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Abstract. Securities evaluation criteria are presented to select the
assets for portfolio diversification. Modifications of the Sharpe coef-
ficient are proposed, based on the new introduced risk measures. The
effect of diversification is shown on the base of the introduced
coefficients. The proposed selection criteria are evaluated according to
the efficiency of a composed portfolio, measured by the Sharpe
coefficient. Comparative analysis of the introduced securities evaluation
criteria is held. Case study based on the Stock Exchange ,Russian
Trading System*“ is performed.

1. Introduction

Investment portfolio analysis recently has become widely
used due to the securities market development as is demon-
strated by many publications on this subject (see e.g. [1-4]).
One of the most discussed problems is the assets selection for
portfolio diversification. There are different criteria developed to
evaluate the securities to be included in a portfolio. From the
portfolio diversification point the risk of a portfolio is reduced
when non-correlated assets are added [6]. However in practice
it can be difficult to select perfectly non-correlated assets [11].
The Sharpe coefficient (reward-to-variability ratio) and the Treynor
coefficient (reward-to-volatility ratio) can be used to evaluate the
securities to be included into a portfolio [11,12]. One of the
discussed problems is the way to measure the risk or volatility
of a security.

The Treynor coefficient uses stock betas from the CAPM
to evaluate systematic risk, i.e. the return risk associated with
market movements [7]. Even though being widely criticized, the
beta-method is often used in financial analysis, and stood nu-
merous empirical tests. When returns and factors are jointly
normally distributed and independent over time, the classical
method provides the most efficient unbiased estimator of factor
risk premiums in linear models [14]. However many empirical
studies report important beta variation over time. A standard
approach to modeling and estimating time-varying betas has not
yet emerged. Especially betas are biased, inconsistent, and
inefficient in emerging markets, as has been shown in [13].
Given the fact that unstable betas might have serious conse-
quences on the efficiency of beta based risk evaluations, there
is a strong need for a better understanding of stock betas [10].

The Sharpe coefficient is a fundamental performance
measure. Nevertheless, there have been some improvements of
this ratio. The classical Sharpe ratio is based on normal distri-
bution mean-variance analysis. When distributions are nonnormal
or have fat tails, the performance rankings are not accurate. Two
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principal approaches to generalize the Sharpe ratio can be dis-
tinguished.

One strand of the literature is based on the use of utility
functions. Hodges generalizes Sharpe ratio applying the expo-
nential utility function with Arrow-Pratt risk-aversion index, which
is constant for exponential utility independent of wealth [18].
Horges’ reason for choosing exponential utility is the assumption
of its equivalency to quadratic utility and mean-variance analy-
Sis.

Another generalized Sharpe measure is based on the fam-
ily of negative power utility functions, also called constant rela-
tive risk aversion [18]. ‘Gama’-generalized Sharpe ratio depends
on the risk-aversion parameter and the initial wealth, so it does
not have a unique value, as does the ordinary Sharpe ratio or
Horges’ generalized Sharpe ratio.

One of the recent approaches is the use of utility functions
with hyperbolic absolute risk aversion (HARA). One of the strong
points of this approach is that such utility functions allow the
derivation of a generalized two-funds separation theorem thus
leading to sample capital market evaluation formulas, and to the
generalization of the Sharpe ratio and the Traynor ratio as well
[9].

Nevertheless, utility function approaches, though impor-
tant, are rather subjective. The degree of investor’s risk-aversion
and the selection of utility function remain discussed questions.

Another strand of literature aims at applying risk measures
which are based on downside risk considerations. Ziemba and
Schwartz propose to find the downside standard deviation, and
the total variance is twice the downside variance [18]. Thus, a
superior investor is not penalized for good performance. Ziemba
calls the obtained performance ratio ‘the symmetric downside
risk Sharpe measure’.

Another downside risk measure is Value-at-Risk (VaR), a
widely used concept for quantifying the risk of portfolios. VaR has
received an official recognition after having been recommended
by various regulating financial institutions as a portfolio risk-
measurement tool. Thus, The Bank for International Settlements
(BIS) recommends VaR method for defining the Market Risk
Capital of a bank [17]. Moreover since the publication of the

market risk measurement system RiskMetrics™ of J.P.
Morgan in 1994 VaR has gained increasing acceptance and can
now be considered as the industry’s standard tool to measure
market risks [8].

There are two main groups of models to calculate VaR.
Parametric models such as delta-normal are based on statisti-
cal parameters such as the mean and the standard deviation of
the risk factor distribution. Non-parametric models are simula-
tions or historical models [8].

The aim of this paper is to propose new securities selec-
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tion criteria based on the Sharpe coefficient and to evaluate their
efficiency. We modify the Sharpe coefficient using the new intro-

duced (E —VaR)- and (R — R,,, )-risk measures. The new

measures are based on VaR- and R, -values, which refer to

the downside measures. VaR is calculated using method of
historical modeling considering inconsistency of the parametric
VaR-models with the Russian stock market, as has been shown
in [19].

