A Fixed-Point Approach towards Efficient

Models Conversion

Key Words: Pushdown automaton, context-free grammar; conver-
sion; fixed-point approach.

Abstract. Formal languages have different models of language
representations, such as acceptors and generators. This paper
refers to pushdown automata as acceptors and to context-free
grammars as generators. Some applications are better specified
using a model, while other applications work better using an-
other model. Our paper deals with a conversion of an arbitrary
pushdown automaton to a context-free grammar based upon a
fixed-based approach which results in an equivalent context-free
grammar of significantly reduced size. In addition, this conver-
sion turns out to be very conducive if the input pushdown au-
tomaton is in a special form, which we introduce as a new class
of popping static pushdown automata (PSPDA). We prove that for
a PSPDA automaton, our conversion algorithm has a linear time
complexity, and the resulting context-free grammar has a linear
size of the entire representation of the PSPDA. Moreover, we
show that the PSPDA class has the same expressive power as
the traditional pushdown automata.

1. Introduction

A model is in general a human construction or a rep-
resentation of some real world systems. A typical model has
an information input, an information processor, and an output
of expected results. This paper refers to formal languages
[11], an area that uses both acceptors and generators as
models to characterize a language. Formal languages [8]
have many acceptor models, such as finite automata [15],
pushdown automata [1], Turing machines [7], and many
generator models, like regular grammars [15], context-free
grammars [1], context-sensitive grammars [7], and phrase-
structure grammars [7]. In fact, as a different important
intermediate model we mention the language equations able
to describe an arbitrary formal language [12], although their
scope is beyond this paper. Some applications in formal
languages work better with acceptor models, while others
work better with generator models. Hence, there is a need
to translate a result expressed in a model to another target
model. However, in order to preserve the complexity results,
the conversion between the two models should be done
efficiently, e.g., in a polynomial time complexity, preferably
in a linear time complexity.

It is very important that these conversions between
various models be done efficiently and in a synchronized
way. For example, IBM researchers have recently developed
a prototype system incorporating avatars (i.e., electronic

S. Andrei, H. Koh

image representing and interpreting a computer user) that
translate speech into the sign language [9]. The SiSi (that
means ‘Say it, Sign it') system uses first speech-recognition
technology to convert a conversation into text. Then the
text is passed through a translation software module, which
conducts syntactic parsing, lexical analysis, and other pro-
cesses to convert the content into grammatically correct
British Sign Language. The system then sends commands
written in the Sign Gesture Markup Language for working
with avatars to the computer’s user.

One of the most important conversions between two
models in formal languages is the one from a pushdown
automaton and a context-free grammar [1]. This conversion
is important because there exist many algorithms for decid-
ing questions or computing data about context-free lan-
guages involving these two models. Unfortunately, the tra-
ditional conversion from a pushdown automaton to a con-
text-free grammar has an exponential time and space com-
plexity [5]. One way to improve this drawback is to define
an equivalent pushdown automaton that avoids long strings
of stack symbols. For instance, by having in the input a
pushdown automaton with at most two symbols, the equiva-
lent context-free grammar has a size of O(n®), where n is
the length of the entire representation of the pushdown
automaton [5].

The above models, pushdown automata and context-
free grammars, have been also considered from the per-
spective of the bisimulation problem of system specifica-
tion, that is, the problem of testing whether two or more
processes have the same behavior. Caucal [2] showed that
the bisimulation problem is decidable for the class of prefix
transitions graphs of reduced context-free grammars. In
addition, Caucal proved that for the deterministic case, the
bisimulation problem is inter-reducible to the equivalence
problem of deterministic pushdown automata. Recently,
Jancar and Srba [6] proved the undecidability of weak
bisimilarity for unrestricted popping pushdown processes,
an open problem formulated by Senizergues [13] and
Stirling [14].

