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Abstract. The Web service examples depending on the usage of the UDDI
are presented. Development of an application, which provides access to
various Web Service resource definitions, based on the UDDI registry, is
explained and presented. The main aim on this article is through the
analytical methods, of partial differential equation P.D.E. resolution, to
obtain an exact solution for the PDE presenting the LWR [Lighthill et
Whitham, 1955] et [Richards, 1956] traffic flow model and farther to
obtain the transfer function of this distributed plant. This model demon-
strates the distribution of vehicles on the highs ways and presents the
traffic flow as a distributed parameter system D.P.S. The LWR model is
a part of the macroscopic traffic flow models based on the fluid mechan-
ics, where the physical model is presenting by a non-linear hyperbolic (or
quasi-linear) PDE. The different analytical methods of solution are shown,
some of them approximate (wildly used classical methods of solution) and
some of them giving an exact solution called the Green function method
(integral kernel method). This analytical method of exact solution of the
PDE use this Green function as an integral kernel changing the differentials
equations in algebraic equations translating the phenomenon of the dis-
tribution of vehicles on the high ways. Using this exact method we obtain
directly the plant transfer function for the iraffic flow model viewed as a
DPS. The validation of all obtaining results is made by the comparison
analysis with the wildly used numerical solution.

1. Introduction

This paper is devoted to the analytical solution of the PDE
presenting the macroscopic traffic flow model as a DPS where
the main aim is to obtain the transfer function of the distributed
process. We need this transfer function for future control appli-
cations problems as the control of the speed, bottleneck control,
ramp metering control etc. This PDE take part of the non-linear
(or quasi-linear) first order PDE, this is actually the Euler equa-
tion [6, 7] expressing the mass conservation for incompressible
fluid, presenting the distribution of vehicles in the time and in
the unidirectional space. All the research and obtaining results
are important for the further research in this area of traffic flow
control, where all the problems concern the correct functionalities
of the process and the fluidity of the traffic flow during a period
of the time and for a section on the road.

2. Macroscopic Traffic Flow Model LWR

Relations

The LWR macroscopic traffic flow model presents the
static model of the fluid mechanic translating the movement of
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a fluid in a pipe. This first order PDE of two independent vari-
ables (time and unidirectional space) giving us the relation
between the density, the flow and the average speed of the traffic
flow by the following equations: conservation law (1), the speed
relation (2) and the fundamental diagram F.D. (3).

8Q(x,t)+a,0(x,t):0.
(1 dx ot ,
@) v(xt)=v, f(o(x1));
3) q(xt)=v(xt)p (x1).

The F.D. (3) is obtaining experimentally and gives all the
equilibrium statements, the conductor’s behavior and the road
situation. There is many proposition of approximation of (3)
proposed by Greenschield (1934), Cassidy (1998), Greenberg
(1959), Drake etc [1-5]. In the further calculation we will use
the Greenschield approximation model. The most important pa-
rameters in FD (figure 1) are the critical density, maximal
density, maximal value of the capacity (flow) and free speed.

v o

fluid
traffic

congestion
traffic

v=0 km/h

Figure 1. Greenschield fundamental diagram

As result of (1)-(3) we have (4)

(4) ———a’o(x’t)+p(x,z)—av (x't)+v (x,t)—a’o(x’t)=0
ot dx dx
(4) is the first order non-linear hyperbolic PDE whose
analytical resolution is the main aim of this paper. Each solution
requires fixing the working point by the initial condition /.C. and
the boundary conditions B.C. (5).
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The BC must to be homogenous for the whole space
Zinterval. The choice of the IC and BC are very important, because
they provide the particular solution of the PDE. To continue with
the solution using different analytical methods, the non-linearity
in the traffic flow model must be approached. This non-linearity
is in the velocity relation where the speed/density dependence
exists. So to attain the solution it is necessary to make an
approximation with the linear one, looking for the assure equi-
librium in the model.

