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Abstract. This paper proposes a nonlinear  feedback path control
law for a bi-steerable vehicle (a four-wheel-steering vehicle designed
to steer the rear wheels always in opposite direction to the front
ones in function of the front steering angle). First, a kinematic model
of the vehicle in error coordinates expressed in a moving reference
frame, which is partially linked to the vehicle is developed. The
control law is constructed using a backstepping recursive design
technique yielding exponential stability of the closed-loop system in
error coordinates and invariant properties with respect to the vehicle
speed. Simulation results illustrate the effectiveness of the proposed
controller.

1. Introduction

In recent years, there has been considerable effort in the
development of tracking controllers for automated vehicles with
several conventional steering wheels. As the control of
nonholonomic wheeled mobile robots (WMRs), in most cases,
the control problem is stated for WMRs with two independently
steerable wheels. In this case, the motivation of this problem is
reflected in the fact that the WMR in the plane possesses three
degrees of freedom of motion and should be able to have any
desired orientation angle along the path ( the WMRs can be
controlled to follow a path with independent orientation). In [1],
two trajectory tracking control methods for a wheeled mabile
robot with two steering wheels based on a linearizing feedback
approach and Lyapunov oriented control design were proposed.
Transformation of the kinematic model into two-chain single
generator chained form was also given. The admissible wheels
configurations were investigated to prevent the pure rolling and
non-slipping conditions in the case of more than two steering
wheels. In [3], feedback contro! of a mobile robot vehicle with
two independently steering wheels has been studied. It has been
shown that the input-output linearization cannot be achieved by
any static feedback. Dynamic feedback has been used for tra-
jectory tracking in order to independently contro! the position
and orientation of the robot vehicle.

Regarding passenger vehicles, four-wheel-steering (4WS)
systems which are able to control way rotation and lateral motion
independently by controlling the steering angle of both front and
rear wheels have been designed for many years [45]. In [6].
control algorithms for parallel steering maneuver (crabbing) and
following a path with desired orientation for a four-wheel-steer-
ing vehicle with independent steerable wheels were presented.
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Recently, there has been increasing interest in designing
a new type automatic car for public individual transport, the so
called bi-steerable vehicle [7,8]. The particularity of the steering
system of this vehicle is that the front and rear wheels are
steered always in opposite direction in order to offer better
vehicle maneuverability. The rear wheels are not independently
steered from the front ones and as a consequence, the vehicle
has only two degrees of freedom in the plane as a conventional
front-wheel steering car (FWS). However, comparing the kine-
matic models of these vehicles, different complexity arises from
the bi-steerable car, in particular, when trying to determine a flat
(linearizing) output and convert the kinematic model into chained
form. Although the kinematic model of the vehicle is flat [9], and
can be converted into chained form, to apply feedback control
based on the chained form representation of the system, we
must overcome the problem of finding functions that generate a
chained set of coordinates for this kind of vehicle. In this case.
to solve the control problem for a bi-steerable vehicle, an alter-
native which becomes attractive, is a control scheme based on
a reduced vehicle model.

In this paper, we present a nonlinear  path following
controller for a bi-steerable vehicle. The proposed control law is
constructed using a backstepping design technique [10] and is
based on the reduced-order model of the system. Exponential
stability of the closed-loop subsystem for the vehicle lateral and
orientation errors is achieved and, at the same time, the system
is invariant with respect to the vehicle velocity. We prove that the
internal dynamics, associated with a part of the system which
has not be taken into account in the feedback control design,
is locally  exponentially stable.

The paper is organized as follows: In Section 2, the kine-
matic model of the vehicle is presented. In Section 3, we state
the path following problem using error coordinates expressed in
a moving reference frame partially linked to the vehicle. In
Section 4, the design of the proposed controlier and stability
analysis are given. Simulation results are presented in Section
5. Section 6 contains some conclusions.

2. Vehicle Model

A plan view of the vehicle considered in this paper, is
shown in figure 1.

