for a typical laboratory plant. The temperature versus
time profile for the product and heating shelf temperatures for
the representative vial are presented in figure 3.

The primary drying phase for the cycle was started by
increasing the shelf temperature from 228 K. The initial drop of
the product temperature represents the sudden loss of heat due

Figure 3. Product and shelf temperatures using the Newton and Gradient optimization methods

to sublimation and indicates the start of the primary drying, as
well. After all of the unbound water has sublimated, the loss of
heat due to sublimation vanishes and the enthalpy input from the
shelf causes a sharp elevation of the product temperature. The
VFN model responses of the RMSE and RSE are shown in
figure 5. In figure 4 the decrease of the frozen layer interface x
is demonstrated.

As it can be seen from the presented results, the realiza-
tion of a predictive controller on the basis of fuzzy-neural Volterra
model requires the statement of considerable amount of fuzzy
rules. This leads to improved dynamic qualities of the model,
accurate identification and approximation of the nonlinear effects
related to the occurring drying phenomena. On the other hand,
the large amount of fuzzy rules increase the number of param-
eters under adaptation during the learning procedure, which

Figure 4. Interface position using the the Newton and Gradient optimization methods
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affects the computational effort needed for identification and

optimization purposes.

A major advantage of the proposed model is the ability to

model nonlinear processes using nonlinear functions in contrast

to the classical structure of many Takagi-Sugeno model repre-

sentations. The structure of the model is flexible and the order

of the model nonlinear kernels can be set of power n, depending

on the complexity of the identification task.

Generally, the major industrial process can be represented

by a model of n=2. For this purpose, in this contribution the

designed model is truncated, which provides an acceptable trade

off between the computational burden and the modelling accu-

racy. Using a model of higher order will significantly

increase the number of the identified parameters in the conse-

quent part of the rules.

The simulation experiments show the advantages of the

proposed predictive controller based on an analytical Newton like

optimization procedure. As expected the Newton procedure in-

creases the convergence which minimizes the drying time in

contrast to the Gradient method. Also, the major system param-

eters are under its maximum bounds and the process is driven

into the acceptable region of operation. On the other hand this

positive effect is compensated by slightly increased temperature

of the heating shelves and the Eef parameter.

Conclusions

A method for designing a nonlinear Model Predictive Con-

troller was presented in this paper. The controller is based on

a truncated Volterra fuzzy-neural model and Newton method as

an optimization algorithm. The proposed approach was used to

control the product temperature in a lyophilization plant. The

simulation experiments show the efficiency of the proposed control

strategy. The product temperature in the frozen region rises

according to lyophilization cycle regime requirements and con-

straints. The proposed nonlinear Volterra fuzzy-neural model

ensures an accurate identification of the nonlinear lyophilization

plant and its application along with the Newton method as op-

timization procedure ensures the reduction of the the drying time

in contrast to classical Gradient descent procedure.
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Figure 5. RMSE and RSE responses of the model using the Newton and Gradient optimization methods
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