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Abstract. The Web service examples depending on the usage of the UDDI
are presented. Development of an application, which provides access to
various Web Service resaurce definitions, based on the UDDI registry, is
explained and presented. The main aim on this article is through the
analytical methods, of partial differential equation P.D.E. resolution, to
obtain an exact solution for the PDE presenting the LWB fLighthill et
Whitham, 19551 et [Bichards, 1956] traffic flow model and farther to
obtain the transfer function of this distributed plant. This model demon'
strates the distribution of vehicles on the highs ways and presents the
traffic flow as a distributed parameter system D.P.t. The LWR model is
a part of the macroscopic traffic flow models based on the fluid mechan-
ics, where the physical model is presenting by a non-linear hyperbolic (or
quasi-linear) PDE. The different analytical methods of solution are shown,
some of them approximate (wildly used classical methods of solution) and
some of them giving an exact solution called the Green function method
(integral kernel method). This analytical method of exact solution of the
PDE use this Green function as an integral kernel changing the differentials
equations in algebraic equations translating the phenomenon of the dis-
tribution of vehicles on the high ways. Using this exact method we obtain
directly the plant transfer function for the traffic flow model viewed as a
DPS. The validation of all obtaining results is made by the comparison
analysis with the wildly used numerical solution.

1 . lntroduction
This paper is devoted to the analytical solution of the PDE

presenting the macroscopic traffic flow model as a DPS where
the main aim is to obtain the transfer function of the distributed
process. We need this transfer function for future control appli-
cations problems as the control of the speed, bottleneck control,
ramp metering control etc. This PDElake paft of the non-linear
(or quasi-linear) first order POE this is actually the Euler equa-
tion [6, 7] expressing the mass conservation for incompressible
f luid, presenting the distr ibution of vehicles in the t ime and in
the unidirectional space. All the research and obtaining results
are important for the fufther research in this area of traffic flow
control, where allthe problems c0ncern the correct functionalities
of the process and the fluidity of the traffic flow during a period
of the time and for a section on the road.

2. Macroscopic Tralfic Flow Model LWR
Relations

The LWR macroscopic traffic flow model presents the
static model of the fluid mechanic translating the movement of
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a fluid in a pipe. This first order PDE of two independent vari-
ables (time and unidirectional space) giving us the relation
between the density, the flow and the average speed of the traffic
flow by the following equations: conseruation law (1), the speed
relation (2) and the fundamental diagram F.D. (3),

O o ( x . t \  O o ( * , t \(1)  T*T=o ' ,
( 2 )  v  ( x , t ) = v , ,  f  ( p ( , , , ) ) ;

( 3 )  q ( * , t ) = v ( r , t )  p  ( t , t ) .

Ihe F.D. (3) is obtaining experimentally and gives all the
equilibrium statements, the conductor's behavior and the road
situation. There is many proposition of approximation of (3)
proposed by Greenschield (1934), Cassidy (1998), Greenherg
(1959), Drake etc [1-5]. In the further calculat ion we wil l  use
the Greenschield approximation model. The most important pa-
rameters in FD (figure 7) are the critical density, maximal
density, maximal value of the capacity (flow) and free speed.

Figure 1. Greenschield fundamental diagram

As result of (1)-(3) we have (4)

g )  a  p  t x t )  +  p (x .1  ;  
avL , ' r  )  +v  ( x , t )ap  ! * , , )  =o

d t  d x  d x

(4) is the first order non-linear hyperbolic PDE whose
analytical resolution is the main aim of this paper. Each solution
requires fixing the working point by the initial condition /.C. and
the boundary condit ions 8.C. (5).
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,  ( * ,  t  ) . .  , o , ,  =  p  ( * ,  t  ) ,  , , , 1  =

( 5 )  u ( o , t ) , . = , , ,  =  p ( * , r ) , = , , r  =

,  ( L , t ) , , , ,  =  p ( r , r ) , , , , =

The BC rnust to be homogenous for the whole space
. interval. The choice of the lC and BC are very important, because
they provide the particular solution of the PDE.To continue with
the solution using different analytical methods, the non-linearity
in the traffic flow model must be approached. This non-linearity
is in the velocity relation where the speed/density dependence
exists. So to attain the solution it is necessary to make an
approximation with the linear one, looking for the assure equi-
librium in the model.

Approximation of the non-linearity in the model in depen-
dence with the approximation approach for the speed relations
we can briefly show four cases 121-221.

1)Approximat ion wi th a constant  V ( r , t )=t .  we con-
sider that the vehicles move with a constant speed valuel2l-221
(6)

V  ( x , t ) = 6

a p ( x , t )  
* r O p ( * , , )  = g

0 t  0 x

;  ( s  ) = 5

; i ; i = ;  +  P ( x  ( ' ' ) ' ' ( ' ) )  = Y ( ' ' )

d  x '  = r  ( r ) ' ! a r '  = =  r - . r =  c  t  + . \ =  x - c t

( r , , ) =  1 '  ( x - c  t )

The solution is a set of characteristics. ln this case it is
a network of line whose slope is the constant speed value
(figure 2).