The bi-steerable vehicle has four steering and driving
wheels. The wheels are assumed to roll without lateral sliding.
The four wheel steering system has the ability to steer the rear
wheels always in opposite direction to the front ones with a rear-
to-front steering angle ratio n, (0<n <7). To simplify the deriva-
tion of the vehicle kinematic model, we consider the so called ,
two-wheel vehicle model® composed of two virtual wheels placed
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Figure 1. A plan view of a bi-steerable vehicle

at the mid-points of the front and rear whee! axles (points A and
B, respectively), and oriented in the direction to the wheels. The
coordinates of a reference point A placed at the center of the frant
vehicle axle, with respect to an inertial frame Fxy, are denoted
by (xy). The angle 6 is the orientation angle of the vehicle with
respect to the frame Fxy. The angle o is the steering angle of
the front virtual wheel measured with respect to the vehicle body.
The length of the vehicle is denoted by /. Using the coordinates
of the reference point A, the configuration of the vehicle is
described by four generalized coordinates,g= ix, Y, 6. o] The
nonholonomic constraints can be written in the form

(1) A(q)g=0
where A(q) is a 4 full rank matrix of the form

(2)
A = -sin(@+a)  cos(0+a) 0 0
D=1 _no- na) cos(@-na) icostna) 0

and g is the vector of generalized velocities.

The constraint equation (1) can be converted into an affine
driftless control system

(@) ¢=B(gm

where the columns of the 4x2 matrix B(q)

cos( B + a) 0
sin( 8 + ) 0
@) B(g)=!|sinl( n-l]
CoS( na ) |
0 |J‘

form a basis of the null space of 4ig). The control input
n=[v, @,]"is a 21 vector of indepe~dent quisi-velocities which

parameterizes the degree of freedom of the system, where v,
is the velocity of point A (the mid-point of the front virtual wheel)

and w, is the steering angular velocity of the front virtual wheel.
3. Problem Formulation

The path following geometry used in this paper is repre-
sented in figure 1. Consider a bi-steerable vehicle moving on
a flat surface. We assume that the path Pis a smooth planar
curve. A reference coordinate frame Rxy, (Rlx, ¥)), is defined
such that the Rx axis is tangent to the path and oriented in the
direction of motion to follow, and the Ry axis passes through the
reference point A of the vehicle (a reference frame partially
linked to the vehicle). We suppose that the distance between the
points A and R is smaller than the reference curvature radius
p.in point R and, in that way, ensuring that the reference frame
Rxy is uniquely defined (see [11]).

We introduce a new variable 0, % 6 + a. Using the
reference frame Rxy, the error coordinates of the vehicle e = e,
e, e, i.e., the position and orientation of the front vehicle
wheel with respect to the moving reference frame Rxy are given
by (see also [12]).

e cosf,  sinf, 0] x-x,
() e, |=|-sinf,  cosf 0| y-y,
e, 0 0 16,-6

where ¢ (f) = 0 (in this paper, we are interested in design-
ing a path tracking (lateral) controller for the vehicle).

Differentiating the equality (5) and using (3), in conformity
with the nonholonomic constraints (1), after simple calcula-
tions, we obtain

O=-v, +v, cose, +v.c.e,
e, =v, sine,
6) . sin[ n(o +1 ¢, cos e
O, =y, Shlnt@+] | cocose,
lcos(na) l-c.e

where ¢, = 1/p_is the curvature of the reference path P
at the point R, and v is the velocity of point R. We assume that
the error coordinates (e, e,) as well as the front-wheel steering
angle o are measured.

The curvilinear coordinate s along the reference path can
be determined from the first equation of (6) in the form

(1) 8, =v,=v,(cose,)/(1-c.e,).

Combining eq. (7), the last two equations of (6) and the
last equation of (3), we obtain a kinematic mode! of the vehicle
in error coordinates, (e, e,), in the form
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s =v

e, =v,(l-ce)tane,
l—ce. sin[(n+Da]

e, =v.|[ -
(8) cose, [cos(na)

¢, ]+ w

¢4

We assume that the velocity v, (f) of the vehicle is strictly
pesitive, bounded, continuous, that does not converge to zero,
and the orientation error |, |<[0.7/2). Also, we will assume
that the reference path is a circle (¢, = cte) or a straight fine
(c. = 0). In this case, using the parameterization (e, e,) and
given a path P, the path following problem consists of finding
a feedback control law for the subsystem composed of the last
three equations of (8) with control input @, such that the
state vector [ e, €, o] tends to [0, 0, or]’, as t—eo where
a, = o (c) = cte.

