
2 201114 information technologies
and control

Key Words: Graph drawing; software evolution visualization; graph layout;
measures.

Abstract. As a widespread approach for representing data, graph
drawings are used for displaying both software systems and their
evolution. Every version in the process of software evolution is rep-
resented by a different graph representation. Consequently, a proper
layout algorithm is needed in order to retain the connection between
different drawings and ease their parallel observation. The selected
algorithm should be able to provide drawing of graph sequences
which is stable and mental map preserving. This paper introduces
visual and numerical approaches for assessment, observation and
analysis of software systems evolution. Certain set of measures is
selected and used for this task. For visual and numerical assessment
of software system graph layouts a software tool is developed and
used for experimental observation and evaluation of the measures by
their application to the graph drawings of certain software projects
revisions.

1. Introduction

The quality appraisal of graph drawing is a key problem,
concerning the understandability of the represented model. Most
of the graph representations are used to display the sequence
of model states. Therefore, the mental connection between these
states should be as clear as possible. To assess the under-
standability, clearness and mental map preservation of this
sequence of graph drawings, an appropriate set of measures,
concerning these qualities, should be defined and used.

This paper focuses on observation of the graph drawings,
which represent software evolution. Measures, used to form the
drawing assessment, are also introduced. Several definitions of
software evolution are suggested in [18], but in the context of the
paper the most appropriate is Lehman and Ramil’s definition:
“All programming activity that is intended to generate a new
software version from an earlier operational version”. According
to the source code versions, the corresponding graph is fre-
quently changed. In this context the quality and stability of the
layout is vital for the system state perception.

Some of the graph representations have various limita-
tions, concerning the layout quality and stability over a numerous
versions of the drawing. The appropriate representation of the
software evolution is another general problem.

During the research for existing problems in the graph
drawing algorithms the following software tools, having this kind
of problems could be presented.

In order to represent the Kiviat graph of module coupling
dependencies clearly, RelVis [16] attempts to prevent layout
problems by using standard graph drawing algorithms, such as

hierarchical or spring layout. Unfortunately, the graph layout gets
complex when visualizing large number of source code entities
and needs post processing steps or pre-filtering of relations. The
quality of the layout varies in the different graph drawings de-
pending on various subjective factors. This fact indicates the
need of a formal assessment of the quality - exact measure
values for each pair of drawings.

The Building Block Communications System [17] intro-
duces other types of graphs, representing the Distributed Feature
Composition model in an understandable way according to strictly
defined rules. The layout of the graphs aims at symmetry, mental
map preservation and effectiveness of the drawing. This effect
is achieved by using various types of virtual physical model
algorithms for graph drawing. Nevertheless, a formal assess-
ment of the graph drawing quality is not provided.

The Evolution Storyboard [1] uses an energy-based layout
algorithm to provide dynamical views of the software’s evolution
structure. In order to help the user to understand the system
structure better, an animation shows the movement of nodes
between consecutive time stamps. This feature assumes that
every state of the represented graph uses a mental map preserv-
ing layout. Such layout could be easily chosen according to the
values of properly selected measure.

GraphAEL[5] creates, represents and animates different
states of several graph types. It uses a force-directed graph
drawing algorithm to achieve mental map preserving and aes-
thetically pleasing layouts for series of graph drawings. The
authors discuss several improvements of existing force-directed
graph drawing algorithm, but the progress of the improvement
process is not appraised adequately by a certain graph drawing
measure values.

The observation of the software evolution requires appro-
priate representation of the data. Gonzalez, Theron, Telea and
Garcia [8] propose a multilevel timeline view, supporting a set
of tasks, useful for the project managers. In order to inspect the
changes made along the revisions, the authors represent a set
of source code metrics in charts.

The representation of the software system and its evolu-
tion is often made to provide additional information about system
artifacts as well as a source code metrics, added or modified
elements and the relations between them. In this context, the
paper considers graph as the most appropriate representation
of a software system. Each graph drawing algorithm is aimed
at providing an easy to use, good and mental map preserving
layout of the displayed data. To clearly define such aesthetic and
logical criteria, formal approaches for the graph layout assess-
ment are put in practice.