The paper is organized as follows. The techniques of
diversification as well as the Sharpe coefficient and the Treynor
coefficient are discussed in the second section. Modifications of
the Sharpe coefficient, based on the new introduced risk mea-
sures, are presented in the third section. Securities selection
criteria are discussed in the forth section in case study, which
is based on the Stock Exchange ,Russian Trading System*. The
proposed securities evaluation criteria are compared from the
point of view of the portfolio performance, measured by the
Sharpe coefficient. The obtained results are discussed in the
conclusion.

low

2. Theoretical Preliminaries

2.1. Portfolio Diversification Techniques

Portfolios with only a few assets may be subject to a high
degree of risk represented by a relatively large variance of the
return. As a general rule, the variance of the return of a portfolio
can be reduced by including additional assets in the portfolio, a
process referred to as diversification. The main techniques of
diversification include blind diversification, the Markowitz diver-
sification and the inclusion of a risk-free asset (see e.g. [2,6]).

Blind diversification means construction of a portfolio by

taking equal portions of all n assets. That is, the weight w, of
the asset iis w, =1/n, j =1,n . The overall expected return

R, of this portfolio is [6]:

1 leie e
0 R, = 3R
n i
where E is the mean return of asset i, j=1n.

The portfolio variance O’i is defined as:

n 1 n
2ich 2 2L P
e kA X
=] i=l

where o is the variance of the asset j i =1,n.

In the definition (2) it is assumed that the individual re-
turns are uncorrelated. The variance of a portfolio decreases
rapidly as n increases. But in general, such diversification may
reduce the overall expected return while the decrease of the
variance is small. So, blind diversification without understanding

of its influence on both the mean and the variance of return is
not necessarily desirable.

The mean-variance approach developed by H. Markowitz
makes the trade-offs between mean and variance explicit. The
Markowitz Model is based on the theory of covariance between
the assets.

The expected return Rp and the variance of the return

0'12, of a portfolio of n assets are obtained as:

B).R, =D, W R
i=1
and
2
4. = ZWi w, - Covy
Y
where Cov,j is the covariance of the assets j and j.

If the assets ‘are uncorrelated, the variance of a portfolio
can be made very small. If they are positively correlated, there
is likely to be a lower limit to the variance that can be achieved
[6].

The effect of a diversification may be seen in figure 1,

which presents the set of efficient portfolios for different corre-
lation values for a portfolio of two assets [4].

Figure 1. Standard-deviation — return diagram
for different correlation values

The Markowitz model was further developed by the inclu-
sion of a risk-free asset into a portfolio. According to the ap-
proach developed by J. Tobin, the portfolio is considered as a
combination of a risky portfolio and a risk-free asset [7].

A risk-free asset has a deterministic return R_/. (known

with certainty) and therefore has a zero variance. In other words,
a risk-free asset is a pure interest-bearing instrument. Its inclu-
sion in a portfolio corresponds to lending or borrowing cash at

the risk-free retun R, [6].
Let w, denote the weight of a risk-free asset. Then the

weight of the risky partis (1 —w,) . Denote the variance of a
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risky partas O ? and the mean return as R . Then the portfolio
parameters are described as follows:

6) R, =w,R, +(1-w,)R;

6 o) =01-w,)’0’.

This approach is used in The One-Fund Theorem, accord-
ing to which ,there is a single fund F of risky assets such that
any efficient portfolio can be constructed as a combination of the
fund Fand the risk-free asset” [6]. So, the investor has to decide
in which proportion his investments will be distributed between
the risky part (fund F) and a risk-free asset.

The Capital Asset Pricing Model defines the Market port-
folio to be such fund F. However, the Market portfolio still re-
mains an object of numerous discussions [7]. As a benchmark
portfolio the financial analysts often use market indices (for
example, S&P 500, DJIA), which evaluate the mean-market return
[3]. So the investor has to decide which assets will be included
into the risky part of his portfolio.

2.2. Reward-to-Volatility and Reward-to-
Variability Ratio

As has been shown, diversification is more efficient when
non-correlated assets are added. However, for a given asset
being at the same time positively or negatively, strongly or
weakly correlated with other assets, it is difficult to select per-
fectly non-correlated assets to diversify the portfolio [11]. In
such case the Sharpe and Treynor coefficients can be used to
range the assets according to the reward-to-variability and re-
ward-to-volatility ratio, respectively. The Sharpe coefficient, known
as the ‘reward-to-variability ratio’, is defined to be [7]:

7 Ry ke e

P O_p

where R, is the mean-return of the portfolio p, R, is the risk-

free asset return, and O, is the standard deviation of the

portfolio p.
The Treynor coefficient (the ‘reward-to-volatility ratio’) is
assumed to be:

R 2z,
®) RvOL, =”Tf,
p

where f3 p is the ‘beta’-coefficient of the portfolio p, that is

defined in the Market Model [7].
The Sharpe coefficient (7) and Treynor coefficient (8) can
be equally used for assets evaluation [11]:

@) RVAR =—".
O.

