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Abstract, ln this paper two adaptive algorithms for the recursive
parameters and the state estimation in linear discrete-time systems
are proplsed. These algorithms combine the standard least square
method with the conventional stochastic state obseruer (Kalman
filter). The Kalman filter improves estimates quality, obtained with the
least square method, in the sense of their consistency. These algo-
rithms can be part of a stochastic control system with indirect
adaptation software. The comparison with another often used in
practice estimation algorithms as well as algorithms for adaptive
control (with indirect adaptation) based on conventional algorithms
are presented.

l . lntroduction

The parameters and thestate estimation is a central prob-
lem in the control theory. The parameters estimation is an
identification problem. lndependently from the control problem,
solutions for a wide class dynamic plants exist [1 ,2,31.|t is well
known that by taking into account, the information available a
priori it is possible to obtain an fptimal parameters' estimation
method in sense of optimal model structure, an optimal criteria
for estimates' quality and an optimal estimation algorithm [4].
This ,,optimal" estimation algorithm can be used for comparison
with a wide variety of the known particular methods. Unfortu-
nately, the a priori information for plant 0r surrounding environ-
ment, in most of the practical cases is incomplete, uncertain or
difficult for use. Due to its simple algorithmic structure and the
fact that some of the a priori information is not directly incor-
porated, the conventional recursive least square method (RLSQ)
is stil l one of the most often used method in practice. In fact the
RLSQ method is quite sensitive to the disturbance deviation from
the Gaussian distribution, which cause decrease of its perfor-
mance and eventually can cause its unworkability. With the
exception of some pafticular cases, without any practical signifi-
cance, the RLSQ method can not ensure consistent parameters'
estimate. In case of the closed-loop estimation, all unfavorable
effects are intensified. Most of the existing RLSO method modifi-
cations do not provide complete problem solution. Moreover,
some of the complicated algorithmic realization of RLSQ modi-
fications leads to some numerical problems which harm their
real-time usage.

lnstead of traditional approaches which ensure whitening
of residual enor (Extended least square method), the approach
proposed in this paper combines conventional RLSQ method
with optimal filtration of the measurement noise. This algorithm
has another advantage namely that beside of plant's parameters

N. Madjarov, T. Slavov

estimation it also provides state estimates. Later on, those
estimates can be directly used for the state regulator design.

l l. Combined Adaptive Algorithm

The block diagram of proposed algorithm is presented in
tigure 1191.

Figure 1. Structure scheme of combined adaptive
algorithm

The plant is described with the equation

( 1 )  T r = Q | 0 ,
where
(2) 0 =[-yo-, i * t

t l
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are the actual data of the output and input

signals respectively,0 is a2ndimensional vector with parameter
estimate.

In respect to measurable quantities of the output

!o = !r + (o and the input signal z*

tion (1) takes form:

(3) !* = tP'oo + e*;

-eo, the equa-

' r - , ) ;u , ,

€r = (r + e€o_, + %€0, +. . .+ a,,{r_,,

where e* is the residual error, (r

noise and r7 r_,is the n0tse.

I b,Tlr_, + . . .+ b,,r1o_,,,

is the measurement
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The parameter's vector d is estimated recursively by the
conventional least souare method
(4)  6o*,  =6* + Lou(!o*, -q i . ,0r) ;

where Lo*, is the RLSO gain matrix.

ln the purposed estimation algori thm, noised out-

puts y*_, ,  i  =1,2,.. . ,n are replaced with their est imates
A

! r_, , obtained by the Kalman filter (KF)

A

( 5 )  l r = C i r ;

.i**, = Plo + Guo + K**,Vr*, ;
V r * ,=  ! * * , -CGur -CF ; r .

where F,G and C are matrixes from appropriate state-space

description of equation (3). K**r is the Kalman filter matrix

gain. Vo*, is the Kalman's filter innovation process, The matri-

ces F ,G and C are replaced by their estimates p. f, and

L .They are obtained by the least square algorithm (4) in which

the vector @[ it replaced by

/ / \ : - I ' l - ^ a a I(b) Qi =l -!r_t -!r_z -!n_,, u*_t ur_z uo_,, l.

The combined algorithm consists of the following steps:
Step 1. The algorithm is started with an arbitrary initial

value of parameters 60, (such u, eo = 0).