The purpose of the paper is to evaluate software evolution

Quality Assessment of Graph Drawing
Sequences Representing Software Systems
Evolution

D. Ivanov, H. Haralambiev, M. Lazarova, S. Boychev

2 2011 15information technologies
and control

graph representations. To appraise the quality of a given graph
layout, a certain set of measures is defined and used for soft-
ware graph layout assessment. The selected measures are
applicable for a pair of graph drawings. Experimental evaluation
of the measures is made by their application to the graph
layouts, which represent the software evolution of given software
projects.

2. Graph Drawing Quality Measures

A set of graph layout measures is introduced in
[3,13 and 2]. Four of these measures are selected for the
purposes of numerical assessment of graph drawing sequences
of software versions. The selection criterion for three of the
measures is based on the empirical research, made in [2]. The
expectance is only the ε-clustering which is considered appro-
priate measure for software graph drawings, despite the conclu-
sions, given in [2]. All the measures selected are focused on
measuring the quality and the stability of a given graph layout.

A graph G refers to a collection of vertices (or ‘nodes’) and
a collection of edges that connect pairs of vertices. Following the
terminology in [3], let define D and D' two drawings of the same
graph G. Each object of G can be associated with two sets of
coordinates, one describing the position in D and the other the
position in D'. P denotes the set of pairs (pi, pi') where pi and
pi' represent the location of the i-th in D and D', respectively.
Let d(p, q) be the Euclidean distance between points p and q
in D as well as in D'.

2.1. Composite Distance to Neighbor

The composite distance to a neighbor measure calculates

the overall impact of the weighted version of the nearest neigh-
bor within measure for all the nodes of the graph.

The nearest neighbor within the measure, marked as nnw
in [3], is a proximity measure. This measure type reflects the
idea that points near each other in the first drawing should
remain close to each other in the second drawing. The nnw
measure is based on the reasoning that if pi is the closest point
to pj in D, then pi' should be the closest point to pj' in D'. The
weighted version of the nnw measure (figure 1) considers the
points closer to pi' and pj' - if there are more points between
pi' and pj', the visual linkage between pi' and pj' has been
disrupted in a greater degree and the drawing looks more dif-
ferent (figure 1).

More formally, the nnw measure is described in the for-
mulas below [3].

where pj is the closest point to pi in D and

 closer (pi', pj') = ⏐⏐⏐⏐⏐{k⏐d(pi', pk') < d(pi', pj')}⏐, ⏐, ⏐, ⏐, ⏐, W =⏐P⏐− 2.

The distance is scaled by the number of points being
considered. W is the maximum weight contributed by a single
point, so that the measure’s value is always in the range.

2.2. Ranking

Ranking [13] is example of a measure, which can be used
for assessing the preservation of the mental map in graph
drawings. The ranking measure considers the fact that the rela-
tive horizontal and vertical positions of a node should not vary
too much according to the graph modifications (figure 2).

The formal description reads as follows: let right (p) and
above (p) be the numbers of points to the right and above

Figure 1. Nearest neighbor within

Figure 2. Ranking

nnw(D, D') = ⎯⎯ Σ1≤i≤⏐P⏐closer (pi', pj')
1

W⏐P⏐

2 201116 information technologies
and control

of p, respectively (figure 2). λ is the normalizing factor. Then

where λ = 1.5 (⏐P⏐ − 1). The constant 1.5 is based on the
experiments, reported in [3].

The value of the measure is inversely proportional to the
preservation of the mental map, e.g. the lesser the ranking is -
the more the mental map is preserved.

2.3. εεεεε - Clustering
Following [3] an ε-cluster for a point p is the set of

points q such that d(p,q) ≤ ε, where ε = maxp minq≠p d (p,q).
The idea of the ε-clustering measure (figure 3) is to compare the
ε-cluster for pi in D to that for pi' in D'. Let ECD and ECD' be the
set of edges (i, j) if d(pi, pj) ≤ εD and d(pi', pj'') ≤ εD, respec-
tively. The distance, considering all the removed and added
edges, is thus:

The distance is zero, if the edges between all vertices
remain the same, and it is one, if there are no common edges.

2.4. Weighted Orthogonal Ordering
The orthogonal ordering measure appraises the mutual

orientation of point pairs and focuses on assessing the preser-

vation of their relative ordering. To clearly imagine the orienta-
tion, suppose every node has a compass rose on its center and
the angles represent the directions [2] (figure 4).