This paper presents an efficient algorithm for doing
the conversion from a pushdown automaton to a context-
free grammar based on a fixed-point approach. Fixed-point
approaches are also very useful for other related problems
in formal languages (e.g., elimination of null and chain
productions, finding the set of accessible states [5]), propo-
sitional and first-order logic (e.g., Robinson resolution [10]),
deductive databases (e.g., Datalog [4]), graph theory

—
(\J

12 2 2010

information technologies
and control



(reflexive and transitive closure of a relation, stable matchings
[3]), and so on.

There are many formulations of the fixed-point ap-
proach, but the main idea is the same. Briefly, an initial set
of elements satisfying a property is given, and new ele-
ments satisfying another property are added (it could be the
same property as for the initial set) until there are no more
new elements to be added. To be more formal, let us con-
sider a finite set of elements M. The set of all subsets of
M is denoted as P(M) = {M' | M' O M}. Let us denote
by |X| the number of elements of set X. It is known that
[P(M)| = 2M.. Since M is a finite set of elements, it follows
that P(M) is a finite set, too. Let us now consider an
operatorT: P(M) — P(M) such that T(F) = F O{x| x is
a new element obtained as a combination of previous ex-
isting elements from M}.

Let us consider an initial set of elements denoted by
F,. We apply the operator T to F and obtain F, = T(F,).
This process is then repeated for any k > 2 such that F,
= T(F). Given V, and V, two arbitrary subsets of M such
that vV, O V,, then we get T(V)) O T(V,). It follows that
F, O0F,0F,O.. OP(M), so the operator T is monotonic.
Since P(M) is a finite set, it results that there exists a
k O N (in this paper, N denotes the set of positive integers)
such that F,_ = F_ . This means T(F) = F,. It is easy to
check by mathematical induction that T(F,,)=F, 0 = 1.
That is why F,_is also called the least fixed point of T.

The contribution of this paper is two-fold:

» We define a new conversion technique from a push-
down automaton to a context- free grammar based on a
fixed-point approach. Compared to the traditional approach,
the obtained context-free grammar is small in the sense that
all its variables are accessible.

e We define a new normal form of pushdown au-
tomata, called popping static pushdown automata (PSPDA),
for which the conversion to a context-free grammar has a
linear time complexity. The resulted context-free grammar
has a linear size of the entire representation of the PSPDA.
Moreover, we show that this new normal form has in fact
the same expressive power as the traditional pushdown
automata.

Section 2 describes the concepts of pushdown au-
tomata, context-free grammars, and their conversion. More-
over, a general fixed-point algorithm is defined. A correct-
ness result and complexity issues are also presented. Sec-
tion 3 defines a new normal form for pushdown automata,
for which the previous algorithm leads to a linear size of the
equivalent context-free grammar. Conclusions and Refer-
ences end this paper.

2.The Fixed-point Based Conversion
Algorithm

We assume the reader is already familiar with push-

down automata and context-free grammars related con-
cepts, but for the sake of the presentation, we shall give
some useful definitions. A pushdown automaton (PDA),
denoted by A, is a 7-tuple A= (Q, %, I, §, q, z, F),
where Q is the set of states, > is the finite set of input
symbols, I is the stack alphabet, d is the transition func-
tion, q, is the start state, z, is the start stack symbol, and
F is the set of accepting states. If (p, a) O &(q, a, x), then
for all strings w O >[Jand B O Jwe get the following
one-step transition between pushdown configurations
(g, aw, XB) © (p, w, af). The language accepted by A
by final state is L(A) = {w | (a,, W, 2)) & (q, & a)}, wpere
g O F, gis the empty word, a is any stack string, and © is
the reflexive and transitive closure of the transition relation
(z). The language accepted by A by empty stack is
N(A) = {W (@, W, ) @ (g & &)}, for any state q.
It is known that the class of languages L(A,) for some PDA
A, is the same as the class of languages N(A,) for some
PDA A,

A context-free grammar (CFG), denoted by G, is a
4-tuple G = (V, Z, S P), where V is the set of variables,
2 the set of terminals, Sthe start symbol, and P the set
of productions. Let a A B be a string with
a, O O D, AOV, yO(V ON*, and
A - yaproduction of G. Then a A B aypis
called a derivation step of G. This derivation relation can
be extended to its reflexive and transitive closure,
denoted [ . The language of G, denoted L(G), is
LG)={w|wOT* SE w}.Avariable X is accessible
if there exists a derivation from the start symbol to
a string that contains X , that is, S [J a X 3, where
a, O (V OT)*.

