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Abstract. /n this paper two adaptive algorithms for the recursive
parameters and the state estimation in linear discrete-time systems
are proposed. These algorithms combine the standard least square
method with the conventional stochastic state observer (Kalman
filter). The Kalman filter improves estimates quality, obtained with the
least square method, in the sense of their consistency. These algo-
rithms can be part of a stochastic control system with indirect
adaptation software. The comparison with another often used in
practice estimation algorithms as well as algorithms for adaptive
control (with indirect adaptation) based on conventional algorithms

are presented.

l.Introduction

The parameters and thestate estimation is a central prob-
lem in the control theory. The parameters estimation is an
identification problem. Independently from the control problem,
solutions for a wide class dynamic plants exist [1,2,3]. It is well
known that by taking into account, the information available a
priori it is possible to obtain an Wptimal parameters’ estimation
method in sense of optimal model structure, an optimal criteria
for estimates’ quality and an optimal estimation algorithm [4].
This ,optimal® estimation algorithm can be used for comparison
with a wide variety of the known particular methods. Unfortu-
nately, the a priori information for plant or surrounding environ-
ment, in most of the practical cases is incomplete, uncertain or
difficult for use. Due to its simple algorithmic structure and the
fact that some of the a priori information is not directly incor-
porated, the conventional recursive least square method (RLSQ)
is still one of the most often used method in practice. In fact the
RLSQ method is quite sensitive to the disturbance deviation from
the Gaussian distribution, which cause decrease of its perfor-
mance and eventually can cause its unworkability. With the
exception of some particular cases, without any practical signifi-
cance, the RLSQ method can not ensure consistent parameters’
estimate. In case of the closed-loop estimation, all unfavorable
effects are intensified. Most of the existing RLSQ method modifi-
cations do not provide complete problem solution. Moreover,

some of the complicated algorithmic realization of RLSQ modi- .

fications leads to some numerical problems which harm their
real-time usage.

Instead of traditional approaches which ensure whitening
of residual error (Extended least square method), the approach
proposed in this paper combines conventional RLSQ method
with optimal filtration of the measurement noise. This algorithm
has another advantage namely that beside of plant’s parameters
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estimation it also provides state estimates. Later on, those
estimates can be directly used for the state regulator design.

Il. Combined Adaptive Algorithm

The block diagram of proposed algorithm is presented in
figure 1[9].
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Figure 1. Structure scheme of combined adaptive
algorithm

The plant is described with the equation

(1) % =30,
where
(2) ¢T=[‘yk—l o iy e Yeraln pi-o ﬁL-—u];

& g ody .0 il o bos i

n

@' is a2n dimensional vector composed from obser-

vations obtained at time k, y,,,Y, ...y, and

u, ,uU,,,....u, , arethe actual data of the output and input

signals respectively,@is a2rn dimensional vector with parameter
estimate.
In respect to measurable quantities of the output

W™ ;k + &, and the input signal u, = -1, the equa-
tion (1) takes form:

®) y=g0+¢&;
dz[_yk—l e Sos R Bl TG G ST S MA—H];
& =G tag, tag, . tas b1+ 4b7,

where &, is the residual error, & is the measurement

noise and 77, is the input noise.
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The parameter’s vector & 'is estimated recursively by the
conventional least sauare method

) 01 =04 +Lk+1 (yk+l ——(p/:le"');
where L is the RLSQ gain matrix.
In the purposed estimation algorithm, noised out-

puts y,_., 1=1,2,...,n are replaced with their estimates
ﬁk_i , obtained by the Kalman filter (KF)
|4
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Xen = Fxo +Gu, +K
v,

k+1

k+1

where F/,G and C are matrixes from appropriate state-space

description of equation (3). K _, is the Kalman filter matrix

K+l

gain. V,, is the Kalman’s filter innovation process. The matri-

ces F,Gand C are replaced by their estimates ﬁé and

C They are obtained by the least square algorithm (4) in which

the vector @, is replaced by
©) 51\7 :|i~§k—l _§k~2
The combined algorithm consists of the following steps:

Step 1. The algorithm is started with an arbitrary initial

value of parameters 8¢, (such as éo =00):
Step 2. The matrices 13"0 GO, éo and kl are formed

from the initial value 6. and the estimate Y, is computed

according to algorithm (5) (for £k =0 ).
Step 3. The new estimate ©,is obtained according to
equation (4) (for k =0).
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Figure 2. Structure scheme of combine multiple algorithm
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Step 4. The algorithm is restarted from step 2, with the

estimate 6, instead of the estimate 0.