Formally, if pi is northeast of pj in D then pi' should remain
northeast of pj' in D' [3]. According to the level of mental map
preservation precision, Bridgeman and Tamassia [3] suggest
two weight functions - constant and linear. For more accurate
layout assessment according to the angle diversion, below is
described the orthogonal ordering measure with linear weight
function.

where:

1) θij is the angle from the positive x axis to the vector
 pj - pi (figure 4);

2) θij' is the angle from the positive x axis to the vector
 pj' - pi' (figure 4);

3) order (θij, θij') = ∫ weight (θ) dθ;

4) W = min {∫ weight (θ) dθ, ∫ weight (θ) dθ};

5) weight (θ) = .

3. Graph Drawing Sequences Assessment

The selected graph drawing measures are used for as-
sessment of the graph drawing sequences. For this purpose a
software tool called ReViewer is developed. ReViewer is used to
visually appraise the benefit of the above described measures.
By taking the XML descriptions of the graph drawings, ReViewer
encapsulates the measures calculations and represents the
result values in several views.

3.1. Creating Drawings Representation

ReViewer is developed to be a universal and cross-plat-

Figure 3. Epsilon clustering

Figure 4. Orthogonal ordering

rank (P, P') = Σp∈P min{⏐right (p) − right (p')⏐ + ⏐above (p) − above (p')⏐ ,λ}

distance (D, D') = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ = 1 − ⎯⎯⎯⎯⎯
⏐⏐⏐⏐⏐ECDUECD'⏐⏐⏐⏐⏐−−−−−⏐⏐⏐⏐⏐ECD ECD'⏐⏐⏐⏐⏐

UU

⏐⏐⏐⏐⏐ECDUECD'⏐⏐⏐⏐⏐ ⏐⏐⏐⏐⏐ECDU ECD'⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐ECD ECD'⏐⏐⏐⏐⏐

1
λ⎯

order (D, D') = ⎯⎯ Σ min(order (θij, θij'), order(θij' , θij))
1

W⏐P⏐ 1≤i, j≤⏐P⏐

θij

θij'

0

π

π

2π

− (θ mod)π⎯2
π⎯2 , if⎯⎯

π⎯4

(θ mod) >π⎯2
π⎯4

(θ mod)π⎯
2 , if⎯⎯ (θ mod) ≤π⎯

2π⎯4

π⎯4

⎧
⎨
⎩

2 2011 17information technologies
and control

form toolkit (figure 5). It takes the graph drawing elements
details described in an XML file as input. The stored XML data
is used for the measure values calculations, which are then
displayed in several views for graph drawing assessment, ob-
servation and analysis. Thus the ReViewer is independent from
the used graph drawing framework, including the graph drawing
algorithms, internally implemented in the graph drawing frame-
work.

In order to represent the software evolution the source
code from a number of revisions of several java open source
projects has been used ([4,12,14]). The code for every revision
is compiled and a Knowledge Discovery Model [11] is built. This
kind of model represents the source code in an entity - rela-
tionship model (entities are packages, classes, methods, etc.;
relationships - extends, implements, has type, etc.). Two graph
drawing algorithms are used to represent the KDM models -
Dynamic Fruchterman - Reingold [7,6] and Dynamic Force-
Directed [9]. They are implemented in JUNG [15] and their
drawings described in an XML files. These XML files are taken
as an input for the ReViewer, and ReViewer only needs the XML
files for calculating the measure values and displaying them
(figure 5).

3.2. Displaying the Values of Measures
ReViewer uses several synchronized Eclipse views to clearly

display the graph drawing measures values in an understand-
able way. By observing the represented data, more precise
assessment of the layouts can be made. Since different practical
problems require different features of the layout, appropriate
graph drawing algorithm can be chosen based on the measures
values observation.

3.2.1. Layouts Distribution View
The Layouts distribution view (figure 6) represents a chart

for comparing given measure values for a single or multiple
graph layouts. The revision numbers are shown on the x axis and
the measure values appear on the y axis. Every layout has a
seesaw line, which nodes represent the measure values for a
given revision. In order to observe the software evolution, revi-
sions are chronologically ordered. Since the measures are de-
fined for two drawings of the same graph, every node in the chart
represents the measure value for the drawings of the graph in
the current and the previous revision.