/4

rvor, =X R
10 e
(10) B

where R; is the mean return of the asset ii=lLn, o, is

the standard deviation and f3; is the coefficient of sensitivity of
the asset / to market movement.

The choice of a security ;* to be added into a portfolio
can be based on the maximization of the Sharpe coefficient (9)

or the Treynor coefficient (10), i.e. i argmax RVAR, or

il

i =argmax RVOL, , i =1,n. It means a preference is
given to the asset having the largest market prime per one risk-
unit, measured by the standard deviation (the Sharpe coefficient)
or by the ‘beta’-value (the Treynor coefficient).

The choice of the coefficient depends on the set of the
financial assets in the investor’s portfolio. The risk for an inves-
tor, possessing other assets that are not included in the portfolio,
should be measured by the ‘beta’-coefficient since this coeffi-
cient evaluates risk relatively to the market [7]. When all instru-
ments are included in the portfolio under consideration, the
standard deviation can be seen as a suitable risk-measure, and
the Sharpe coefficient can be used as an asset evaluation cri-
terion.

Having selected the assets, the portfolio can be synthe-
sized using the Markowitz Model [6]:

(1) Jy =X, w; - w, - Cov; — min
i

subject to
(12) Y w, R =R
Zw,- =
w; 20

where COVU is the covariance of assets jand j, w; and w;

are the weights of assets /and jin the portfolio, respectively, and
R is a chosen value of the portfolio return.

3. Modifications
of the Sharpe Coefficient

3.1. Alternative Risk-Measures

We introduce a new parameter, termed ‘low-mean’ return
of the asset j, defined as:

(13) ﬁilow = Zpit 'Rir ) Rit = Eil

teZ”
where Z~ is the set of indices ¢ such that R < 1_2,-, and

p;; is the probability of the return R, .
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Ritow is the mean-return of a left (‘bad’) part of the return
distribution of the asset j, i.e. the mean-value for the returns,

which are less than the mean return of the asset fai.

In a similar way we obtain the mean-return of a right
(‘desirable’) part of a return distribution of the asset

(14) Eiupper = Zpit 'R” ' Rit > Eiy

ezt

where Z* is the set of indices tsuch that R, > ﬁi,and Di

is the probability of the return Jis

In terms of ‘low-mean’ and ‘upper-mean’ returns the full
variability of the return of the asset can be described by the
difference of the ‘upper-mean’ and the ‘low-mean’ returns
(ﬁiupper = Eilow )

We define a new risk-measure, namely the difference
between the asset mean return and the ‘low-mean’ return

(R, — Ruo)- This risk-measure is especially suitable for
assets with asymmetric distributions as shown in figure 2.

0.3

0.25

085 092, 099+ 106 . 113 1.2 427 (134 142 149

Figure 2. Return distribution for SCON-asset

For the case of a symmetric distribution the following
equality holds:

R iupper — R ilow

(15) (E! “Eilo-w) = )

The value-at-risk (VaR) is a measure widely used in finan-
cial analysis. For a known asset return distribution, VaR defines
the return that can be achieved with some probability level [2]:

(16) VaR, = Riyer :[P{R, > Ry} =1-0t],

where C is the confidence level, which is usually set equal to
0.01, 0.05, or 0.1.

While the basic concept of VaR is simple, many compli-
cations can arise in practical use. A major drawback of VaR
approach is that optimization problems, aiming at computing
optimal portfolios with respect to VaR are typically hard to solve
numerically. The reason is that VaR is in general not a convex
function [8]. In this respect a related concept, conditional Value-
at-Risk (CVaR) has recently been suggested as an alternative
downside risk measure [15], which is determined as the
expected mean loss after the VaR. This risk-measure is more
consistent than VaR, due to some important properties such as
subadditivity and convexity. CVaR is proved to be a coherent risk
measure in the sense introduced by Artzner, Delbaen, Eber and
Health, as shown in [16]. A more detailed study of CVaR and its
application for assets selection can be a subject for further
research.

There are several methods for computing VaR of nonlin-
ear portfolios. Figure 3 presents the main approaches to VaR
computation. Parametric models such as delta-normal are based
on statistical parameters such as the mean and the standard
deviation of the risk factor distribution. Non-parametric models
are simulation approaches or historical models. An overview of
frequently used VaR-models can be found in [8].

In the present paper we use method of historical modeling
to calculate VaR considering inconsistency of the parametric
VaR-models with the Russian stock market. This method is
based on empirical distribution for a given period. VaR repre-
sents a quantile of an empirically estimated return distribution
[19].