The traditional conversion from a PDA to a CFG is
done in many formal languages textbooks, including [5,1].

Theorem 2.1. (Theorem 6.14 from [5]) If Ais a
pushdown automata, then N(A) is a context-free lan-
guage.

Proof In Appendix.

Remark 2.1. In the above proof, the equivalent
context-free grammar has |2] + |Q|% |l variables and
|QJ* productions for a pushdown transition of type i).
Also, we must add the productions obtained at point ii)
and {S - (q,, z, 9 / q [J Q}. Let us denote by n the
size of the entire automaton representation. Since k can
be quite close to n, it follows that the total number of
productions of G can be n". There already exist efforts
to reduce this exponential complexity. For instance, one
way to reduce this high complexity is to split all the
transitions containing long strings of stack symbols into
sequences of at most n pushdown transitions that each
pushes one symbol. This will lead to an equivalent CFG
of O(n®) size (details in Section 7.4.1 of [5]).

The next example illustrates the complexity of the
equivalent CFG to a PDA.

information technologies
and control

2 2010 13



Example 2.1. For the context-free language
L = {01%/ n = 1}, we consider the pushdown automa-
ton A= ({q, 9, q,}.{0, 1},{x 7, J q, z D), where
J is given by:

1. 9(q, 0, 2) = {(9, X X X 2)};
2. 3(q, 0, x) = {(q,, x x x X)};
3.8a, 1, x) ={(q, &)}
4. (0, 1, X) = {(q, &)};

5. 8(a, & 2) = {(d, &)}
According to the above proof, we obtain an equiva-
lent grammar having 20 variables and 168 productions.

As anticipated in Remark 2.1, the equivalent CFG

Algorithm |

generated by the traditional algorithm can be very large.
Example 2.1 shows the conversion from a PDA having 3
states, 2 input symbols, 2 stack symbols and 5 transitions
to a quite large CFG having 20 variables and 168 produc-
tions. The issues in the equivalent CFG are that many of the
variables are not accessible by derivations from the start
symbol S or some of the variables do not generate the
terminal words.

In order to solve these drawbacks, we describe below
Algorithm | to illustrate our fixed-point approach. This
provides as an output a much smaller CFG equivalent to the
given PDA. The CFG provided as output has only acces-
sible variables.

The input: A= (Q, Z, T, § q, z, D) a pushdown automaton;
The output: G = (V, Z, S P) an equivalent context-free grammar, with only accessible variables;

The method:
1. V=0, P =0

for (all (q,, &) 0 &(q, a, X), where a [ X [3{ €}) do begin

2.
3. V.=V, 0{[q X ql};
4. P =P U{[g X q] - &

end
5. k:=1;
repeat
6. Vk+1 = Vk; Pk+l = Pk;
7. for (@l (0,2 z,...2) 035 (g a X), wheread 203 {&}) do begin
8. ok := true; tempq :=q,;
9. for i :=1, i<mandok;i:=i+1)do
10. if (-’ such that [tempg, z , 7] O V,,,) then ok := false
else begin
1. temp[i] := q'; tempq == g
end
12. if ok then begin
13. V.., = V,,,0{[a, X, temp[m]]};
14 P.,:=P.,0 {[a, X temp[m]] -[q,, z, temp[1]][temp[1], Z, temp[2]] ... [temp[m - 1], Z , temp[m]]}
end
end ;
15. k:==k+1

16. until V, =V, , and P, = P,_;

17. it (O[q, z, q] O V,) then begin

18. V, =V, (S,

19. for (dl [q,, 2, q] OV,) do

20. P =P 0O{S - [q, z, d}
end;

21. V=V, P =P,

14 2 2010

information technologies
and control



We need some internal definitions, useful to combine
the variables of the equivalent CFG and to prove Algorithm
I’s correctness.