This type of measure values representation provides the
ability of exploring single or multiple layout measurements through
the versions of the software evolution graph. In this context, the
comparison of several layout measure values appears to be a
possible approach for choosing the best layout, concerning certain
practical problems.

3.2.2. Measure Values Details View

Measure Values Details view (figure 7) - consists of a
couple of views, which display statistical information about a
selected revision node - as a bar chart diagram and a numerical
information.

3.2.2.1. Measure Values per Node
Most of the graph drawing quality measures focus on

assessing certain criteria for each node of the laid out graph. For
that reason a view of the particular node measure values is a
useful tool for observing the quality of the entire layout. The
Measure values per node view (figure 7, left) provide such
information, sorted by the measure value. Every node measure
value is represented by an adequately scaled bar. The node IDs
are displayed on the x axis of the chart. Because of the large
number of nodes, the IDs are not always visible. The measure
values are shown on y axis.

This data representation shows the distribution of the
measure values along the whole node set of the laid out graph
and facilitates the node set data analysis. Moreover, precise
observations of the variations in the measure values can be
made in order to detect the optimal distribution for a graph
representation.

3.2.2.2. Description View
The Description view (figure 7, right) provides statistical

information about the modifications made in the currently com-
pared couple of graph drawings. This information eases the
process of analysis of the layout measure values displayed in
the Layouts distribution view - the relationship between the
graph drawings and their measure values is ensured by the
views synchronization.

3.2.3. Layout Differences View
The Layout Differences view (figure 8) displays the visual

representation of the graph in a selected state of the evolution
of the software system. In order to facilitate nodes tracing among
the revisions, the view provides an animation effect (figure 10)
- smooth transition between the currently analyzed states of the
system graph representations.

To follow the direction and the distance of the movement,
every node leaves a visible track with proportionally calculated
size and displacement step length (figure 10). The fine tracing
is provided by step by step control, animations steps and delay
adjustments (figure 8).

Basically following the concept of information consistency,
the Layout distribution view highlights (figure 9) a node selected
in the Measure values per node view. This approach allows an
easier detection of the location of a single node or a group of
nodes determined by their measure value or position in the
common measure values distribution.

Three types of node states appear as a result of the
comparison between the graph drawings - added, changed
(modified), unchanged. To clearly separate this types of nodes,
every type is displayed with different color (figure 10, picture 2)

Figure 5. Data flow between the graph drawing framework and ReViewer

2 201118 information technologies
and control

Figure 6. Layouts distribution view

Figure 7. Measure values per node view

Figure 8. Layout Differences view

2 2011 19information technologies
and control

Figure 9. Selection of node in a Layout Differences view

Figure 11. Composite Distance to Neighbor measure values in 54 revisions of JMemorize

Figure 10. (1) Animation effect on a complete layout; (2) detailed view of the animation effect

2 201120 information technologies
and control

Figure 12. JMemorize, revisions [1106, 1107], Dynamic Force ­ Directed Layout

­ added nodes are red , changed (modified) nodes are blue
and the unchanged nodes are shown in cyan color.

4. Analysis of the Graph Drawing
Measures

To unify the evaluation analysis of the introduced mea­
sures, all the examples in the paper use two dynamic graph
drawing algorithms ­ Dynamic Fruchterman ­ Reingold [7,6]
and Dynamic Force­Directed [9].

To facilitate the analysis explanations the following term
is defined:

• Translation segment ­ the segment between the center
of the node in the first drawing and its center in the second
drawing (figure 12, figure 14, figure 16, figure 18 , figure 20,
figure 22, figure 24).

The source code of open source projects ([4,12,14]) is
used to analyze and prove the correctness of the complicated
measure definitions and also for observation of the measure
values in software evolution graphs. Some of the revisions are
not compilable and therefore has no graph representation. The
example illustrations display the translation between two draw­
ings of the same graph in a pair of revisions, which are referred
as [start_revision_number, end_revision_number]. Such pair
of drawings is represented by an end_revision_number in the
layout distribution chart.

4.1. Composite Distance to Neighbor Analysis
The measurements of the Composite Distance to Neigh-

bor measure are given in figure 11 for 54 revisions of the open
source learning tool jMemorize [4].