Approximation of the non-linearity in the model in depen-
dence with the approximation approach for the speed relations
we can briefly show four cases [21-22].

1) Approximation with a constant v (x,7)=c: we con-
sider that the vehicles move with a constant speed value[21-22]

(6).

V(«\',f)=('
dpo(x1 £ ap(,r,z):()
dt D
{1‘5:;:(\) S Al te)) s £(s)

o i :
J.a'.\"=c (‘() Iclr’ =S e e e,

0

plxt)=f(x-ci)

The solution is a set of characteristics. In this case it is
a network of line whose slope is the constant speed value
(figure 2).
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Figure 2. Solution of the PDE with
a constant speed ¢

'2) Approximation with a space depend function
V (x,7)=c(x):we consider that the vehicles move with

a speed changing within along the road (7). We have a function
depending only of the space variable for the speed relation.

V- (x r)=eln)
82 Lot By

7 /\0(«“( s)- ’(S,)) =f(5\)=0o f“’(’-Cl-):
!(lx':c(,\')r_)[dr' = Jﬁdz-’:ojdr':
10g(%}j=ct st
p(xi)=re”

In this case the characteristics solution is a translation of
the initial condition (in the solution e.g. if it is an exponential
function) distorted within the space dependent speed.

3) Approximation with a time depend function
V (x,1)=c(1): we consider that the vehicles move with
a speed changing within the time interval (8) [21-22].

V% H) 2T
ap(x1) . 0 ) o
——a;_ﬂ(t)—_ax—_o‘

®) plx(s)ot{s) )= (s)=pm; e {£C;
Tclx‘zifc(f)dt' s mmpddegiGiec h) o

s=(x—/()g c'r) = ,O(x,/):f(.x‘—log Cri

Here as a solution a translation of the initial condition is
obtained, but with a non-constant speed.

4) Approximation with a function depending as
follows:

Vixt)=c(p), (9) [21-22]:

dp(xr) . dp(xt)
s +e(p)

(m{”fksapun>#xw=pwﬁﬁ

The conservation of the speed along the characteristics
solution of our PDE is obtained. So the result in the nonlinear
case is a characteristics solution of the PDE using the method
of lines whose slope depends on the initial conditions and which
are propagated along the space with a constant speed. For
trapezoidal view of vehicles distribution (trapezoidal input signal
for the system) the result is the time/space distribution as
shown on (figure 3).
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Figure 3. Solution of the DPE with a constant speed

3. Aproximate and Exact Analytical Methods
for Solution of PDE Describing the LWR
Traffic Flow Model

Approximate Solutions — Classical Analytical Solving
Methods

There are some analytical methods for obtaining the so-
lution of one PDE, where the non-linearity is already approxi-
mated. Figure 4 represents a scheme of different resolution
methods of PDE's — analytical and numerical as well. But in the
following research only the analytical methods will be treated
and a comparison and validation with the numerical ones will be
made.

PDE solving methods |

> Separation of variable E
e ————————

™™ Method of caractéristics g Runge-Kuutta method j
R———— R ————————

Discretization schems:
Lax-Wendrof
Lax-Friedrich
Riemann (Godunov)

Analytical methodes Numerical methods %

2 i
Finit element method «.3
—————————

™ Green function methode i

= Eigentfunction expantios i

Figure 4. PDE solving methods

| S———————

Exact Solution - Green Function Method

This is an exact method for solving linear, quasi-linear,
non-linear and all the different ODE and PDE with a boundary
condition [13-16], giving the distributed nuance of the problem,
where the Green function is used as a integral kernel for solving
the non-linear PDE of the LWR model [7, 11], [13-16]. The
main idea is based on the distribution theory of the potential
source, where the distribution of the vehicles on the high ways
can be replaced by a concentric source with a specific boundary
conditions. We look for a solution of the PDE presenting our
distributed parameter process for obtaining the transfer function
and applying it in the automation system using different control
strategies, which depend on the road network and the real
situation on it. The basic theory gives the next condition: if a

solution exists in one point of the space, we can write the
equation as a convolution product of a function ¢ (x) and a
differential operator D equal to another function called source
j(x) (10). Actually, we replace the function in the PDE by the

convolution product of differential operator and the searching
Green function.