Step 2. The matrices 4, , Go, i, and k,urrformed

from the initial value e, and the estimate !o is computed

according to algorithm (5) (tor ft = 0 ).
Step 3. The new estimate 0,is obtained according to

equation ( ) ( for f t  =0).

Step 4. The algorithm is restarted from step 2, with the

estimate e, instead of the estimate 0 o.
Step 5. Described above steps are repeated until the

estimates are stabilized or a priori maximum number of itera-
tions is exceeded.

l l l .  Gombined Mult iple Model Algori thm

The block diagram of the proposed algorithm is presented
on figure 2. The multiple model Kalman filter (MMFK) is pre-
sented on figure 3 [5,6].

q  par t icu lar  s tate est imates *1" , i  = I ,2 , . . . ,Q are

computed trom q working in parallel Kalman filters. They are
designed tor q different plant's models, which are obtained for

different parameters I from the parameter's uncertainty do-
main. The weighted estimate is formed from

(7) T = Cii, where the combined plant's state esti-

mate ii is obtained from

q

ii = Zr,*'o'' ,

cl

t a
l-rci 

= | .
i=  I

The weight coefficients cl are obtained recursively from

the minimal variance condition of the combined estimate's in-

novation process V*- . The recursive procedure is similar to the

algorithm presented in section ll, but the used estimate is
computed from equation (7).

lV. Simulation Results

Figure 2. Structure scheme of combine multiple algorithm

Flnnt
*t L-*J jr*

1,1h'trKF
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Figure 3. Structure scheme of multiple model KF
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The simulation experiments with proposed algorithms
for combined parameters and the state estimation are carried
out. For the evaluation purpose, a comparison with other most
often used in practice methods, such as the conventional re-
cursive least square method (RLSQ), the recursive least square
method with an instrumental value (RlV) (instrumental variables
are chosen as past values of input signal [8]) and the recursive
extended least square method (RELSQ) (with an auto-regressive
whitening filter of second order [7]), is performed. Forthe simu-
lation purpose a second order continuoustime plant is used. lt

hasat ime-constant  f  =4s andadamping gain(  =0.36.

The discrete-time model with sample time To = 2s is ob-

tained. The received model has parameters i

or - [-1.s 0.7 ' I o.s] .

The input disturbance ry. is a white-gaussian noise with

variance D, =0.02. The output is measured in presence of

the white-gaussian noise {, with a variance D,. ln different
experiments the signalto noise ratio varies from 0.02 up to 0.25

(the variance D, varies from 0.0225 up to 3.5625 ). The
simulation experiments are performed for two cases:

a) The parameter estimation in a open-loop system (Fig.1-
2) with the measured white-gaussian noise with a variance

Nx

Figure 4. Structure scheme of adaptive control system
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Figure 5. Step-response of system with actual regulator

D, = I as an input signal.

6) The parameter and state estimation in a closed-loop

control system (figure 4). The system with an actual LQG
regulator has a step-response shown on figure 5 .

The multiple model Kalman filter is designed for worse

case scenario. lt consists of two models (q - 2) which are

considerable different from the actual plant model (the first Kalman

filter is design for, € -0.25 and the second is designed

for(  -0.55) .

1. Parameters estimation in an open-loop system

The comparative analysis is based 0n the following
indicators:

o The absolutevatue of the estimation bias Ad - ll/[ 
{A}- 

t

is given in table / as a percentage of the actualvalue

0 , = [ - t . s  0 . 7  I  0 . 5 ]

rThe estimate of the ptant's gain t , = 
## is given in

L L

table 2 as a percentage of the actual value ku =J .5 .

e The impulse-response function of the estimated model W ft>
is presented on figure 6 and the general estimate error

1 N

J n, =+I (w&)- rD(ft)) '  is siven in tabte 2. where" N -o=t

w(k) is the discrete-t ime values of W(k),Ior k>36,
W ( k ) = 9 .
oThe floating point operations count (flops), needed for one

iteration, is given in table 3.
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RLSQ RIV RTTLSQ RLSQ-K[: RLSQ-MMFK
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0.9899 0.4898 0 .97  t9 1 .47  57 0.9986 0 . 5 3 1 7 0.9997 0.5043 0.99720 .12 t9
0 . 5 1 7 0 2.0890 0.s386 2.4659 4.4982 0.8102 0.4976 t . 0 7 6 10.49641 .0896