In order to prove the correctness of the measure defini­
tion, the revisions with the highest difference in the measure
values are examined (figure 11, revisions [1106, 1107], differ­
ence = 28,495). The measure indicates in what degree points
positioned near each other in the first drawing remain close to
each other in the second drawing. Therefore the most appro­
priate and comprehensible way to assess the measure defini­
tion correctness is to draw all the representation of the trans­

lation segments of the graph nodes and analyze their relative
positions (figure 12, figure 14).

Almost all of the translation segments in figure 12 are
collinear and have similar lengths, which indicates the relative
node position preservation. The lack of translation segments
intersection shows that there are also no additional points in
between. Therefore the measure values are valid, according to
the measure definition. The Measure values per node view for
the dynamic force ­ directed layout (figure 13) shows a border
case distribution, only several nodes with moderate measure
values.

The drawing in figure 14 is completely different ­ most
of the translation segments intersect and their lengths highly
vary. The measure values per node for the dynamic Fruchterman
­ Reingold layout (figure 13) are uniformly distributed with ex­
tremely high values (compared with the values of the force ­
directed layout), which is a precondition for loss of the relative
node position and mental map destruction.

The results from the analysis of JMemorize made in the
ReViewer show that the dynamic force­directed layout preserves
the relative node position better than the dynamic Fruchterman
­ Reingold algorithm. This makes it appropriate for JMemorize
graph visualizations requiring mental map preservation.

4.2. Ranking Analysis
The measurements presented in figure 15 show the rank­

ing measure values for 45 revisions of the open source Visual
Diff and Merge Tool JMeld [12]. To clearly point the drawing
criteria differences, which the measure values address, the
revision node with the highest alteration (93,867) is taken (re­
visions [534, 535]). The used approach for proving the mea­
sure definition is visualization of the translation segments.

Observing the dynamic Fruchterman ­ Reingold graph
drawing (figure 16) transition between 534 and 535 revisions
the following conclusions are made ­ most of the nodes are
moved in variety of distances in all possible directions. This
fact reflects the number of the nodes, situated right and above
­ the most significant aesthetic criteria, measured by the Rank­
ing measure.

2 2011 21information technologies
and control

Figure 14. JMemorize, revisions [1106, 1107], Dynamic Fruchterman Reingold Layout

Figure 13. Measure values per node between revision [1106, 1107] revisions of JMemorize

Figure 15. Ranking measure values in 45 revisions of JMeld

2 201122 information technologies
and control

Figure 16. JMeld, revisions [534, 535], Dynamic Fruchterman ­ Reingold layout

Figure 17. Ranking measure values per node between [534, 535] revisions of JMeld

Figure 18. JMeld, revisions [534, 535], Dynamic Force ­ Directed layout

2 2011 23information technologies
and control

Figure 19. Epsilon clustering measure values in 45 revisions of JavaGit

Figure 20. JavaGit, revisions [702, 703], Dynamic Fruchterman ­ Reingold layout

Figure 21. Epsilon clustering measure values per node between [702, 703] revisions of JavaGit

2 201124 information technologies
and control

Figure 22. JavaGit, revisions [702, 703], Dynamic Force ­ Directed layout

Figure 23. Weighted orthogonal ordering measure values in 45 revisions of JMeld

Figure 24. Measurements of orthogonal ordering direction angles, JMeld, revisions [534, 535], Dynamic Fruchterman ­ Reingold layout

2 2011 25information technologies
and control

In the dynamic force ­ directed layout between revisions
534 and 535 (figure 18) there are significantly less nodes,
translated to large distance. Respectively, they hold their right
and above situation towards their neighbors, which is reflected
by the values of the measure.

Another aspect for graph layouts quality comparison are
the values, represented in the Measure values per node view
(figure 17). The measure values determine several equally dis­
tributed intervals, but the general value range is significantly
different ­ up to 70 for the dynamic force ­ directed layout and
up to 1200 for the dynamic Fruchterman ­ Reingold layout.
These values indicate the destruction of the mental map in the
drawing, generated by the dynamic Fruchterman ­ Reingold
drawing algorithm.

By examining the measure values in the Layouts distribu-
tion view (figure 15) there is a considerable difference in the val­
ues of the ranking measure for the two drawing algorithms. More­
over, the values for the dynamic Fruchterman ­ Reingold algo­
rithm increase in the process of software evolution, while the
dynamic force­directed values vary close to smaller constant value.