Dipi(e) =iji()
(10) D =Z:()a,, %
p(x)=(G*j)(x)= [G(x=€) i(£) dé

In this way this function called Green can be found under
the condition that the point source is a Dirac delta function in
the space and in the time as is shown (11). In case of homo-
geneous PDE a distributed source should be applied and then
the non-homogeneous PDE solved decomposing the distributed
source by a set of local concentrated sources.

That means that a defined number of under space intervals
is obtained and the replacement of the initial condition (our
searching function) in each of them is searched. That could be
possibly viewed in the theory of distribution (figure 5) using the
Dirac Delta functions providing this property of translation. If on the
input point where the time and the space have an initial zero values
and there is a group (constant number) of vehicles they will appear
without losses in the next segment after a defined interval of time.

qin ( X, t)

Figure 5. Distribution effect of the initial
condition in the time and for each under-interval e.g.
step function translating constant number of vehicles
on the high way

Moreover there exist two ways to solve the PDE by the
Green function [10], [18], based on the inverse Laplace (Fou-
rier) transform LL(F).T. and on the Hadamard variation formula.
Thereafter, for the LWR model the first method with zero initial
and homogenous boundary conditions will be used.
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4. Numerical Example Using the Green Func-

tion Method and Algorithm Through the IL(F)T
1) For the LWR Model we Have (12) [1]-[6]

(12) -~ + V{2t = + % P(xt)=0;
0p(x1) _P(xr)) dp(xt)
9 +V’(l Fe ox
v, (1 o p("”)]
pl“lX

For the future calculations the constant value of the speed
V(p)-05V, m/s is used (13).

Jdt :
(13) Do (x1) ) F{ £v9 =6
DG (x & 1,7)= 8(x~¢) 8(1-7);

[i.{.OS V[ ijp(x‘[):j ()C,t),j ()C,l) :0;
ox
=j(xt

[i +05V, ai] G(x &) = 6(x=£)8(t7);

at
The IC and the BC are as follow (14):
i P(x0)=g(x)=0, 120,
i P(0.t)=p(L t)=p(t)=0, 0<Sx<L

2) The Green Function Solution (13) [10-16],[19]

The Green function presents the inverse of the operator
and the source convolution. Thus, moreover one can say that the
convolution product presents the Fourier transform of the func-
tion. So, an operational form of this PDE should be obtained. The
Laplace transform is applied and the following (15) is got:

(15) [p+0.5 V/di) G (% x, p) = 8(x—x) ek w0);
G Tdx
IC: g %,0) = 0.

After the nermalization (16) is valid

G s pleer o G x, p);

(16) i
p+0.5 V’d_ G { X% Pr= §(x—x0).
Tdx

The Fourier transform and the separation of the Green
function and the operator are shown on ()

( p G(£%, p) HOj v (i27f) G(f.x, p)j = &M,

~i2nf

I S e e

G €~pr e»l 27nf % 1 3 2 e
s Xy A et T it o 9
(£:%p) osv, 05y, (2gaf)

To obtain the final solution of the PDE using the Green
function through the integral kernel an IFT has to be made(18).
p(3=x)

05V,

u{x-x)e =7 ;

i &

ol - 0 g
ek

(18)
u [ 2eghiah

The final solution is given by (19)

]
Pl x—x%-—
P

05 V;

(19) G(x x,p) =ﬁ (=) e
Gl 8

The general form of the solution is shown on (20). The
obtained result represents a delay transfer function, depending
of the time and the space as well. This time/space delay func-
tion shows that there are no loses in the model, analogically
that there is a constant value vehicles speed and that the same
packet of vehicles has to be found within the next segment but
after defined time < . After equivalent transformations the clas-
sical form of transfer function (20) is reached:

! k e“[”n\n
e s = b :L,
( ; ) ( . ) Twe Pl

(20) (x-%) =L; V(xr) pilis (l—p(x,r) O )9
b =F (Lo V) Tye=te=f (L o V)

To complete the research the obtained analytical result
(20) of traffic function is to be used to construct an automation
system of LWR model. In the simulation example the density,
the speed and the length variation are shown and the results are
on (figure 5) and (figure 6). For the example the following initials
values are (21):

p(x1)
L=x-x=1[km]
V, = 80, 100, 120, 140,160 ], [ km/#h ].

= [01,02],[-];
21)
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Figure 6. Time responses characteristics for the obtained
Green solution of LWR traffic flow model
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Figure 7 a. Frequency responses: Nyquist 2D -characteristics
for the obtained Green solution of LWR traffic flow model
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Figure 7 b. Frequency responses: Nyquist 3D -characteristics
forthe obtained Greensolution
of LWR traffic flow model
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Figure 7 c. Frequency responses: Nyquist - characteristics
for the real corposants for the obtained Green solution
of LWR model
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Figure 7 c. Frequency responses: Nyquist -characteristics
for the imaginary corposants for the obtained Greensolution
of LWR model
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Figure 8. Frequency responses: Bode-characteristics for the
real and the imaginary corposants for the obtained
Green solution of LWR model
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Figure 9.a. Frequency resp.: Nichols-characteristics for the
realand the imaginary corposants for the obtained
Greensolution of LWRmodel

9. Simulation Results of the Obtained Trans-
fer Function Presenting the LWR Traffic Flow
Model as a DPS

Some important point of this research is to confirm the
obtained results. The analytical solution precision has been
proved using other, wildly known analytical solution methods, but
it was more interesting to prove it by simulation of the DPS
transter function in an automation system.

For the aims of the simulation research the initials con-
ditions (21) are set and afterwards the approximation is implied
which leads (19) to (20). The synthesis of the simulation gives
the time (figure 6) and the frequency responses — Nyquist
(figure 7a.), Bode (figure 8) and Black-Nichols (figure 9a) and
3D (figure 9b.).

From the simulations results one can conclude that the
traffic flow model represents one DPS where the density of the
vehicles on the road is shown by the step response character-
istics and by the frequencies as well. The different simulated
models give the information about influence if the speed varia-
tion and for 2 different points of the FD for the same length of
road section. One can conclude that the model is correct be-
- ‘cause of the stabilities performances observed on all the char-
acteristics (figure 5)-(figure 8).

The hypothesis of this different constant value of the speed
means that the vehicles move on the road without loses. That
corresponds to a delay transfer function of the LWR macro-
scopic traffic flow model plant as was obtained by the analytical
solution as well,

Conclusion

This paper proposes an extended study of the analytical
method and algorithm of solution of the PDE where the plant is
the macroscopic traffic flow model wielding as a time and space
DPS. Because of the property of this distributed plant model (the
fact that the distribution of vehicles on the high ways is a
distributed system) and the type of the equation which is a non-

Nctols PlotL WR-mods! plant
~

P/ Pu=01; L=Tkm y
i b
v, =[8, 100, 120,140, 160 ] kmsn]- = <

-150

Fraiaey (aike) ¥ Prase(ceg

Figure 9.b. Freq. resp.: Nichols 3D-characteristics for the
modul andthe phase corposants forthe obtained
Greensolution of LWRmodel

linear PDE to obtain an exact solution a specific mathematical
method called Green function and the distribution theory are
used.

Farther, a different approximation of the non-linearity was
revealed. An important step for obtaining the exact solution is the
choice of the I.€. and B.C, fixing the working point. Using this
method the transfer function of the DPS of the LWR traffic flow
model is obtained. For validating all the results a simulation
analysis was proposed [18-21 1:
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