4. The Controller
4.1. Feedback Control Design

In this section, we present a nonlinear path following
controller for a bi-steerable vehicle described by the last three
equations of (8). The reference velocity v(f) could be consid-
ered as a function of time and, from (7). it follows that it is
strictly positive for |e, | ¢ [0,7/2) and k |< | To obtain
a time-invariant system, the differentiation with respect to time
is replaced by differentiation with respect to s, (ds, = v df), where
s, is the reference path length drawn by point R of the reference
coordinate frame Rxy (figure 7). In that way, we express the
vehicle equations of motion in terms of s and we denote the

derivation with respect to s by “ . Using s as an independent
variable instead of the time-index ¢, the last three equations of
(8) can be written in the form

e,‘ (I-c,e )tan e, 0
! I=—c.e. sin[( n+1)e] O D I
ey | = o
© |17 s, Teostna)
| 0 !

whereu=w /v
(44 r

Remark 1. The path following problem stated in Section
3, can be formulated in terms of s, , namely, the problem
consists of finding feedback control law for the subsystem
composed of the last three equations of (8) with control input
. such that

lim e‘.(s,v) =0; lim CG(S,_) =0;lim O((S') =0,

5,00 5 —reo § =00

The design strategy used in this paper. consists in con-
structing a stabilizing control v for the subsystem composed of

the first and second equations of (9). Assuming that o is
bounded (exponential stability of o to the equilibrium state ¢,
will be established) and measured, we introduce o into the
stabilizing control u. Applying the designed control law to the
system (9), we prove that the dynamics of a, (the third equation
of (9)), which has not been taken into account in the feedback
control design, converges exponentially to its equilibrium state
o The design procedure is based on a backstepping recursive
design methodology, which yields exponential convergence of e,
and e, to zero. '

First, we present the design of the stabilizing control u for
the subsystem composed of the first and second equations of
(9). In our case, the beckstepping procedure is completed
at the second step by finding a control law which makes the
derivative of the constructed Lyapunov function negative definite.

Step 1. We form the function

(1) Vi=sel.

A

Using an intermediate virtual control 1,

kl()\
(11) n, =tane, =— — k>0

WC‘)()\

we obtain for the derivative of (10)

(12)  V/=e <0,

Step 2. Consider the augmented function
, o1 )

(13) I, :I"+5(tan /I

Choosing the control u in the form, ( k,>0)

_l=ee sinfntho] ktane, o

U =c, 4

cose, lcostna) 1-ce

—e (1-c,e.)cos e, —k(tane, ~17)cos ¢,

(14)

the derivative of (13) results in

5

ke,
) <0

V!=—ke> —k,(tan e, + —
(15) 72 1€ ) P Tee

The control law (15) yields the following closed-loop sys-
tem for the subsystem composed of the first and second equa-
tions of (9)

¢ =(1-c.e )tane,

, __k tane,

. 2 1 2
el =————"cos ¢, —e (I-ce )cos e,
l-ce,
kler 2
(16) —k,(tane, + l —)cos” e,.
—c.e

A
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4.2. Stability Analysis

From (13) and (15). using the Lyapunov stability theory
[13, Theorem 3.1, p. 101]. it follows that the origin (0,0) is an
asymptotically stable equilibrium point for the closed-loop sys-
tem (16) obtained by applying the control law (14) to the
subsystem composed from the first and second equations of (9).
Furthermore, exponential stability is also achieved. Indeed, using
(10), (13) and (15), and choosing m = 2k, and k, > k,, the
following inequality holds

(17) Vi+mV, <o0.

Application of Convergence Lemma [14, p. 91] indicates
the exponential convergence for V,to zero, ie.,

gy V(8 SV (0

and this in turn implies that e,and e, converge to zero exponen-
tially.

Since the dynamics of « has not been taken into account
in the feedback control design, the effectiveness of the proposed
controller based on the reduced-order model depends on the
dynamics of c. Our next step in the stability analysis is to
establish exponential convergence of crto the equilibrium state
@, (a, is obtained from the third equation of (9) and equation
(14), setting or'= 0 and solving the corresponding trigonometric
equation with respect to « =o for €, = €, = 0). To study the
stability of the internal dynamrcs of the closed -loop system (9)-
(14), we analyze the zero dynamics of o Assuming that
e(s)=e(s)=0 o0 =0 and substituting u from (14) in
the third equation of (9), we obtain the following equation for the
zero dynamics of the system

o = sin[( n + 1) ]
(19) B [cos(nar)
= f(a).