Based on the above observations it is clear that the dy­
namic force­directed graph drawing algorithm is a better choice
for the JMeld project if its graph drawing representation requires
a mental map preserving layout.

4.3. εεεεε -Clustering Analysis
The ε­clustering measure values for the java access API

for Git repositories JavaGit [14] are represented in figure 19. In
order to facilitate the ε­clusters identification, their borders and
centers in the example illustrations are visualized with dashed
green circle (representing the clusters for the first graph draw­
ing) and a magenta solid circle (representing the clusters for the
second graph drawing). The translation segments represent node
movements between the graph drawings.

The revision node for revisions [702, 703] is taken for the
demonstration of the ε­clustering definition as a representative
of the revision nodes with the highest value alteration (0.543).

The higher epsilon value (0.549) in revision node [702,
703] is due to the clusters disintegration between the drawings,
generated with the dynamic Fruchterman ­ Reingold graph draw­
ing algorithm. The node with the highest measure value (0.946)
is easily identified by the Measure values per node view and its
clusters are drawn in figure 20. The illustration shows that more
of the most nodes, contained in the green clusters, are not
contained in the magenta clusters and also new nodes are
added in the magenta cluster. These facts are respectively re­
flected in the metric measure. By observing the picture (figure
20) and the measure values per node (figure 21) for the dy­
namic Fruchterman ­ Reingold layout the conclusions above can
be made for most of the nodes and their clusters.

The dynamic force ­ directed layout of the graph in revi­
sions [702, 703] (figure 22) shows a significantly different
situation ­ only several slightly modified nodes, reflected in the
low drawing measure value (0,006). The clusters of the node
with the highest measure value (0.224) are drawn showing the
mutual position of the node and its neighbors. It can be seen that
the number of the points in the clusters is decreased which
directly influences the metric measure. As the nodes keep their

positions between the revisions the measure values per node for
the dynamic force ­ directed drawing algorithm are lower, com­
pared to the values of the dynamic Fruchterman ­ Reingold
layout (figure 21).

As examining the e­clustering measure values in the chart
on figure 19 a quality assessment of the graph drawing algo­
rithms can be produced ­ the force ­ directed graph drawing
algorithm turns out better layout quality in the context of the
relative nodes position preservation when visualizing JavaGit.

4.4. Weighted Orthogonal Ordering Analysis

The values of the orthogonal ordering measure are shown
for 45 revisions of JMeld[12] on figure 23. The examples below
use the drawings of the graph between revisions [534, 535],
which are also used in the ranking measure analysis.

Since the orthogonal ordering measure calculations are
strongly affected by the angles between the different states of the
nodes, an additional displayed data visualizes them ­ the direc­
tion angle, representing the angle between the graph nodes in
the first graph drawing is given in green sectors; the direction
angle, representing the angle between the graph nodes in the
second graph drawing ­ in magenta sector with dashed border
(figure 24). The angles are drawn in a positive direction, as used
in the measure calculation. Black arrows indicate x axis. The
translation segments are also drawn to indicate the positions of
the nodes in the first and second drawing. Since the weighted
orthogonal ordering measure concerns the entire drawing, the
measurements per element are not calculated.

The measure value (0.259) in revisions [534, 535] for the
dynamic Fruchterman ­ Reingold layout is one of the highest in
the software evolution interval, displayed on figure 23. The illus­
tration on figure 24 shows several direction angles between the
nodes positions in the two revisions. The difference in the angles
measurements in these consecutive drawings is also displayed
by the measure values.

By examining figure 18, representing the translation seg­
ments for the dynamic force­directed layout it appears that the
direction angles remains unchanged since the translation seg­
ments are collinear. This fact explains the low value of the
measurement between revision 534 and 535 ­ only 0.004.

According to the measure values on figure 23 it appears
that the dynamic force­directed layout is a better choice for
preserving the relative point pairs ordering in the JMeld project
software evolution graph representation.