Definition 2.1. We consider the operator, - , useful
for triplets composition, thus:

o1 (QxTx QP -~ QxTrxQ
. =J g, wqlifg=q

[a, v, Gl ° [a V. a { Ql othérwisse

Using the left associativity, we can extend the opera-
tor o to three or more triplets, that is, (Q x ' x Q)™ -
QxT%x Q, mz= 3, such as:

(G, U, gle [, U, g .. o [Q), U, Q] =
([a,, u, g lda,’, u, gle.cld, U ., gD, u, gl

Theorem 2.2. (correctness and termination of
Algorithm 1) Let A= (Q, 2, I, 4, q, z, @) be a
pushdown automaton which is input for Algorithm 1.
After the execution of Algorithm I, then the following
facts hold:

(i) G is equivalent with A (i.e., L(G) = N(A));

(ii) The number of iterations of the Algorithm | is
finite (k < |QJ? « |T|).

Proof In Appendix.

Example 2.2. We consider the PDA from Example
2.1. for finding the corresponding equivalent grammar,
using Algorithm | instead of the traditional conversion
algorithm.
V= A{la, x ql, [0, x al, [, z g}
P;L: {[q11 X, qz] - l, [q21 X, qz] - l, [q21 Z, qo] - E},
V, =Vl O {[q, z q], [a, X g,};
P,=P,f[q,z q] - 0[a, x, q,][q, , X, q,][q, X, q,][a, z q],

(g, % d,] - O[a, X, g]la, % q,][a, X q,[a, x a,l};
V, =V,

V, =V, O{S;

P,=P,0{S - [q, z q]}.

Therefore, following Algorithm |, we obtain an
equivalent grammar with 6 rules and 5 variables (in-
stead of 168 rules and 20 variables obtained using the
usual algorithm).

As a remark regarding Example 2.2, the number of
productions of the equivalent CFG is less than the equiva-
lent context-free grammar provided by the traditional con-
version algorithm for the same PDA. Section 3 presents a
special type of pushdown automata for which Algorithm |
provides a linear-size equivalent CFG in a linear time.

A different way to reduce the size of the equivalent
CFG is to consider a restricted PDA in the input. Exercise
6.2.8 from [5] calls a PDA restricted if its transitions can
increase the height of the pushdown stack by at most one
symbol. That exercise asks to show a way to convert any
PDA to a restrictive PDA. The idea of this conversion is to
break the pushing of a long string of k stack symbols into

a sequence of at most k — 1 transitions that each pushes
one symbol. These k — 1 new transitions will introduce k
— 2 new states, so the size of the equivalent restricted PDA
is definitely larger than the original PDA. Given as input of
their conversion algorithm a restricted PDA of length n, the
equivalent CFG will has a O(n®) size. The reason for that
is the n PDA transitions will generate O(n®) productions is
because there are only two states that need to be chosen
in the productions that come from each transition (Theorem
7.31 from [5]).

Next section defines a different approach than the one
from [5] for obtaining even smaller CFGs equivalent to
another special kind of PDA.

3. Popping Static Pushdown Automata

This section defines a special form of pushdown au-
tomata that lead to linear size for the equivalent CFGs. It
refers to the popping transitions of a pushdown automata.
These are transitions that remove the top of the pushdown
stack. More formally, a transition (¢, &) O & (g, a, X) is
called a popping transition. We say that a popping transi-
tion is static if and only if for all gC0 Q and x O , there
exists at most one state g'J Q such that (', € O J (q,
a, xX), O a X . We say that a pushdown automaton is
popping static if and only if its popping transitions are
static (we denote by PSPDA a popping static PDA). In
other words, for all a, b [ the transitions (', €) O d (q,
a, X) and (q", &) O 6 (g, b, X) lead to a popping static
pushdown automaton if and only if g'= q".