We propose another new risk measure, namely the differ-
ence between the asset mean return and the VaR-value for ¢ -

confidence level (E,- —VaR,). The choice of the confidence

level depends on the investor’s attitude to risk. Risk preference
allows setting high confidence-level, that increases VaR-value
and decreases investor subjective evaluation of risk, measured
by (Ei — VaR;)-value. And on the contrary, risk aversion im-
plies low confidence-level.

iMoﬁels to calculate VaR |

|
Parametric Models ]

|
E Non-parametric Models |

|
I ]

Assat-Normal VaR Dalta-Normal VaR
(Mo Risk Factors ) (Dzlta Approximation)

Dalta-Gamma Normal VaR
Delta-Gamma
Approxim ation)

Simulation and Simulation and
Full Valuation Approximation
(Partial Monta Carlo VaR)
|
| |
Monte Carlo VaR Historical Stress Dalta Delta-Gamma
Simulation Scanarios Approximation Approximation

Figure 3. Approaches to VaR computation
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Table 1. Securities parameters for the period June 2005 — May 2006

Asset  |SCON |KRNG |AVAZ |APTK |KLNA [AFLT [SNGSATATN [NLMK [NNS! ISIBN [SNGS [LKOH|RTKM|SBER |GMKNIEESA MTSS |GASP|TRNFP
Return | 10781| 1062| 1.105 1.082] 1.05|1.045|1.0837| 1.121] 1.083[ 1.025! 1.085|1.0874] 11| 1.075/1.0959| 1.07] 1.103 0.991] 1.126] 1.107
StDev 0.1136] 0.234] 0.167) 0.108| 0.085) 0.087|0.0886| 0.116] 0.098] 0.068! 0.08]0.1017| 0.09| 0.124]0.1045] 0.087] 0.12| 0.054 0.136] 0.135
R Squarq 0.9882| 0.949| 0.975| 0.981| 0.99|0.991/0.9979| 0.993] 0.993] 0.995} 0.9960.9969| 0.998| 0.957| 0.9953| 0.988] 0.992 0.995] 0.991| 0.987
Beta 0.9818| 0.963| 1.002] 0.933] 0.968}0.9560.9936| 1.026| 0.978] 0.941} 0.572|1.0002] 1.006| 0.975| 1.01| 0.976] 1.005| 0.912 1.039] 1.015
Observa

tions 236| 23] 236| 236) 236| 236| 236) 236| 236 2360 23| 23| 236 23| 236| 23| 23| 154| 70 224

3.2. Sharpe Coefficient for the (Ei —I_€fzaw)-
and (R; — VaR,)-Risk-Measures

On the base of the risk-measures introduced in 3.1, we
propose the following modifications of the Sharpe coefficient for
the asset / (7):

Jie = Rf

(17) Siow = 0 ; Asset | RVAR, Asset RVAR,
g s 1|LKOH | 0.9540336 11|SCON 0.598925
S, 2|TANT | 09538116 12|5iBN 055863
08§ 3[SNGSP|__0.945251 13[NIMK | 0540746
A Bi<Wal 4|GASP | 08632978 14|RTKM 0522085

‘ 5|SBER | 08219275 15|AVAZ 0.509001
The coefficient (17) describes the amount of excessive B|EESR 0.774932 16| KLNA 0.468108
return (market prime) referred to one unit of risk, measured as 7|SNGS | 07612216 17 [AFLT 0.399588
a deviation of asset mean return from its ‘low’- mean return. This 8|TRNFP | 0.718538 18|KRANG 0.221683
coefficient may be recommended to evaluate especially the 9|GMKN | 06879493 19|NNST 0221484
assets characterized by asymmetric distribution. 10{APTK | 0BB32712 200MM 7S -0.35475

The coefficient (18) describes the amount of excessive
return per one unit of risk, measured as a deviation of asset
mean return from its VaR-value. VaR-value can be estimated for
different ¢ -confidence levels, which are set regarding the
investor’s risk preferences.

4. Case Study

41. RVAR, -Coefficient as Assets Selection

Criterion for Portfolio Diversification

We consider the securities traded on the Russian Trading
System Stock Exchange (RTS) [20]. The invested amounts are
distributed between different branches of economics, represented
by 20 companies. We have studied statistic data on selected
securities for a one-year period, namely June 2005 — May
2006. We suppose the amounts are invested for a two-month
period. The securities returns, standard deviations and ‘beta’-
coefficients have been calculated. The significance of the ‘beta’-
coefficients is confirmed by the high values of the coefficient of

determination R*[5]. The results are presented in table 7.

The annual risk-free return Rf is supposed to be 1.06.

That is, the annual expected risk-free rate of return is 6% (the
annual rate of return for governmental bonds in Russia (Septem-
ber 2005) [21]), or 1% for a two-month period in the considered
example.

We have determined the values of the RVAR, -coeffi-
cient (9). The assets have been ranged according to the

RVAR, -coefficient (9) as shown in table 2.

Table 2. Ranking of assets according to -coefficient

We have composed the portfolio of 4 upper assets, se-
lected from the table 2 and having the highest Sharpe coefficient
values, namely LKOH-, TANT-, SNGSP- and GASP-assets.

The efficient frontier for the portfolio of 4 assets has been
determined. Remind that the efficient frontier is the upper portion
of the minimum-variance set that lays upper than a minimum-
variance point [6]. The points on the efficient frontiers have been
determined by solving the optimization problem (11), (12):
minimize the variance of the portfolio under the constraint of a

fixed mean return A. The fixed values R in (12) have been
chosen using a 0.1% step.