Figure 2. Solution of the POEwith
a constant speed c

2) Approximation witi a spaee depend function
v (x, t )=. (r ); we consider that the vehicles move with

a speed changing within along the road (7). We have a function
depending only of the space variable for the speed relation.

V ( " ' t ) = r ' ( x ) ;

d p ( x , r ) _ . . t  _ , , 9 9 ! . r )
f+c ' ( . t ) - f r r=o :

p  (  * ( ' ) ,  r ( ' ) )  =  /  ( s  ) =  p o  e ' '  ( r . c .  ) ;( 7 )  
' \
' [ , t  

* '=c (x) ' [a t '  =  
i#  

d  x '  = ' lo , '=

In this case the characteristics solution is a translation of
the initial condition (in'the solution e.g. if it is an exponential
function) distorted within the space dependent speed.

3) Approximation with a time depend function
v (x, t ) = . (t ) . we consider that the vehicles move with

a speed changing within the time interval (8) [21-22].

V  ( * , t ) = . ( r ) ;

a p ( * , r ) ,  , - ,  0  p ( x  t \

a , 2 + c ( r )  
- # = o '

( 8 )  p (  * ( r ) ,  r ( r ) ) = f ( r ) = p o  e - ' ( r . c . ) :

-  x - s = / 0 g  ( c t ) : )

s = ( x - l o g  c , t )  >  p ( * , t ) -  f ' ( r - l o g  c ' t ) .

Here as a solntion a translation of the initial condition is
obtained, but with a non-constant speed.

4) Approximation with a lunction depending as
follows:

v  (x , r )= ' (p ) ,  (9 )  121-221 :

v (x,  r)=. (  p) -  U#+c ( o) &f i4=o'
(  -  t  - t -

( e )  l " ) ' l = ;  = p ( s , o )  = 7 ( , ) =  p ( x , r ) ;
L  r  ( t ) =
' ! d * '  

= ' 1 ,  (  o ( " , r )  )  a , '  -  s o l u t i o n : , r - , r  =  y  ( s ) u
r 0

The conservation of the speed along the characteristics
solution of our PDEis obtained. So the result in the nonlinear
case is a characteristics solution of the PDEusing the method
of lines whose slope depends on the initial conditions and which
are propagated along the space with a constant speed. For
trapezoidal view of vehicles distribution (trapezoidal input signal,
for the system) the result is the time/space distribution as
shown on (figure 3).

,  , l * 0
/  (  *  )  

{  = o

{  " ' ( ' ) * q " '
l 0 , B C

{ u ' ( '  ) *  ' t " " '

I O , B C

/ r \

t o p l  
^  

l = c t  + s - x e - "
\ r /

P ( * , t ) = r r ' '
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l d r ' = l c ( t \ d t '
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Figure 3. Solution of the DPEwith a constant speed

3. Aproximate and Exact Analytical Methods
for Solution 0l PDE Describing the LWR
Traffic Flow Model

Approximate Solutions - Classical Analytical Solving
Methods

There are some analytical methods for obtaining the so-
lution of one POE where the non-linearity is already approxi-
mated. Figure 4 represents a scheme of different resolution
methods of PDEs- analytical and numerical as well. But in the
following research only the analytical methods will be treated
and a comparison and validation with the numerical ones will be
made.
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Figure 4. PDE solving methods

Exact Solution - Green Function Method
This is an exact method for solving linear, quasi-linear,

non-linear and all the different ODE and PDE with a boundary
condition [13-16], giving the distributed nuance of the problem,
where lhe Greenfunction is used as a integral kernelfor solving
the non-l inear PDE oI the LWB model 17,111, [13-16]. The
main idea is based on the distribution theory of the potential
source, where'the distribution of the vehicles on the high ways
can be replaced by a concentric source with a specific boundary
conditions, We look for a solution of Ihe PDE presenting our
distributed parameter process for obtaining the transfer function
and applying it in the automation system using different control
strategies, which depend on the road network and the real
situation on it. The basic theory gives the next condition: if a

solution exists in one point of the space, we can write the

equation as a convolution product of a function (P(;t') and a

differential operator O equal to another function called source

.r (" ) (10), Actually, we replace the function in the PDE by the

convolution product of ditferential operator and the searching
Greenfunction.

o , P ( r )  = . i  ( . . )

(10) D =f  u, ,  t t "

q  ( . , ) = (  c ' * ;  ) (  . ,  ) =  j o  ( . - t )  . i  (  €  ) , t t

In this way this function called Green can be found under
the condition that the point sgurce is a Dirac delta function in
the space and in thetime as is shown (11). In case of homo-
geneous PDE a distributed source should be applied and then
the non-homogeneous PDE solved decomposing the distributed
source by a set of local concentrated sources'

That means that a defined number of under space intervals
is obtained and the replacement of the initial condition (our

searching function) in each of them is searched. That could be
possibly viewed in the theory of distribution (figure 5) using the
Dirac Detta lunctions providing this property of translation. lf on the
input point where the time and the Space have an initial zero values
and there is a group (constant number) of vehicles they will appear
without losses in the next segment after a defined interval of time.