5. Contribution

The quality of data analysis is dependent to a large extent
on the appropriate target data set representation as well as the
ease and quick orientation within. Since graph drawing is a
widely used approach for representing graphs, the quality of the
drawing algorithm used is a general problem. By introducing and
verifying different methods for layout quality data representation
and analysis, the current paper clearly expresses the need of a
tool for assessment, observation and analysis of graph drawing
sequences. ReViewer is proposed as a possible solution of the
defined need. Based on the specific graph drawing appraisal

2 201126 information technologies
and control

Manuscript received on 7.06.2011

Dimitar Ivanov was born in 1987 in Vidin, Bulgaria. He has graduated
from Sofia University, Faculty of Mathematic and Informatics, specialty
Informatics. He is working as a software engineer and researcher at
Musala Soft. His research interests are in the field of software visualiza-
tion and graph drawing metrics.

Contacts:
Applied Research and Development Center at Musala Soft

36 Dragan Tsankov blvd
1057 Sofia, Bulgaria

Phone: +359 2 969 58 00
e-mail: dimitar.ivanov@musala.com

Haralambi Haralambiev was born in 1985 in Burgas, Bulgaria. He has
graduated from Sofia University, Faculty of Mathematics and Informatics,
specialty Computer Science. He is working at the Applied Research and
Development Center at Musala Soft. His research interests are in the field
of software visualization, information visualization, software moderniza-
tion.

Contacts:
Applied Research and Development Center at Musala Soft

36 Dragan Tsankov blvd
1057 Sofia, Bulgaria

Phone: +359 2 969 58 00
e-mail: haralambi.haralambiev@musala.com

measures, the ReViewer uses different types of views to repre­
sent example data in an intuitive manner from a various synchro­
nized points of view.

6. Conclusion
Visual and numerical approaches for assessment, obser­

vation and analysis of graph drawing sequences based on sev­
eral selected measures are presented in the paper. A software
tool ReViewer is developed and used for experimental evaluation
of a number of graph layouts by a set of defined measures. The
experimental analysis over several revisions of sample software
projects shows that the selected measures and the suggested
visualization provides a suitable basis for software evolution
understanding as well as a stable and mental map preserving
drawing of graph sequences.

Future work will include realization of several more layout
measures as well as aggregation of measures according to
different graph drawing aesthetic criteria. The comparison be­
tween arbitrary (not only sequential) graph drawings, represent­
ing a concrete source code revisions, should be also provided.
Detection of software erosion based on the software evolution
system graph also could be done as a part of the graph drawing
analysis.

7. Acknowledgment
This work was partially supported by the Bulgarian Na­

tional Science Research Fund through contract ååå 02/18 ­
2009 “Fast Orientation in Complex Information Systems”.

References
1. Beyer, D., A. Hassan. Evolution Storyboards: Visualization of Software
Structure Dynamics. Proc. of the 14th IEEE International Conference on
Program Comprehension, ICPC ’06, IEEE Computer Society Washington,
DC, USA, 2006, 248­251.
2. Bridgeman, S., R. Tamassia. A User Study in Similarity Measures for
Graph Drawing. Proc. of the 8th International Symposium on Graph
Drawing Springer ­ Verlag London, UK, 2001, 19­30.
3. Bridgeman, S., R. Tamassia. Difference Metrics for Interactive Or­
thogonal Graph Drawing Algorithms. Proc. of the 6th International
Symposium on Graph Drawing Springer ­ Verlag London, UK, 1998,
57­71.
4. Djemili, R. www.jmemorize.org
5. Erten, C., P. Harding, S. Kobourov, K. Wampler, G. Yee. GraphAEL:
Graph Animations with Evolving Layouts. Proc. of the 11th Symposium
on Graph Drawing, Perugia, Italy, 2003, 98­110.
6. Frishman, Y., A. Tal. Online Dynamic Graph Drawing. Proc.
Eurographics/IEEE VGTC Symp. Visualization (EuroVis ’07), 2007,
75­82.
7. Fruchterman, T., E. Reingold. Graph Drawing by Force­Directed
Placement. Software Practice and Experience, John Wiley & Sons, Inc.
New York, NY, USA, 21, 1991, 1129­1164.
8. Gonzalez, A., R. Theron, A. Telea, F. Garcia. Combined Visualization
of Structural and Metric Information for Software Evolution Analysis.
Proc. of IWPSE­Evol ’09: Joint ACM Int. and Annual ERCIM Workshops
on Principles of Software Evolution (IWPSE) and Software Evolution
(Evol) Workshops, New York, NY, USA, 2009, 25­30.
9. Iliev, I., H. Haralambiev, M. Lazarova, S. Boychev. Dynamic Force­
Directed Graph Layout for Software Visualization. To be published, ICEST
2011.