1.2656

-0.9908 34.6527 1 . 5 3 7 6 |.9929 t.4852 2.056 r t .4926 1.9225 1.49230.6220
0.2293 68.8358 0.7435 3.6302 0.6856 3 .6901 0.6952 4.1229 0.69261 . 3 3 7 7
0.9184 1.2r343 0.8017 s . 9 1 6 8 0.9772 1 .0641 0.9384 0.862ri 0.9848l .  r  8 s 6
1.0446 t 02 .57s90.6844 14.4228 0 .57  r9 18 .0697 0.5598 8.4477 0.4956r. r 814

2.2500

-0.8270 45.1r23 t .s326 3.7 s67 1 . 4 7 8 9 2 .7106 1.5003 1.9643 1 . 4 9 3 1().64t4
0.0890 89.1272 0.740s 8.8804 0 . 6 7 8 1 4,7727 41027 4.2520 0 .6935r .3608
0 . 9 8 1 3 0.6232 0.7561 5.2t25 0.9693 r . 6  r  8 l 0.e045 25282 0.98241 . 5 5 3 4
t .2104 134.50350.7708 3.2s73 0.5962 a , ) : ; a ^ a

Z J . J J Z  I 0.57.q2 10.46110.4906 t .9324

Table 2
t),

.i

RLSO RIV RI-ll-,SQ RLSQ-KF RI-SQ.MMFK
,J ,i, k .

o0
'/ ti'

I -
n .00 J 

ti,
L
n . .o0 J; k

o0
I

J , i ' t-
I t .

OD

0.0225 0.0443 0.i1680 0.0209 0.993:i 0.0026 0.32()6 0.0039 0.5 r 40 0,0051 0.4898
1.2656 9.9849 I  : i .  I  170 0.8404 3.3642 0.0363 3.0421 0.0244 I  . 4 1 8 6 0.0424 r .4689
2.2500 t2.4s95 l l . 5 3 t 3 t .040t 4.00s4 0.09-j3 4.7682 0,0414 2.325s 0.0509 1.9826

Table 3
RLSQ RIV RELSQ RLSQ-KF RLSQ-N,{l\4FK

flops 3r5 365 Br2 494 575

Table 4

I),
b

e
RL,SQ RIV RELSQ RLSQ-KF RLSCJ-M M FK

e A0 0 Ag 0 A0 e A0 0 Ae

0 . 0 0 1

1 . 5-1.6767I l . t 1 3 81.042729.4040 r .56044.0tt t  0 1  . 5 1 9 nr .  1 t360- r .49800 . 1 7 7  5
0 . 7 0.7060 0.2610 0.82tt4 17 .34130 .6883 r .8 t i930.7220 2 .9745 0 . 6 e 8 1 0 .3562

I t . 0509 4.7898 0 .7 t t  l 3 21.3270r . 0 t 0 7 1 .09680.9974 0 . 2 1 0 0 1 . 0 1 t 6 1.2678
0 .5 0.s |  62 3 .  r  852 0.33c)03 t  .34330.5002 0 . 1 7 4 6 0 .5028 0.760tt 0.s047 r . t 4 6 8

0.006

I . 5 r .64 t3 l| 1 .2364 - r ,4u452.8822 1 . 5 2 1 4 r  . 1 t t 88 1 . 4 8 5 3 1 .06800
0 . 7 0.6933 4.()021 0.6472 I  3 . 1 3  1 7 o.6624 7.s209 0.6874 1.9847

I 1.224422. t907 1 . 0 3 8 02.2474 4.9759 r . 7 l 3 l 0 .9885 r . 0843
0.5 0.5436 17 .7142 0 .553314.42490 . 4 5 1 3 8.2529 0.5076 1.e027

0 . 0 1

1 . 5 r . 7 ? 1 7l  8 .78s 1 r . .1B3B1 . 3 6 8 4 t . 5 l 7 l o.97 48 1  . 5 1 3 3 0 .7370
0 .7 0 .7636 9 . ) 7 1 9 0.686f] 4.2653 0 .6832 3 . 8 8 3 9 4.7213 2.9821

I l . 5 3 8 9 59 .0 t  94 I . 0 ( r l 0 6 .  l 3  l 0 0 .978 I 2.6137 0.9947 0.6520
0.5 0 .574430. r 4135 4.5287 e .  I  300 0.4946 0.6044 0 .5003 0.20213

Table 5

t),
5

RLSQ RIV RELSO RLSQ-KF RLSQ-MMITK
L) .r-
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. / , I")
.t,
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h

t)
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h I)
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r
J ^

h
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Figure 7. Step-response function of the control system

2.Parameters estimation in a closed-loop system
The comparative analysis is performed for the same

dicators used in an open-loop (table 4). 0nly the indicator J,,.