From the geometrical argument, one can show that

_ _sinl(n+1),]
(20) = [cos(na,)

To establish exponential stability of (19) to o, we use the
Lyapunov linearization method, ([13], Theorem 4.4., p.179). Let
o, be an equilibrium point for equation (19). Expandrng the right
site of (19) into a Taylor series about o and using (20), we
obtain

(1)  B'=-fla)fp
where

def
B=a-a,

and

_ g
f(a,.)—aa

a=q,

(22) __ncosa, +cos[n+1)e, Jcospiax,)

[ cos’ (na,)

is the derivative of f(o) with respect to o for o = a, . For
simplicity, we assume that n is a constant (0<n< 7). Choosmg
n = 0.69, (this value is adopted from the rear-to-front angle ratio
of the CYCAB vehicle[7]), it can be shown that fla) < 0 for
la |<1.75rad and the exponential stability at the origin of the
Imear equation (21) follows readily. Since the linearized equa-
tion (21) is exponentially stable, applying the aforementioned
theorem, we can conclude that the nonlinear equation (19) is
also locally exponentially stable in the neighborhood of a.
Remark 2: It should be noted that the bound of 7. 75rad for la |
(corresponding to the reference path with minimal curvature
radius), is much larger than the maximal admissible value for
the front steering angle of the CYCAB vehicle, which is
bk 0.4rad [6]. From a practical point of view, Ioc [ should
be sma!ler than 0.4rad and inequality floe) < 0is always
satisfied for a bi-steerable vehicle with n = 0.69.

5. Simulation Results

Simulation results were performed to illustrate the effec-
tiveness of the proposed controller. The algorithm developed in
Section 4 was implemented in MATLAB. A circular reference
path with radius p, = 5m was chosen for the simulations. The
parameters were chosen to be: the base length of the vehicle
[ =2m; n = 0.69; the control parameters k, =3 k, =02
Simulation results of the planar vehicle path in the X-y plane with
initial conditions e(0) =1m, e,(0) = Orad and o(0) = 0 are
shown in figure 2. The evoluhon of the error coordinates eyand
e, with respect to the reference path length S_is presented in
figure 3. The evolution of the front and rear steering angles «
and - nor with respect to the reference path fength s is pre-
sented in figure 4.

When the vehicle is traveling along a circle of radius
(in this case, the instantaneous center of rotation of the ver =z
body coincides with the center of the reference path). a circle
of minimal radius p,.. (p,.. = p,cosa), is drawn by a point
which is placed at the vehicle longitudinal axis between points
Aand B. This point can be seen as a point which cuts corner
during the turning maneuver. For p = 5m (the magnitude of
the reference radius which was used for simulation), one ob-
tains p,.. = 4.86m which is quite acceptable from a practical
view point.

6. Conclusions and Future Work

In this paper, a nonlinear path controller for a bi-steerable
vehicle has been presented. Exponential convergence to zero of
vehicle lateral and orientation errors with respect to the refer-
ence path has been achieved. It has been shown that the internal
dynamics, associated with a part of the system which has not
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Figure 2. Following a circular path. The path drown by
the vehicle guide point A in the x-y plane (solid red line),
and the desired path (dashed green line). Initial conditions

e(0) = 1m, e,(0) = 0 rad and o(0) = 0 rad
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Figure 4. Following a circular path. Evolution of the

front and rear steering angles o (green line) and -ner (red

line, n = 0.69), respectively. Initial conditions e,(0) = -7m,
e,(0) =-0.1rad and (0) = 0

be taken into account in the feedback control design, is locally
exponentially stable. The results have provided an efficient and
systematic approach to design a non-time based path controller
for a bi-steerable vehicle yielding invariant properties with re-
spect to the vehicle speed. Simulations confirmed the validity
of the analysis and controlier design.

Our future work will address the problems associated
with the dynamical extension of the proposed controller in the
presence of uncertainty in the dynamic model! of the vehicle.
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