Then a portfolio of 5 assets has been composed by taking
the 5 upper assets from the table 2, namely LKOH-, TANT-,
SNGSP-, GASP- and SBER-assets. The same procedure was

repeated for n, n =m, assets. The efficient frontiers for

portfolios, composed of n, n = 4,11, assets are presented in
figure 4.

Figure 4 shows the effect of diversification. The portfolio,
composed of 5 assets is more efficient than the one, composed
of 4 assets, and less efficient than the portfolio that includes 6
assets, which is seen in the shifting of efficient frontiers leftward.

Table 3 demonstrates the effect of diversification for R, =1.115

(that is, the expected rate of return is 11.5%). The standard
deviation in this example decreases from 0.08763 (n=4) to
0.08229 (n=9).
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The results of table 3 can be interpreted as follows: for an
invested amount equal to 1000 euros the investor’s gain is 115
euros with a standard deviation of 87.63 euros. That is, in the
most pessimistic case, according to the rule of ,3 ¢ “ that holds
for the majority of distributions, investor’s possible loss will be
147.89 euros (115-87.63-3) if he distributes his capital be-
tween 4 assets. If he invests in 5 assets, in the worst case he
will loose 139.97 euros (115-84.99-3) etc. After the sixth

asset has been added, the standard deviation does not decrease
considerably.

Table 3. Effect of diversification for R, =11.5%

Number R
of assets P G,
4 1.115 | 0.087632091
5 1.115 | 0.084993942
6 1.115 | 0.082318053
71 1.115 | 0.082318053
8 1.115 | 0.082318053
9 1.115 | 0.082288547
10 1.115 | 0.082288547

Now we need to select portfolios on the efficient frontiers
in figure 4. The portfolio performance may be evaluated using the
Sharpe coefficient for a portfolio (7). The most efficient portfolio
corresponds to the point having the highest value of the Sharpe
coefficient, as shown in figure 5.

However, the maximum value of the Sharpe coefficient
may correspond to a portfolio, having a low value of the standard
deviation and of the portfolio return (a point on the low left part
of the efficient frontier).

Low values of a portfolio expected return may be unac-
ceptable for the investor. In such case the investor can deter-
mine a desirable zone on the efficient frontier, limited by an
admissible level of the portfolio expected return in order to avoid
portfolios with low values of the return.

007 0075 i 008 008 008 0.085

127
1.25
123
1.21
119
147

115 .
007 0.075 0.08 0.085 0.08 0.005

Figure 5. Selection of a portfolio on the efficient frontier

Thus, the investor will choose a portfolio having the maxi-
mum value of the Sharpe coefficient in the desirable zone. Figure
6a and 6b illustrate different admissible levels of the portfolio

expected return (R, ) and the choice of the portfolio on the
efficient frontier.

R

p

1113 —

1710815+

1103 +—

1.098 +—

1.093 T T

0.0707 0.0727 0.0747

0.0767

0.0787

Figure 4. Efficient frontiers for diversified portfolios
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We have evaluated the Sharpe coefficient for a set of
portfolios, synthesized according to (11), (12). The values of R
in (12) have been chosen sing 0.1% step. Table 4 presents the
weight distributions and portfolio parameters for portfolios com-

posed of n, n=4,_11, assets for the portfolio return

and by decreasing the weights of other assets. Thus, the diver-

sification yields an increasing of the Sharpe coefficient
decreasing, at least).

The effect of increasing of the Sharpe coefficient can be
illustrated as follows. If an investor distributes 1000 euros

(or not

between 4 assets, he gains 115 euros (return is 1.115, the

R, =1.115. expected rate of return is 11.5%) with a standard deviation of
Table 4. Weight distribution for portfolios composed using RVAR, -coefficient ( R » =1.115)
Number Weight of assets Portfolio Parameters
of
Assets |LKOH |[TATN [SNGSP GASP |SBER |EESR [SNGS TRNFP |GMKN |APTK Rp O-p RVARP
4| 0.27386| 0.32904] 0.08137] 0.3157 | 1.115]0.087632| 1.198203
5| 0.25153| 0.32829] 0.04923] 03165 0.05417 1.115] 0.084994| 1.235394
6| 0.22036| 0.31516] 0.01666| 0.3056 0.03954| 0.1027 1.115| 0.082318| 1.275552
7] 0.22056| 0.31527| 0.0163] 0.3054 0.03936| 0.1031 0 1.115] 0.082318| 1.275552
8| 0.19372| 0.30053] 0.00081] 0.2925 0.03009| 0.0957 0| 0.0806 1.115| 0.082318| 1.275552
9| 0.19981] 0.30057 0] 0.2924| 0.030738| 0.0959 0| 0.0806 0 1.115/ 0.082283| 1.275993
10] 0.19961]0.30053] 0.001] 0.2925 0.03015| 0.0957 0| 0.0804 0 0f 1.115/0.082289| 1.275998

The results of the table 4 show, that the more portfolio is

87.63 euros. That is, he is awarded b 1.198 euro of excessive
diversified, the higher values of the Sharpe coefficient are ob. 4 =

tained, because a more diversified portfolio cannot be less return (market prime) per 1 euro of risk taki 0.115-0.01
efficient than a portfolio composed of a less number of assets. P P 9 0.08763

If the inclusion of a new asset yields a new portfolio, which is
less efficient then the previous one, then the optimization tool
will indicate the inefficiency of this inclusion by setting the
weight of this asset equal to zero. It follows that the attained
previous parameters of a portfolio (the expected return and the
standard deviation) and the Sharpe coefficient will not change.
If the inclusion of a new asset yields a new portfolio, which is
more efficient then the previous one, then the optimization tool
will increase the portfolio performance by investing in this asset

If he invests in 5 assets, these values are equal to 115, 84.99
and 1.235 euro respectively etc.