Relerences

1. Eykhoff, P. System ldentification. Parameter and State Estimation.
John Wiley and Sons Ltd, 1974.
2. Ljuing, L. System ldentif ication. Theory for User. prentice Hall, New
Jersey, Englewood Chiffs, 1987.
3. Rastrigin, L. A., N. E. Madjarov, S. l. Markov. Parameters Estimation
in Dynamics 0bjects. S.,Technika, 1978 (in Bulgarian).
4. Ya. Z. Tsypkin. Basis of Information Theory of the ldentificatoion.
M.,  Nauka, 1984 ( in Russian).
5. Madjarov, N., L. Mihaylova. Adaptive Multiple Model Algorithms for
Esimat ion and Control  of  Stochast ic Systems.-Automat ics and
lnformatics,l99B, No, 2, 16-23 (in Bulgarian).
6. Slavov, T. Multiple Model Adaptive Linear Stochastic Control
systems Design. International conference Automatics and Informatics'
04, Sofia, 2004,
7. Panuska, v. A stochastic Approximation Method to ldentification of
Linear systems using Adaptive Filtering. Joint Automatic control
Conference. Ann Arbor,  Mich.,  1968,1014-1021 .
8. Young, P. C., A. J. Jakeman. Refined Instrumental Variable Methods
of Recursive Time series Analysis. Part lll: Extensions.- tnt J. control,
31 ,1981 ,7  41-764.
9. Madjarov, N., T. Slavov. Parallel Parameters and States Estimation
in Linear stochastic Systems.-/nformation Technologies and control,
2003, Ns1 .  43-47.

Manuscript received on 5.07.2007

Prof. Dr. Nikola Madjarov graduated the Technical
University - Sofia in 1958. From 1g7B he is Doctor
of Technical Science. He has above 130 publications
and 20 brtbooks and monographic. Scientific in-
terests: theory of Automation and Controt ldentifi-
cation of dynamics systems.

Conlacts;
nen@_ta:solia,hg

Tsonyo Slavov was born in 1978. He received the
M. Sc. Degree (2002) from Technical lJniversity-
Sofia and PhD. Degree in Theory of Automatic
Control (2007) The topic of his dissertation is
,,Combined methods for parameters and state es-
timation for control of stochastic systems". Now he
is Assistant Professor at the Departament of Control
Systems, Technical University-Sofia. His current

research interests are in the area of optimal comtrol, adaptive control,
system identification and muftiple model control.

C-ontacts;
e-mait ts slavov@tu-sofia.ba

RLSO
l.t __**._**__.

RELSQ

RLSQ.AKF

Ir t {  I

replaced bv J ,= + ifufol - nU))', where h(k) isN f r '
the step response function of the control system anA V11p\
the step response function of the estimated control system. This
indicator more clearly points out the influence of the prant's gain

estimate (figure 7 and table 5). In this case one more

indicator - the output signal 11 varianceb used. lt cha-

racterizes the statistical accuracy of the control system (table
5) .

The experimental results point out some advantages of
the proposed algorithms in comparison with the traditionar ar-
gorithms used. These advantages are more noticeable in case
of a closed-loop estimation orland in the presence of strong
output noise. In a closed-loop regime some of the conventional
estimation methods (as RIV) become unworkable in the pres-
ence of strong output noise.

V. Conclusion
Two algorithms for parameters and states estimation

are proposed and studied in this paper. They are used for
stochastic plant control in case of incomprete information. They
combine the conventional least square method and the stochas-
tic state observer (Kalman filter), which considerabry improves
the quality of the estimates. simulation results of the proposed
algorithms are presented. The comparative anarysis with some
of the most often used estimation methods are carried out and
the obtained results are discussed. For better comparison dif-
ferent indicators are used. Each of them characterizes the plant's
model and the control system accuracy.
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