10. Kaufmann, M., D. Wagner (Eds.). Springer, 2001, Drawing Graphs
­ Methods and Models ­ (Lecture Notes in Computer Science; 2025).
11. KDM, http://www.omg.org/spec/KDM/1.0/
12. Kuip, K. http://keeskuip.home.xs4all.nl/jmeld/index.htm
13. Lee, Y., C. Lin, H. Yen. Mental Map Preserving Graph Drawing Using
Simulated Annealing. Proc. of the 2006 Asia­Pacific Symposium on
Information Visualisation ­ Volume 60, Australian Computer Society, Inc.
Darlinghurst, Australia, Australia, 2006, 179­188.
14. Linder, J., G. Dhindsa, N. Singh, C. Bosley, R. Snyder, M. Artemenko,
A. Jadhav. http://javagit.sourceforge.net/
15. O’Madadhain, J., D. Fisher, T. Nelson. Java Universal Network/Graph
Framework http://jung.sourceforge.net/
16. Pinzger, M., H. Gall, M. Fischer, M. Lanza. Visualizing Multiple
Evolution Metrics. Proc. of the ACM Symposium on Software Visualiza­
tion (ACM SoftVis’05), New York, NY, USA, 2005, 67­75.
 17. R. Gansner, E., J. Mocenigo, S. North. Visualizing Software for
Telecommunication Services. Proc. of the 2003 ACM Symposium on
Software Visualization, New York, NY, USA, 2003, 151­159.
18. Torchiano, M., F. Ricca, A. De Lucia. Empirical Studies in Software
Maintenance and Evolution. IEEE Int. Conf. on Software Maintenance
(ICSM’2007), 2007, 491­494.

2 2011 27information technologies
and control

 Stanimir Boychev was born in 1973 in Stara Zagora, Bulgaria. He has
graduated from Sofia University, Faculty of Mathematics and Informatics,
specialty Mathematics. He is working at Musala Soft Ltd. His research
interests are in the field of analysis and transformation of software
systems.

Contacts:
Applied Research and Development Center at Musala Soft

36 Dragan Tsankov blvd
1057 Sofia, Bulgaria

Phone: +359 2 969 58 00
e-mail: stanimir.boychev@musala.com

Assoc. Prof. Milena Lazarova, Ph.D, M.Sc. Eng., has graduated from
the Technical University of Sofia, Faculty Computer Systems and Control,
specialty Computer Technologies. She is working in the Department
“Computer Systems” at the Technical University of Sofia. Her research
interests are in the field of computer graphics, image processing, pattern
recognition, geographic information systems, parallel information pro-
cessing, parallel algorithms, parallel programming.

Contacts:
Systems Department at Technical University of Sofia

8 Kliment Ohridski blvd
1756 Sofia, Bulgaria

e-mail: milaz@tu-sofia.bg

Full-time 3-year renewable position for Assistant/Associate Professor in Computer Science

The American University in Bulgaria (AUBG) seeks a new faculty member in the field of Computer Science eager to
join the premier American-style liberal arts university in Southeast Europe. The ideal candidate will be a professional
educator with Ph.D. degree in Computer Science, experience of teaching in American liberal arts-style universities,
capable of teaching a variety of introductory and specialized courses in the Computer Science program, and eager to
join the Department of Computer Science in the Fall 2012. The successful candidate is expected also to have good
research record and be ready to accept long-term commitment at AUBG.

AUBG is a selective, residential institution with a diverse student body consisting of 1100 students from 34 countries.
The average SAT score is 1181. Instruction is in English. AUBG is accredited in both the USA and in Bulgaria. AUBG
is located in Blagoevgrad in southwestern Bulgaria close to the Greek border. Visit us at www.aubg.bg.

Candidates should send a letter of application, a CV and the names of three referees with contact information (including
e-mail) to: facultydean@aubg.bg.

Electronic submissions are encouraged, but candidates may mail application materials to: Office of the Dean, American
University in Bulgaria, Blagoevgrad 2700, Bulgaria.

Application review will begin immediately and continue until the position is filled.

The American University in Bulgaria is committed to a policy of non-discrimination and equal opportunity.