Step 5. Described above steps are repeated until the
estimates are stabilized or a priori maximum number of itera-
tions is exceeded.

lll. Combined Multiple Model Algorithm

The block diagram of the proposed algorithm is presented
on figure 2. The multiple model Kalman filter (MMFK) is pre-
sented on figure 3 [5,6].

q particular state estimates x’,i=1,2,...,q are
computed from g working in parallel Kalman filters. They are
designed for g different plant’s models, which are obtained for

different parameters & from the parameter's uncertainty do-
main. The weighted estimate is formed from

(7) § = Cfck’ where the combined plant’s state esti-

mate X, is obtained from

a
O (i)
X, = E £F -
i=1

The weight coefficients ¢, are obtained recursively from
the minimal variance condition of the combined estimate’s in-
novation process Vk* . The recursive procedure is similar to the

algorithm presented in section I, but the used estimate is
computed from equation (7).

IV. Simulation Results
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Figure 3. Structure scheme of multiple model KF
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The simulation experiments with proposed algorithms
for combined parameters and the state estimation are carried
out. For the evaluation purpose, a comparison with other most
often used in practice methods, such as the conventional re-
cursive least square method (RLSQ), the recursive least square
method with an instrumental value (RIV) (instrumental variables
are chosen as past values of input signal [8]) and the recursive
extended least square method (RELSQ) (with an auto-regressive
whitening filter of second order [7]), is performed. For the simu-
lation purpose a second order continuous-time plant is used. It

has a time-constant 7" = 4 and a damping gain & = 0.36.

The discrete-time model with sample time 7, = 2sis ob-
tained. The received model has parameters

S s W S A T 1
The input disturbance 77, is a white-gaussian noise with
variance D, = 0.02. The output is measured in presence of

the white-gaussian noise &, with a variance D In different
experiments the signal to noise ratio varies from 0.02 up to 0.25

(the variance D, varies from 0.0225 up to 3.5625 ). The

simulation experiments are performed for two cases:
a) The parameter estimation in a open-loop system (Fig.1-
2) with the measured white-gaussian noise with a variance

06

0.4

82 e

Figure 5. Step-response of system with actual regulator

D, =1as an input signal.

6) The parameter and state estimation in a closed-loop
control system (figure 4). The system with an actual LOQG
regulator has a step-response shown on figure 5 .

The multiple model Kalman filter is designed for worse
case scenario. It consists of two models (q = 2) which are
considerable different from the actual plant model (the first Kalman

filter is design for £=0.25 and the second is designed
for& =0.55).

1. Parameters estimation in an open-loop system

The comparative analysis is based on the following
indicators:

@ The absolute value of the estimation bias A& = M {é} =0

is given in table 7 as a percentage of the actual value

0" =[-1.5 0.7 1.0.:5]

A 0+,

i ; in kK, = ———=—isqi i
eThe estimate of the plant’s gain %, 140, +0, iS given in

table 2 as a percentage of the actual value kp =L/

e The impulse-response function of the estimated model W (k)
is presented on figure 6 and the general estimate error

[ = N 2
Iy :NZ(W(/‘)_W(/‘)) is given in table 2. Where

k=1
w(k) is the discrete-time values of W (k) for k>36,
W(k)=0.
eThe floating point operations count (flops), needed for one

iteration, is given in fable 3.

RLSQ RV

RELSQ

Figure 6. Impulse-response function of the estimated
model
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Table 1

D RLSQ RIV RELSQ RLSQ-KF RLSQ-MMFK

5 6 AB 0 A 0 AB 0 A O | A6
-1.4873 | 0.7670 | -1.4897 | 0.1851 -1.4995 | 0.0086 | -1.4995 | 0.0191 |-1.5024|0.2403
0.0225 0.6865 | 1.8268 0.6931 0.1209 0.6985 0.2267 0.6981 0.2082 [0.7006]0.2151
77T 0.9899 | 0.4898 0.9719 1.4757 0.9986 (1.53.1:7 0.9997 | 0.5043 [0.9972]|0.1219
0.5170 | 2.0890 | 0.5386 2.4659 0.4982 0.8702 0.4976 1.0761 10.4964|1.0896
-0.9908 | 34.6527 | -1.5376 1.9929 | -1.4852 | 2.0561 -1.4926 | 1.9225 |-1.4923{0.6220

1 2656 0.2293 | 68.8358 | 0.7435 3.6302 0.6856 3.6901 0.6952 | 4.1229 |0.6926|1.3377
v 0.9784 | 1.2843 0.8077 59168 0.9772 1.0641 0.9384 | 0.8628 [0.9848|1.1856
1.0446 [102.5759| 0.6844 | 14.4228 | 0.5719 18.0697 | 0.5598 | 8.4477 [0.4956|1.1814
-0.8270 | 45.7123 | -1.5326 | 3.7567 | -1.4789 | 2.7106 | -1.5003 | 1.9643 |-1.4931 0.6414

7 2500 0.0890 | 89.1272 | 0.7405 8.8804 0.6781 4.7927 0.7027 | 4.2520 10.6935]1.3608
: 0.9813 | 0.6232 | 0.7567 52125 0.9693 1.6181 0.9045 | 2.5282 10.98241.5534
1.2104 |134.5035| 0.7708 32573 0.5962 | 23.3327 | 0.5782 [ 10.4677 |0.4906|1.9324
Table 2