The experimental results have shown that the diversifica-
tion allows achieving higher values of the Sharpe coefficient.
However transaction costs should be taken into consideration
while diversifying the portfolio. ' ;

Remind that each efficient frontier corresponds to a set of
portfolios composed of different number of assets (see figure 4).
Thus to evaluate the effect of diversification we compare port-

1115

0075, | 008 0.085 009 0085

0.075 0.08 0.085 0.09 0.095 0.075 0.08 0.085 008 0.085

Figure 6b. Choice of the portfolio having the maximum value
of the Sharpe coefficient in the desirable zone

Figure 6a. Choice of the portfolio having
the maximum value of the Sharpe coefficient
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folios taken from different efficient frontiers. We cansider two
cases: comparison of the portfolios for a fixed level of the
portfolio risk or for a fixed level of the portfolio return (figure 7).

Figure 7a shows the increase of the portfolio return for a

fixed level of the standard deviation & when a portfolio is
diversified between 11 assets relatively to a portfolio of 4 assets.
The diversification is reasonable if the following inequality holds:

U9 (R, ~Ry)-I>T

where I is the invested amount.

42. S, -and S, . -Coefficients as Asset

Selection Criteria for Portfolio Diversification

The empirical distributions have been obtained for all the
assets under consideration. Figure 8 shows some of the sym-
metric and asymmetric distributions.

ilow

We have determined the values of (Ei — I—Qitow) and

(ﬁiupper T } ilow)
2

, using (13) and (14). The coefficients of
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Figure 7a. Increase of the portfolio return due to the
portfolio diversification

For a fixed value of the portfolio return R’ (figure 7b) the
transaction costs 7" should be compared with the decrease of

possible losses, the last being evaluated as ko, k € [1,3],

according to the degree of investor’s pessimism. The portfolio
diversification is reasonable if the following constraint is satis-
fied:

(@0} (ko =%k0,) I >T.
The suggested conclusion is that the additional diversifi-

cation is reasonable if the transaction costs 7' are compen-
sated by the increase of the portfolio expected return (19) or by
the decrease of possible losses (20).

For example, if the invested amount 7 is equal to 100 000

euros and the portfolio risk level is chosento be & = 0.0773
(figure 7a), then for a portfolio composed of 4 assets the port-

folio return R » 15 1.108, while for the portfolio composed of 11
assets Rp= 1.11. Thus, additional assets should be included

into the portfolio if the transaction costs 7" are less then 200
euros (1.11-1.108)-100000 ).

Figure 7b. Standard deviation decrease due to the
portfolio diversification

skewness for the asset distributions have been obtained, also
(see e.g. [5]). The results are shown in table 5. Positive values
of the coefficients of skewness indicate a heavier left (‘bad’) part
of the distribution while negative values indicate a heavier right
(‘desirable’) part of the return distribution (see figure 8, as well).

The results presented in column (7) of the table 5 show,
that for the distributions close to symmetric ones the values

(ﬁiupper e Eilow)
2

difference is close to zero. That is consistent with statement
(D)

We have determined the values of S

(Ei = I_zilow) and

are close, i.e., their

ilow ~ and SiVaR 2

coefficients, using (17) and (18). The coefficient S, . has
been calculated for the confidence levels o =0.05 and
o = 0.1 to assess different risk preferences.

The assets have been ranged according to § and

ilow ~
S .var -coefficients as shown in table 6.

The results of the Table 6 indicate that S, -and S, -

coefficients give different rankings of assets, and these rankings
are different from the results presented in table 2.
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Figure 8. Return distributions for the assets

Table 5. The assets parameters

(1) 2 @) 4 &) ) @ @)
Skewness -R- i ' & . Riow |R iupper | Ry — Riow --__._____(‘?e’“” o Rioy)
Asset 2 7)-6)