Like many other models in formal languages, push-
down automata have two views: a syntactical view and a
semantical view. Since we introduce a new kind of non-
trivial class of automata, it makes sense to compare this
class with the traditional classes of automata.
Given two automata A = (Q,, 2, I, 9, q,,, Z,,, F,) and
A =Q, 2, T, 9, q, 4, F,), we say that A is
syntactically equal with A, (denoted as A, = A) if and only
if Ql = Qz' zl = zzf rl = rz’ 61 = 62’ qO,l = qo,z’
Z,, = Z,,and F = F, In other words, two automata are
syntactically equal if and only if they coincide element by
element.

The semantical view refers to the automata’s accep-
tance or expressive power. We say that A and A, are
semantically equal (denoted as A = A, also known as
equivalent), if and only if L(A) = L(A). Obviously, the
syntactical equality is ‘stronger’ than the semantical equality
(because two syntactically equal automata are semantically
equal, too).

One can ask about the relationship between
PSPDA and the traditional deterministic PDA. A PDA
A=(Q % T, q, z, F) is deterministic (denoted by
DPDA) if and only if the following conditions hold:

information technologies
and control

2 2010 1

(€]



PSPDA

PDA

DEDA

Figure 1. The syntactical view for

* there exists at most one transition &(q, a, x), for

al g0 Q, alx Ke}, x O ;

* If 8(q, a, X) # @ for some a X , then

0(g, € X) = @.

Both PSPDA and DPDA contain determinism in their
transitions. But the traditional DPDA refers to determinism
for all transitions for a given &(q, a, X), whereas the PSPDA
is a relaxed version of determinism for &(qg, a, X) that
covers only the popping transitions.

For instance, the PDA defined in Example 2.1 is both
a DPDA and PSPDA automaton. However, if we simply do
some minor changes, it changes its membership. Let us
denote by A the automaton A that has one more transition,
that is, &(q,, 0, X) = {(q,, €)}. Then automaton A, is still
a DPDA, but not a PSPDA because the pair (,, X) corre-
sponds to two states, these are, g, and q,.

On the other hand, let us denote by A, the automaton
A that has one more different transition, that is,
8(a,, 0, X) ={(q,, €)}. Then automaton A, is still a PSPDA,
but not a DPDA because &(q,, O, X) is not unique.

The above three automata examples motivate figure 1.

Automaton A from Example 2.1 is both PSPDA and
DPDA. Automaton A, is from PSPDA-DPDA, whereas A,
is from DPDA-PSPDA.

The above comparison between DPDA and PSPDA

PSPDA, DPDA, and PDA

was done syntactically, and not semantically. The next re-
sult shows that the expressive power of PSPDA equals to
the whole class of, context-free languages. It is known that
DPDA represents a proper inclusion in the class of con-
text-free languages. Hence, PSPDA have strictly more ex-
pressive power than DPDA.

Theorem 3.1. Let G = (V, T, P, § be an arbitrary
CFG with a representation of length n. Then there exists
a PSPDA A of size O(n) such that N(A) = L(G), that
can be generated using a linear time complexity algo-
rithm.

Proof In Appendix.

It is known that an arbitrary PDA can be converted to
a CFG. Theorem 3.1. shows that an arbitrary CFG can be
(linearly) converted to a PSPDA. Thus, an arbitrary PDA
can be converted to a PSPDA. Since any PSPDA is a PDA,
it follows that the class of PSPDA equals to the class of
PDA. Moreover, the class of DPDA is a proper inclusion
of PSPDA. Figure 2 illustrates these relationships.

The next result proves the complexity of Algorithm I.

Corollary 3.1. If the input of Algorithm | is a
PSPDA automaton, then the equivalent CFG provided
as output has a linear size of the entire representation
of PSPDA. Algorithm | runs in linear time complexity.

Proof In Appendix.