D RLSQ RIV RELSQ RLSQ-KF RLSQ-MMFK

? Y lgaﬁ Jﬁ’ Aoﬁ ‘]\i’ 12 06 th‘ Aoé' Jﬁ' /L: 06
0.0225 0.0443 0.8680 0.0209 | 0.9933 | 0.0026 | 0.3266 | 0.0039 | 0.5140 | 0.0051 | 0.4898
1.2656 9.9849 13.1170 | 0.8404 | 3.3642 | 0.0363 | 3.0421 | 0.0244 | 1.4186 | 0.0424 1.4689
2.2500 | «12:4595 LS 1.0401 | 4.0054 | 0.0933 | 4.7682 | 0.0414 | 23255 | 0.0509 | 1.9826
Table 3

RLSQ RIV RELSQ RLSQ-KF RLSQ-MMFK

flops 315 365 812 494 S0

Table 4

D o RLSQ RIV REL 5@ RLSQ-KF RLSQ-MMFK

“ © | 48 | 6 | A0 | 6 | a0 | 6 [ a6 | 6 | Ao
-1.51-1.6767|11.1138]-1.0427(29.4040[-1.5604 | 4.0810 [-1.5193 1.1860 |-1.4980| 0.1775

0.001 0.7 10.7060 ] 0.2610 | 0.8284 |17.3413{ 0.6883 | 1.8893 | 0.7220 2.9745 | 0.6981 | 0.3562
) 1 | 1.05094.7898 | 0.7813 [21.3270] 1.0107 | 1.0968 | 0.9974 0.2100 | 1.0116| 1.2628
0.5]10.5162 ]3.1852 | 0.3390 |31.3433] 0.5002 | 0.1746 | 0.5028 0.7608 | 0.5047 | 1.1468
-1.5]1-1.6481(11.2364 — — -1.4845|2.8822 [-1.5214| 1.1888 |-1.4853| 1.06800

0.006 0.7 1 0.6933 | 4.0021 - - 0.6472 113.1317] 0.6624 | 7.5209 | 0.6874 | 1.9847
; 1 1.2244 {22.1907 - — 1.0380 | 2.2474 | 0.9759 [ 1.7731 | 0.9885 | 1.0843
0.510.5436 [17.7142 - - 0.5533 |14.4249] 0.4513 | 8.2529 | 0.5076 | 1.9027
-1.5(-1.7217]18.7851 - - -1.48381 1.3684 |-1.5171| 0.9748 [-1.5133| 0.7370

001 0.7 10.7636 19.1719 - - 0.6868 | 4.2653 | 0.6832 | 3.8839 | 0.7213 | 2.9821
’ 1 | 1.5389 [59.0194 - — 1.0610 ] 6.1310 | 0.9781 | 2.6137 [ 0.9947 | 0.6520
0.5 | 0.5744 130.1485 . — 0.5287 1 9.1300 | 0.4946 | 0.6044 | 0.5003 | 0.2028
Table 5

D RLSQ RIV RELSQ RLSQ-KF RLSQ-MMFK

; L)\ b 1‘)\ J/; [)\ “h 1"\)\! “h 13\ JI;
0.001 10.03260 [0.18504 [0.02713 [5.87555 0.0316510.02743 10.03198 [0.00067 [0.03229 [0.00071
0.006 [0.03849|0.47892 - i 0.03340{0.02486(0.02973] 0.01305 | 0.03160 |0.00121
0.01 0.04987|1.57776 -~ 25 0.03417/0.01789/0.03080| 0.00292 | 0.03189 [0.000%8
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Figure 7. Step-response function of the control system

2. Parameters estimationin a closed-loop system
The comparative analysis is performed for the same in-

dicators used in an open-loop (table 4). Only the indicator 7

oot ~
is replaced by -],; :N‘Z(h(k)—h(k))z , Where h(k)is
k=1

the step response function of the control system and ﬁ(k) is

the step response function of the estimated control system. This
indicator more clearly points out the influence of the plant’s gain

A

estimate k, (figure 7 and table 5). In this case one more

indicator — the output signal Y, variance 15‘, is used. It cha-

racterizes the statistical accuracy of the control system (table
5).

The experimental results point out some advantages of
the proposed algorithms in comparison with the traditional al-
gorithms used. These advantages are more noticeable in case
of a closed-loop estimation or/and in the presence of strong
output noise. In a closed-loop regime some of the conventional
estimation methods (as RIV) become unworkable in the pres-
ence of strong output noise.

V. Conclusion

Two algorithms for parameters and states estimation
are proposed and studied in this paper. They are used for
stochastic plant control in case of incomplete information. They
combine the conventional least square method and the stochas-
tic state observer (Kalman filter), which considerably improves
the quality of the estimates. Simulation results of the proposed
algorithms are presented. The comparative analysis with some
of the most often used estimation methods are carried out and
the obtained results are discussed. For better comparison dif-
ferent indicators are used. Each of them characterizes the plant’s
model and the control system accuracy.
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