
1 2011 19information technologies
and control

Figure 1. The base architecture of multithreading processor

Branch
predict

Instr
Cache

Pre-
fetch
Queu
e

 D
ecode

INQ

FPQ

LSQ

Int FU

Int FU

FP FU

FP FU

Int
Reg
Files

FP
Reg
Files

Data
Cache

PC

Fetch Dispatch Issue Writeback Commit

Threads

Key Words: Computer systems; Multithreaded processors; Thread-level
parallelism; Computer simulation analyses.

Abstract. The paper describes an attempt to evaluate the impact on
overall processor performance of some of the important parameters
in multithreading processing. The performance improvement is ana-
lyzed through simulation technique and the influence of number of
threads, number of processors in multi-core environment and pipeline
efficiency is presented in tables and figures. Some conclusions on the
possibility to reach better performance are made, based on the
presented results.

1. Introduction

The achievement of higher performance of computers was
always the main goal of computer specialists and constructors.
The history of computer evolution is a sequence of steps to
achieve more powerful computer systems. There are two main
directions to realize these objectives - a technological and an
architectural. Nowadays we can suggest that the possibilities of
the technological direction are almost exhausted because of the
limit of the element speed and their level of integration. That is
why the main beliefs for further increasing of the system perfor-
mance are connected with architectural changes that provide
parallel processing at different functional levels. In this paper we
evaluate through simulations the main characteristics having
strong impact on the computer performance at thread levels.

2. Simulation

Simulation [1] is one of the most powerful analysis tools

available to those responsible for the design and operation of
complex processes or systems. In an increasingly competitive
world, simulation has become a very powerful tool for the plan-
ning, design, and control of systems. No longer regarded as the
approach of “last resort”, it is today viewed as an indispensable
problem-solving methodology for engineers, designers, and man-
agers. We will use the simulation as the process of designing
a model of a real system and conducting experiments with this
model for the purpose of understanding the behavior of the
system and/or evaluating various strategies for the operation of
the system. We consider the simulation to include both the
construction of the model and the experimental use of the model
for studying a problem.

The simulator [2] which we use for evaluating of thread-
level parallelism in modern processors is CMP-Sim. It is a
multi-core micro architectural simulation environment with a
detailed cycle-accurate model for the key pipeline structures.
CMP-Sim extends the Simple Scalar toolset with accurate mod-
els of the pipeline structures. The description is focused only on
the changes made with respect to the Simple scalar. The goal
of CMP-Sim is to provide a flexible simulation framework in
which to conduct academic research related to modern com-
puter architectures. The program can be run in parallel onto
maximum 8 threads.

2.1. The Basic Modules of the Simulator

In the first stage Fetch, the bandwidth of the processor for
fetching of instructions from threads is modelled. Every thread
has owner PC (Program Counter) and thread id.

If branch instruction exists then next sequence of instruc-
tions is fetched from the other pointed location from branch

Simulation Analyzes of System
Characteristics and Parameters
for Multithreading Processors

T. Marinov, M. Marinova

1 201120 information technologies
and control

predictor. After fetching from instruction cache these instructions
are issued into prefetch queue. In the second stage Dispatch, the
instructions are decoded and analyses for data dependencies
between instructions in each thread are performed. After resolv-
ing data dependencies instructions are feed back into integer
queue, floating-point queue and load-store queue.

When fetched, instructions from the integer queue are feed
into integer pipelines for execution, and those from the floating-
point queue - into floating-point pipelines respectively. In this
stage thread id’s are transferred. The previous operation is re-
leased when functional pipelines are accessed, and then the
oldest operation with his ready operands is committed. The

results, generated from functional units (in Writeback stage and
Commit stage), are stored in register files (Int Reg Files and FP
Reg Files). In the last stage, Commit Stage, the instructions are
stored in program order, and the Reorder Buffer is “scanning”
for executed instruction into different threads.

3. Simulation Results

Four benchmarks are used for simulations [3] - LU, linpak,
FFT, hydro2d. As input parameters we use the number of threads
and the number of processors.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

LU linpack FFT hydro2d

1 thread
2 threads

Figure 2. Influence of number of threads over program execution (2 threads)

Figure 3. Influence of number of threads over program execution (4 threads)

number of threads

0,00

0,50

1,00

1,50

2,00

2,50

 LU linpack FFT hydro2d

benchmark

sp
ee

d

1 thread mp2
2 thread mp2
1 thread mp4
2 thread mp4
4 thread mp4

Figure 4. Processor performance in multi-core environment

Number Threads

0

0,5

1

1,5

2

2,5

3

LU linpack FFT hydro2d

Benchmarks

Sp
ee

du
p 1 thread

2 threads
4 threads

1 2011 21information technologies
and control

Integer
Issue

Load/Store
Issue

FP Issue

Integer IQ

FP IQ

Integer
reg

FP reg

LU 37,00 33,00 7,00 15,00 9,00 8,50 1,00
linpack 31,00 20,00 0,00 7,50 0,00 12,00 0,00
FFT 38,00 15,00 8,00 22,00 7,00 3,00 1,50
hydro2d 22,00 17,00 13,00 3,00 23,50 1,00 14,00
Average 32,00 21,25 7,00 11,88 9,88 6,12 4,13