PSPDA=PDA

DPDA

Figure 2. The semantical view for PSPDA, DPDA, and PDA

14 2 2010 information technologies

and control



4. Conclusions

In this paper, we introduced a new algorithm for con-
version between two important models from formal lan-
guages, pushdown automata and context-free grammars.
The algorithm is efficient in the sense that it provides a
smaller CFG than the traditional conversion result. Our
technique is based on fixed-point approach and can suc-
cessfully be used for converting PDAs and PSPDASs into
CFGs. PSPDA can be considered a new canonical form for
defining pushdown automata. If the input automaton is
PSPDA, then our conversion algorithm will generate in
linear time a linear-size equivalent CFG. Even if PSPDA
have clear syntactical restrictions to the classical PDA, the
expressive power of PSPDA is the same as the traditional
PDA.

As future work, we shall investigate a direct translation
(that avoids CFGs) from an arbitrary PDA to a PSPDA.
Moreover, it is worth to investigate the fixed-based ap-
proach for converting other models, e.g., from arbitrary
CFGs to special normal form CFGs, and so on. Authors
intend to investigate specification of larger industrial sys-
tems using our subclasses of popping static pushdown
automata.

References

1. Autebert, Jean-Michel, Jean Berstel, and Luc Boasson. Context-
free Languages and Pushdown Automata. Handbook of Formal
Languages, vol. 1: Word, Language, Grammar, 1997, 111-174.
2. Caucal, Didier. Bisimulation of Context-free Grammars and of
Pushdown Automata. Modal Logic and Process Algebra, 1995,
53:85-106.

3. Fleiner, Tamas. A Fixed-point Approach to Stable Matchings and
Some Applications. — Math. Oper. Res., 28 (1), 2003, 103-126.
4. Hafner, Carole D. and Kurt Godden. Portability of Syntax and
Semantics in Aatalog. — ACM Trans. Inf. Syst, 3 (2), 1985,
141-164.

5. Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. Intro-
duction to Automata Theory, Languages, and Computation (3rd
Edition). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2006.

6. Jancar, Petr and Jivii Srba. Undecidability of Bisimilarity by
Defender’s Forcing. — Journal of the ACM, 55 (1), 2008, 1-26.
7. Mateescu, Alexandru and Arto Salomaa. Aspects of Classical
Language Theory. Handbook of Formal Languages, vol. 1: Word,
Language, Grammar, 1997, 175-251.

8. Mateescu, Alexandru and Arto Salomaa. Formal Languages: an
Introduction and a Synopsis. Handbook of Formal Languages,
1. Word, Language, Grammar, 1997, 1-39.

9. Paulson, Linda Dailey. IBM System is a Virtual Sign-language
Interpreter. — Computer, 41 (2), 2008, 23-23.

10. Robinson, J. A. A Machine-oriented Logic based on the Reso-
lution Principle. — J. ACM, 12 (1), 1965, 23-41.

11. Rozenberg, Grzegorz and Arto Salomaa. Editors. Handbook of
Formal Languages, vol. 1: Word, Language, Grammar. Springer-
Verlag New York, Inc., New York, NY, USA, 1997.

12. Salomaa, Arto. Theory of Automata. Pergamon Press, 1969.

13. Sénizergues, Géraud. L(A) = L(B)? Decidability Results from
Complete Formal Systems. — Theor. Comput. Sci, 251 (1-2),
2001, 1-166.

14. Stirling, Colin. Decidability of Bisimulation Equivalence for
Normed Pushdown Processes. — Theor. Comput. Sci, 195 (2),
1998, 113-131.