I  o c  ( " . r ) = d ( ' ) a ( t )
( 1 t 1  r o r  

t  o c  ( x - y ,  t - r )  =  d  ( * - y ) 6  ( t - r )

q, , , (x , t )

| ::::: l,\

Figure 5. Distribution effect of the initial
condition in the time and for each under-interval e.g.

step function translating constant number of vehicles
on the high way

Moreover there exist two ways to solve the PDE by the
Greenfunction [10], [18], based on the inverse Laplace (Fou'
nbr)transf orn l.L(F).L and on the Hadamardvariation formula.
Thereafter, for the t l,l/B model the first method with zero initial
and homogenous boundary conditions will be used.
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4. Numerical Example Using the Green Func-
tion Method and Algorithm Through the lL(F)T

1) For the LWR Modet we Have (tZ) t lJ-t6l

(12) U#! + v (*,,) UP. ry,p o(x.r)=s,
uP.u,[ ' \ -*))  *#!.

r ( x , r ) )
p * )

u " , [ '
0 x P ( x , r ) = 9 .

For the future calculations the constant value of the speed
v  (  p  ) -  0 .5  v  ,  mf  s  i s  used  (13) .

2) The Green Function Sotution (19) t10-16],[1gl
The Green function presents the inverse of the operator

and the source convolution. Thus, moreover one can say that the
convolution product presents the Fouriertransform of the func-
tion. so, an operationalform of this poEshould be obtained. The
Laplace transform is applied and the following (1 5) is got'

r \
(15) 

[  
r+o.s v, f i ]  o ,  x,  4u p) = 6(*-4,)  , - , , ,+p, ( . r ,0);

/

,; ,.
After the normalization (16) is valid

=  G ( * ,  x u ,  p ) ;

G ( * , x o , p )  = t ( " - r o ) .

The Fourier transform and the separation of the Green
function and the operator are shown on (17):

To obtain the final solution of the poE using the Green
function through the integral kernel an IFf has to be made(lg).

_z( ' - . t )
/ \ 0.5V.

u \ x - x o ) e  '  ;

The final solution is given by (19)

( 1 9 )  G ( n 4 , , p ) x-h) e

The general form of the solution is shown on (20). The
obtained result represents a delay transfer function, depending
of the time and the space as well. This time/space delay func-
tion shows that there are n0 loses in the model, analogically
that there is a constant value vehicres speed and that the same
packet of vehicles has to be found within the next segment but
after defined time r . After equivarent transformations the clas-
sical form of transfer function (20) is reached:

G ( r ,  xu,  p  )  =W (x,  x1y,  p)  = W,T,,** P+l

( 2 0 )  ( " - " , , )  = t ;  v ( x , t )  = V ,  ( t - p ( r , r ) f , " , i  ) ;
k r *o=  J  ( t ,P ,V , ) i  T , . *o=  T twR= J '  (  L ,  p ,  V , ) .

To complete the research the obtained analytical result
(20) of traffic function is to be used to construct an automation
system of LWB model. In the simulation example the density,
the speed and the length variation are shown and the results are
on (figure 5) and (figure 6). For the example the following initials
values are (21):

P ( x ' t \
p ^ :  

=  [ 0 . 1 , 0 . 2 ] , [ _ ] ;
( 2 1 )  

L = x - . t r , -  t l t < m l ;

v, = | go, 1oo, r2o, 140,160 ] ,lnmtn).

(1 8)
b ( " 4 , P )  =

u  (x -4 )  -  1 .

I

0.5v1

(1 3)

( 1 4 )

I ,=o^5y ,  (

[ * -or  u ,  + l  p(* , t )=  j  ( * , , ) ,  j  ( * , / )  =  o ;
\ d r  

' '  d * )

D  p  ( * , t )  -  j  ( r , t ) ,  j  ( x , t )  _ 9 .

D c  ( x ,  € ,  t , r ) =  6 ( * - € )  6 ( t - r ) ;

[+  -  o .sv ,+ ]  
"  

( * ,€ , t , r )  -  6 ( * -4 )  6 ( t - r ) ,
[ d r  

' d * )

The /C and the 

'BC 

areas fol low ( '14):

I  P ( * ,0 ) -R( " )=0 ,  /  >  o ;

L p ( 0 ,  t ) - p ( t  , ) - p ( / ) = 0  o < x < L

G ( *, xo,'p) e,"

(16) 
(p+o.s , +)
\  a x )

{ , , ( r , - \ , r ) ) . ( *  
u ,  ( i zny )  bU ,^d )  =  e i2o l v :

(1 i )  G( f  ,  4 , ,  P)

G( f ,n ,p )

,  
i l r l  "u
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