Integer
Issue

Load/Store
Issue

FP Issue

Integer
IQ

FP IQ

Integer
reg

FP reg

LU 31,50 58,50 16,50 2,50 0,00 13,50 5,00
Linpack 24,50 34,50 1,00 0,50 0,00 0,00 0,00
FFT 22,00 26,00 15,50 5,00 0,00 8,50 2,00
hydro2d 17,00 42,50 30,00 1,00 4,50 4,00 21,50
Average 23,75 40,38 15,75 2,25 1,13 6,50 7,13

MP2.T2

0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00
40,00

LU linpack FFT hydro2d Average

Benchmarks

Fr
eq

ue
nc

y
of

 in
ef

fic
ie

nc
y

(a
s

pe
rc

en
ta

ge
 o

f t
ot

al

cy
cl

es
)

integer issue
load/store issue
FP issue
integer IQ
FP IQ
integer reg
FP reg

Figure 5. Frequency of pipeline inefficiency with 2-core (MP2.T2)

 MP4.T4

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

LU linpack FFT hydro2d Average

benchmarks

Fr
eq

ue
nc

y
of

 in
ef

fic
ie

nc
y

(a
s

pe
rc

en
ta

ge
 o

f t
ot

al

cy
cl

es
)

integer issue
load/store issue
FP issue
integer IQ
FP IQ
integer reg
FP reg

Figure 6. Frequency of pipeline inefficiency with 4-core (MP4.T4)

Table 1. Inefficiency in 2-core architecture

Table 2. Inefficiency in 4-core architecture

1 201122 information technologies
and control

3.1. Influence of Number of Threads over
Processor Performance

The figure 2 shows that when using two threads the per-
formance improvement of the processor is about one and a half
time.

The average improvement is less than two times and
depends from the application program. The best results are
achieved with benchmark hydro2d. Better improvement will be
possible if more sophisticated techniques for data and control
dependencies resolving are applied - register renaming, shelv-
ing and 3-way branch prediction.

3.2. Influence of Number of Processors for the
Overall Performance

The influence of number of processors is analyzed using
two processors (MP2) and four processors (MP4) with one-
thread and two-thread environment. The upper limit in overall
processor performance improvement is about 3 times, depend-
ing on the concrete application. These figures are quite prom-
ising for the introduction of the multithreading technique as base
architecture in multi-core environment.

3.3. Analyses of Pipeline Efficiency
In this paragraph we analyze in details the pipeline perfor-

mance in multi-core environment (instruction issue, functional
units, and instruction queues, renaming registers). The graphics
present the frequency of pipeline inefficiency with 2-core (MP2.T2)
and 4-core architecture (MP4.T4). In the tables for every one
of the seven parameters the percentage shows how long the
resource was unused during the overall execution.

The pipeline efficiency is a very important characteristic of
the multi-core architecture, having very strong impact on the
overall performance. Special care should be taken by the de-
signers in order to assure high percentage of pipeline usage for
large number of application programs.

4. Conclusions

Based on the simulation results we can assure, that the
involving of multithreading in multi-core processors increases
their performance in some extent, but the limit is lower than the
number of threads, depending strongly on the concrete applica-
tions. In some cases it is impossible to perform the instructions
speculatively without special techniques for data and flow depen-
dencies resolving. Also, special care should be taken by the
designers in order to assure high percentage of pipeline usage
for large number of application programs.

In any case we can assume, that the multithreaded pro-
cessing has the potential to double the processor performance
with upper limit in overall processor performance improvement
about 3 times for 4-core, depending from the concrete applica-
tion. These figures are quite promising for the introduction of the
multithreading technique as base architecture in multi-core
environment.

References

1. Conte, T., C. Gimarc. Brick. Fast Simulation of Computer Architectures.
Kluwer Academic Publishers, 1995.
2. Baldawa, S. CMP-SIM: A Flexible CMP Architectural Simulation Envi-
ronment. UMI, 2008.
3. Stallings, W. Computer Organization and Architecture. Prentice Hal,
2010.

Manuscript received on 7.03.2011

Todor Marinov is Ph. D. student at IITC-BAS. His intersts include:
multicore processor architectures, simulation tools, parallel program-
ming with CUDA C and OpenCL.

Contacts:
e-mail: todormarinov@yahoo.com.

Maria Marinova received the Ph.D. degree from Technical University of
Sofia - branch Plovdiv in 2006 in Computer Science. Currently, she is
an Assistant at Technical University of Sofia - branch Plovdiv, Department
Computer Systems and Technologies. Her research interests include:
multithreading programming, processor architectures and high perfor-
mance computers.

Contacts:
e-mail: m_marinova@tu-plovdiv.bg