AVAZ 102717502 1.105033 0.186704] 0.933082 1.451943| 0.17195092 0.259430665| 0.087479743
RTKM 5.16921242] 1.074747 0.124016] 0.918481] 13814 0.15626622| 0.221459455 0.065193238
SCON 3.73595652| 1.078061 0.113638] 0.95749% 1.292034| 0.12056517 0.167269253| 0.04670408
KRNG 2.91990691] 1.061864 0.233958 0.752778 1.438889| 0.30908663 0.343055556| 0.033968927
EESR 2.59108057| 1.102985 0.119991] 0.923642] 1.325791 0.17934331| 0.203074597 0.023731287
APTK 1.9871016] 1.081826] 0.10829 0.929718| 1.280981 0.15210761] 0.175631313 0.023523707
TRNFP | 1.96319631 1.106751] 0.13465] 0.974006 1.285355| (0.1327447 0.155674374| 0.022929675
AFLT 1.53073581| 1.044933] 0.087427 0.951389] 1.193287 0.09354402] 0.120949074 0.027405053
GMKN | 1.23837547 1.069787| 0.086906] 0.965405 1.232861] 0.10438146 0.133727561| 0.029346102
GASP 0.86468255] 1.127695 0.136331] 1.025786] 1.317412 0.10190892| 0.145813074 0.043304156
SIBN 0.86908707| 1.054893 0.080363| 0.951072] 1.186059 0.10382079] 0.117493366 0.0136726
NLMK 0.36888808] 1.06311 0.098217] 0.943422] 1.202221 0.11968792] 0.129399362 0.00971144
SBER 0.21575428| 1.095863 0.104473] 0.971023] 1.24495 0.12484589| 0.136963148 0.012117259
KLNA 0.18313974] 1.049965 0.085377] 0.95941] 1.135095 0.09055561| 0.087842683 -0.002712931
TANT 0.08934975] 1.120887] 0.116257 0.911354] 1.312555 0.20953351| 0.200600418 -0.008933094
MMTS -0.0136944] 0.930711 0.054373] 0.907629 1.057635| 0.08308251 0.075003455| -0.008079058
LKOH -0.5075362| 1.099613 0.09015| 0.902172] 1.226704 0.19744018] 0.162265722 -0.035174451
NNSI -0.7183617| 1.025014] 0.067787 0.903298| 1.086443 0.12171563| 0.091572635 -0.030143
SNGS -2.1089895| 1.087447] 0.101741 0.875606] 1.219079 0.21184156] 0.171736688 -0.040104875
SNGSP_ | -2.6443129] 1.093727 0.088571| 0.89213] 1.197515 0.20159207] 0.152692369 -0.048899697
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Table 6. Ranking of assets according to different assets selection criteria

Sﬂ’d 'S'im

Asset Asset |@=0.05|a500¢ a=0.1 Asset Sﬁm" Asset |@=0.05|asset | @=0.1

GASP 1.154899|GASP | 0.799469|GASP 0.9260516] 11|NLMK | 0.443738|GMKN | 0.367 185|SBER | 0505718
TRNFP | 0.7268486|LKOH 0.56019| TANT 0.7329823] 12|KINA | 0.441336|SiBN 0.334537|AVAZ | 0.4850046
SBER | 0.6878016|APTK | 0513014 LKOH 0.7047283| 13|SiBN | 0.432408|SNGS | 0.329319|S/BK 0.4296808
GMKN_| 05727728|SCON | 0.504372 SCON__ | 06233289] 14|SNGSP| 0.415305|NLMK | 0301739 RTKM | 0.4033548
SCON_| 0.5645143[TANT | 0.494807|EESR 0.6104108] 15|R7TKM | 0.414337|RTKM 0.296799 | NLMK | 0.4012121
AVAZ 0.552673| TRNFP | 0.463705|SNGS 0.5765787| 16IAFLT | 0.373438|AFLT | 0.280546 KLNA | 0.3414725
TANT | 0.5292112|EESR | 0.456928|APTK 0.5606045| 17[SNGS | 0.365592|KINA | 0.273513 AFLT | 0.3353569
EESR | 05184753|SBER 0.44358|SNGSP | 0.5385776| 18|KRNG 0.167793|NNS! | 0.106089|KANG | D.2533412
APTK | 0.4722041|SNGSP | 0.391467|TRNFP | 0.5280218| 19 NNSI 0.12335|KRANG | 0.092308|NNS! | 0.1290276
LKOH | 0.4538718]AVAZ | 0.385272|GMKN | 0.5230357| 20 MMTS | -0.23217|MMTS | -0.20643|MMTS | -0.245566

S, S,
S Vo iVa
How

OO ~joyj o s wlraf—

—

Table 7. Sharpe coefficients for different assets selection criteria

Sm RVARf Sﬂ'&ﬂ ,a= 0.05 S%R Ja= 0.1
Number o ’

assetsﬂ R,| o, RVAR,| R, | O, |R7AR | R | O, RVAR, | R,| O, RVAR

4 1.11] 0.078802| 1.26901] 1.118 0.0886512| 1.21827] 1.107| 0.083018| 116842 1.113] 0.082457] 1.2491

51 1109 0.0776] 1275771 1.117] 0.0861518( 1 24201 1.113] 0.082441] 1.24933] 1.112] 0.080458 1.2678

6] 1.108] 0.076973] 1.28617] 1.112 0.0793419( 1.28559] 1.113] 0.081441] 1 26473 1.111] 0.07954] 1.2698