15. Yu, Sheng. Regular Languages. Handbook of Formal Lan-
guages, vol. 1: Word, Language, Grammar, 1997, 41-110.

Manuscript received on 7.05.2009

Stefan Andrei received the BSc and MSc degrees in computer
science from Cuza University of lasi, Romania in 1994 and 1995,
respectively, and the PhD degree jn computer science from Ham-
burg University, Germany in 2000. He is currently an Associate
Professor with the Department of Computer Science, Lamar Uni-
versity, Texas, U.S.A. His research interests are in real-time em-
bedded systems and software engineering. He has served as a
program commifttee member in more than 30 international repu-
table conferences and has published more than 70 peer-reviewed
refereed scientific papers. More details about Stefan are at his
webpage: http.//galaxy.lamar.edu/~sandrei/

Contacts:

Lamar University, Department of Computer Science
211 Red Bird Ln, Texas, 77710 USA,

tel: 409-880-8748

fax: 409-880-2364

email: sandrei@my.lamar.edu

Hikyoo Koh receives the B.A. in Law from the Yung-Nam University,

Taegu, Korea, in 1963, and M.S. in Computer and Information Sciences

from University of Hawaii, Honolulu, Hawaii, USA in 1971. He

received Ph.D. in Computer Science, University of Pittsburgh, Pennsyl-

vania, USA in 1978. He is currently a Professor of Computer Science

with Lamar University, Beaumont, Texas, USA. His research areas include

Computational Complexity Analysis, Algorithm Design, Language Design,
and Ethics Education. In addition, he is a Life Member of IEEE.

Contacts:

Lamar University, Department of Computer Science

211 Red Bird Ln, Texas, 77710, USA

tel: 409-880-8779

fax: 409-880-2364

email: hkoh@my.lamar.edu

information technologies
and control

2 2010 17



APPENDIX

Proof of Theorem 2.1. Let A= (Q, Z, T, §, q,, 2, F). We define G = (V, Z, S P), where V=30(Q x I x Q),
S={(a, 2,9 /q0Q}, and P is given by:

i) For all k = 1, each a O0X 0O {¢}, each z z, ..., z Ol , each q, p, q,, ..., q. O Q,
(@, z,9) - ap z,9) (A, 2, A) - (O, Zy 9 (G 2, 0) if Pz .. 2) US(q a 2);

i)(q, z p) - aif (p, ) Od(q, a 2.

Proof of Theorem 2.2. The proof is based on showing that the pair F = (V, P) is actually a fixed-point value obtained
as an output of the previous algorithm. From Algorithm I, (step 8), it is easy to remark that V, OV, O ... [ v, Oov,
O..00QxT x Q ButQxT x Qis a finite set, and the inclusion array from above is infinite. Therefore, [k = 1 such
that V, = V,,, (we denote by k the minimal integer which satisfies this property).

By induction on j, we prove that V, =V, ;, O j = 1. This means that V, is the maximal set which contain accessible
variables. Let us recall that a variable X is accessible if there exists a derivation from the start symbol to a string that
contains X.

The Induction Basis: For j = 1 it is obvious that the equality V, = Vi holds.

The Induction Step: We suppose V, =V,,, O | <j, and we must prove that v, = v, .. Butv, =V, 0OV,

where SV is the set of variables [qg, X, temp[m]] which is added at step 13 of Algorithm I. So, at step 14
of Algorithm 1, the production [q, A, temp[m]] - [q,, z, temp[1]] [temp[1], z,, temp[2]] ... [temp[m - 1], z , temp[m]]

is added to P, where [q,, z, temp[1]], [temp[1], z, temp[2]], ..., [temp[m - 1], z , temp[m]] O V,,. But V,,, =V,
(from the inductive hypothesis), so [q,, z, temp[1]], [temp[1], z, temp[2]], ..., [temp[m - 1], z , temp[m]] O V..
Therefore V,, ., = V,,,. Also, from the induction step for | = 1, it results V,,, = V,. Hence V,,,, = V,. Thus, from the

induction basis and the induction step, it results that V, =V, , O j = 1.

Therefore, V, 0 Q x ' x Q. This implies |V,| < |Qf? « |I'|. But the number of iterations of Algorithm I is less or
equal than |V,|. Hence, part (i) of this theorem is proved.