7| 1109 0.076973] 1.28617] 1.112 0.0793411] 1.28559] 1.111] 0.07954| 126979 1112 0.079672]| 1.2802

8] 1.109 0.076495] 1.29421] 1.112 0.0793419] 1.28553] 1.111] 0.078464| 126721 1.108] 0.077261| 1.2814

9| 1.109] 0.076495| 1.29421] 1.111 0.0781951] 1.29165] 1.109] 0.076495| 129421 1.11] 0.077508| 1.2802

10{ 1.109] 0.076495] 1.29421] 1.111 0.0781951| 1.29165] 1.109| 0.076495| 12947 1.11| 0.077508] 1.2902
The portfolios have been diversified using Silow_ - It can be seen, that the Sharpe coefficient achieves its
greatest values when Silaw is applied as assets selection

S,var - coefficients as assets selection criteria. The portfolio Sk

performance has been evaluated using the Sharpe coefficient.
The portfolios having the maximum values of the Sharpe coef-
ficient for different number of assets have been determined.
Table 7 shows the results of diversification for different securi-

Figure 9 summarizes the Sharpe coefficients for different
assets selection criteria.
Table 7 and figure 9 show, that the diversification is most

effective when S, -criterion is applied. It enables to achieve
the highest values of the Sharpe coefficient and allows diversi-

1.32 ]
RVAR, | : : : | |
13 ,,,,,, :

ties selection criteria: RVAR, -, S, -and S, . - coefficients.
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Figure 9. Sharpe coefficients for different assets selection criteria
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fying the portfolio using the less number of selected assets.

The experimental study of S ivar ~Criterion for confidence

level & = 0.1 yields better results than for o =10.05

Table 7 shows that the application of different assets
selection criteria yields almost the same ‘reward-to-variability’
value when portfolio is composed of 9 assets, and that the value
of the Sharpe coefficient stabilizes.

The transaction costs should be also considered while
making a decision about the number of assets to diversify the
portfolio. Additional diversification is reasonable if the transac-
tion costs are compensated by the increase of the portfolio
expected return (for a chosen risk level) or by the decrease of
possible losses (for a fixed value of the portfolio expected re-
turn).

5. Conclusion

In this paper new S, - and S.var - Securities selection
criteria have been proposed, based on the introduced

(Ri—R,,,)-and (R, — VaR, )- risk-measures.

(I_€i = Ry,,,)-value can be a suitable risk-measure espe-
cially for the asymmetric distribution of the return of an asset.

(E,- — VaR,)-value allows the investor to set acceptable devia-

tion of the return from the VaR-value for different confidence
levels, considering his risk preferences. For further research
measures based on conditional VaR can be considered, since
CVaR possesses such important properties as subadditivity and
convexity.

The efficiency of proposed selection criteria has been

analyzed using the Sharpe coefficient, S 1w ~CTitEriON Can be

recommended as the most efficient for assets selection from the
point of view of the portfolio performance. The experimental

study of S, -criterion for confidence level o = 0.1 has

yields better results than for o = 0.05 . |t can be recom-
mended to apply other methods for VaR computation. Consider-
ing the inconsistency of parametric VaR-methods with the Rus-
sian stock market, simulation methods are preferable. In the
present paper we have used the method of historical modeling.
We suppose that other simulation methods could increase the
efficiency of the VaR-approach. For example, Monte Carlo simu-
lation, which is widely used in practice.

The efficient frontier can be limited by the admissible level
of the portfolio expected return in order to avoid portfolios with
low values of the return. The investor will choose the portfolio
having the maximum value of the Sharpe coefficient in the
desirable zone.

The experimental results have shown that the diversifica-
tion implies increase of the Sharpe coefficient. The number of
assets to compose a portfolio may be determined on the base
of the (quazi)stabilization of the Sharpe coefficient and depends
on transaction costs. Additional diversification is reasonable if

the transaction costs are compensated by the increase of the
portfolio expected return (for a chosen risk level) or by the
decrease of possible losses (for the fixed value of the portfolio
return).
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for the case studies of the N queens problem and Sam Loyd’s
puzzle we can conclude that the efficiency of parallel combina-
torial search on multicomputer platform is about 30% and the
speedup increases slowly versus the problem size not exceed-
ing 1.8 for 5 computers.

In order to make a prognostication for the efficiency of
parallel combinatorial search on multicomputer platform we
have to estimate the isoefficiency that is a metric to characterize
system scalability. The efficiency of the parallel system F de-
pends on the workload W, the number of processors n and the
system overhead T i.e. E=f(W,n, T). In order to keep up 30%
efficiency for parallel combinatorial search scaling the machine
size requires the adequate scaling of the parallel application i.e.
the board size should be enlarged — above 15x15 for the N
Queens’ problem and 7x7 for Sam Loyd’s puzzle. Nevertheless,
we have to take into consideration that scaling up the workload
will result in increasing the system overhead and eventually the
efficiency might drop below 30%.

The future work should encompass investigation of the
efficiency of parallel combinatorial search on computer cluster
and the utilization of more efficient mechanisms for dynamic
load balancing.
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