To prove part (i), we show that Algorithm | provides by V, the set of accessible variables and by P the corresponding
productions. Then, according to Theorem 6.14 from [5], it results L(G') = N(A), where G' is the CFG from Theorem 2.1.
Grammar G is actually similar to grammar G', but it contains only the productions of G' that has accessible symbols. The
productions of G' that contain inaccessible symbols (that is, symbols that cannot be reached by any derivation from the
starting symbol § are in fact useless, hence they are not to be found in the grammar G. In conclusion, L(G) = L(G").
Thus, it follows that L(G) = N(A).

We still have to prove that Algorithm | provides as an output the correct grammar G. Step 1 initializes V, to @.
At steps 2, 3, and 4 we construct the accessible variables using an one-step derivation:

[0, A, g] - aif and only if [g, A q] g] a

So, we get that V_ is the set of accessible variables using an one-step derivation.

(Veo, = V. O{X | X —» XXXy Xy X0 ooy X O V).

Suppose by induction that we construct V, the set of accessible variables and P, the corresponding rules. From step
6, we have V,,, = V,. Step 9 corresponds to a PDA transition from state ¢, input symbol a and top of stack X. The set

k+1
v, has m variables such that:

[a,, z, temp[1]] © [temp'[1], z, temp[2]] © ...° [temp'[m-1], Zz, temp[m]] = [q," zZ,...Z, q].

According to Definition 1.1, we obtain:

temp[2] = temp'[2], temp[3] = temp[3], ..., temp[m-1] = temp'[m-1], g, = q,, and q = temp[m].

If Ok O{2, 3, ..., m} such that temp[k] # temp'[K], it results that we have to find another variable for the correct
composite. This process is achieved by steps 8 to 16 of Algorithm I. The Boolean variable ok from steps 8 to 11 is evaluated
to true if and only if all the variables [q,, z, temp[1]], [temp[1], z, temp[2]], ..., [temp[m - 1], z , temp[m]] lead to
terminal words. Steps 17 to 21 introduce the start symbol in the set of variables and add the corresponding productions
to P,. Hence, all the generated variables are accessible. Thus, the proof of Theorem 2.2 is completed.

Proof of Theorem 3.1. The proof follows first the traditional method of converting a CFG into an equivalent PDA
(Theorem 6.13 from [5]). Given G = (V, T, P, S an arbitrary CFG, we consider A a PDA defined as
A=({q}, T,VOT, Jd g, S, where the transition function J is defined by:

e foreach x OV,0(q, & X ={(q X | x - aOP};

eforeacha 0T, d(q, a a ={(q, £}.

The first part of the proof is identical with the traditional result. In fact, the number of transitions of the equivalent

18 2 20\ information technologies
13 2 2010 and congtrol



PDA equals to |V|O|T], so A has size O(n) and can be generated using a linear time complexity algorithm.

We need now to prove that A is a PSPDA. In order to show that there exists at most one popping transition for all
g0 Qandy OV OT, we distinguish two cases:

e y O T. Then there is exactly one popping transition, namely d (q, v, y) = {(q, £)};

e y O V. If a # ¢ then there is no popping transition for g and y. Otherwise, if a = € then there is exactly one state
g O Q such that (g, &) O d(q, & V).

In conclusion, A is a PSPDA automaton, hence Theorem 3.1 is completely proved.

Proof of Corollary 3.1. The proof is similar to proof of Theorem 2.2. Since the input automaton A is PSPDA, then
according to Algorithm I, for any pushdown transition of A, there exists only one context-free production and a variable
corresponding to it. In fact, the number of variables of the equivalent CFG equals to the number of transitions of A.
Moreover, the number of productions equals to the number of transitions of A plus one more production for the start symbol.
In the end, Algorithm | adds a constant number of productions corresponding to the initial state and stack symbol. We
conclude that the size of the equivalent CFG is O(n) and Algorithm | runs in a linear time complexity, where n is the length
of the entire representation of A.

information technologies 2 90 ;
and control g 22010 19



