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Abstract. The uncertainty about the reliability of a route is represented
in a possibilistic setting. The concept of interval possibility is intro-
duced, as a generalization of fuzzy set concept of possibility, to deal
with a higher degree of uncertainty. Four simple algorithms are
proposed for solving the Most Reliable Route Problem under para-
metric uncertainty. The aim is to find the most reliable route on a
network that maximizes the possibility of not being stopped on the
route. The possibilities on the route segments are uncertain. The
applicability of the results is demonstrated by considering several
examples.

1. Introduction

We use different types of networks in our everyday lives,
for example, electrical networks, telephone networks, transpor-
tation networks (i.e., highway, rail, etc.), natural gas supply
networks, etc. The origins of network analysis are very old. The
network models, methods, and algorithms are extensively stud-
ied during the last fifty years and described in [1,2,3,9,10,11,
17,18,19,20,21].

Consider a connected network G, G = (N, A), where N is
the set of all nodes and A is the set of arcs. The cardinality
of N and A are denoted by |N| and |A| respectively, and
IN[=n, JAl=m.

There are many reasons why network models and algo-
rithms are widely used, for instance, they exactly represent the
real world systems, they facilitate extremely efficient solution to
large real problems, they can solve problems with significantly
more variables and constraints than can be solved by other
optimization techniques, etc. [17].

One of the earliest and computationally most efficient al-
gorithm for cyclic network, that is, for a network that contains
loops, is given in [2]. The earliest review of shortest route
problem is given in [18].

A method is proposed to find the most reliable route in a
given network in [19,20]. The probability of an arc is certain. The
author converted probability to log probability. Then the shortest
route algorithm is used to find the shortest distance (log). Finally,
this log probability is converted back to non-log probability.

In [2], the author assumes n nodes, and the existence of
at least one route between any two nodes. Two fundamental
problems are considered: to obtain the tree of minimum total
length between the n nodes, and to find the route of minimum
total length between two given nodes.

In [1], the authors propose an insightful alternative method
for shortest route problems, which reduce the upper bound of
running time, and make empirical comparisons for a certain
class of networks. Reaching, Pruning, and Buckets are the three
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concepts that are used in these methods. Reaching is a label
setting scheme, reaching allows a network to be pruned during
computation of some of its nodes and/or branches, and bucket
is a list of nodes whose labels fall within a given range.

New polynomially bounded shortest route algorithms, called
the Partitioning Shortest Route algorithm (PSR algorithm), to find
the shortest route from one node to all other nodes in a network
are given in [9]. The authors discuss six variants of the PSR
algorithms: an algorithm for negative arc lengths, but no nega-
tive cycles, and two algorithms for nonnegative arc lengths,
augment the PSR algorithm to maintain a property sharp by
Shier and Witzgall, and the other three variants augment the
PSR algorithm to maintain a property called near-sharp for
nonnegative arc lengths.

In [13], a new label correcting algorithm based on the use
of buckets of queues is given. A graph reduction technique for
real road networks is also presented, and this reduction tech-
nique decreases the number of nodes and arcs in the network.

An insightful interval algorithm is proposed for solving
network problems under parametric uncertainty in [5]. The exact
values of the parameters of a given network are unknown, but
upper and lower limits within which the values are expected to
fall are considered. The interval algorithm is developed on the
base of midpoint and half-width representation of intervals.
Considerable unification and simplification are obtained by using
the mean-value lemma. This interval algorithm is applicable
when the parameters of a given network are interval and non-
interval.

In [18], the authors gave the formulation of the shortest
route problem through a network: A set of N cities (nodes) is
given with every two connected by a road (link). The distances
are given between cities, and the distance from city i to city j
is not always equal to the distance from city j to city i. All
distances are assumed to be non-negative. The aim is to find
a route from any one city to any other city that minimizes the
total distance. If there is no link between two cities, the distance
is considered infinite.

In many practical cases, the parameters of the network
models are not exactly known, they are uncertain. A typical way
to express these uncertainties in the edge weights is to utilize
tools based on probability theory, interval analysis, fuzzy sets
theory.

The interval arithmetic is used as a tool to solve many
problems which are difficult to deal by classical solution tech-
nique [5,6,7,8,14].

After the seminal work of Zadeh [22], many authors have
discussed fuzzy logic as a tool to deal with uncertainty, see, e.g.
[4,12,23].

The key concept of possibility, its close connection with
the concept of membership in a fuzzy set, and its important role
in the representation of meaning in the management of uncer-
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tainty and in application of the fuzzy approach to decision analy-
sis, have been developed and treated in [4,23].

The aim of this paper is to develop polynomial algorithms
for solving the Most Reliable Route Problem under parametric
uncertainty. The most reliable route problem is formulated in a
probabilistic setting and solved using a shortest route algorithm
[19,20].

In this paper, we consider higher degree of uncertainty.
First, we use possibilities to represent the plausibility of not
being stopped on the route. Thereafter, the degree of uncertainty
is further increased by introducing the concept of interval pos-
sibility as an extension of fuzzy set concept of possibility [4].
Interval possibilities are more appropriate in the case, when the
value of possibilities are uncertain but expected to fall within
given intervals.

The paper is organized as follows. The interval analysis
concepts and some fuzzy graphs concepts are discussed in
Theoretical Preliminaries in the second section. Polynomial al-
gorithms for Most Reliable Route Problem, as well as numerical
examples to illustrate the applicability of the algorithms are
presented in the third section. The obtained results are dis-
cussed in the conclusion in section 4.

2. Theoretical Preliminaries

First the interval analysis concepts are introduced
[14,15,16].

Let R be an interval. We will denote its lower (left)

endpoint by I' and its upper (right) endpoint by F so that

R=[r.r].
The set of all intervals will be denoted by |(R). Let

R,SOI(R), and let * denote any of the interval arithmetic

operations, * = +, -, x, /. Then the set theory definition of the
interval arithmetic operations is as follows:

(1) ROS={r03 rORsOg

It follows that the sum of R=[r,r], S=[s,s] denoted
by R+ S, is the interval
R+S=[r,r]+[ss]=[r+sr+s]

The product Rx S is again an interval

RxS=[min{rs,rsrsrs},

max{rs,rs,rs,rs]
For R, S > 0 the definition reduces to
(@ RxS=[rsrs]

The half-width of an interval R = [LF] is the real num-

l -
ber, W(R)=5(l’ —E), and the midpoint of R is the real

number, m(R) = & + F) 2.

Using the set inclusion relation [ and the relation <, we
can define the supremum-like and infimum-like intervals:
= [sup(r,s),sup(r, s)]

(@) inf(R,S) =[inf(r,s),inf(r,s)]
To compare intervals the concept of metric p is intro-
duced. For each Rand Sin | (R) the distance p is defined by

iy

Now the intervals R and S can be compared. The fol-
lowing important results hold [5].

R< S if and only if

©6) p(Rinf(R,S))< p(S,inf (R,S))
In a similar way,

R= S if and only if

p(Rsup(R. S))< p(S,sup(R,S))

Two intervals R and Sare said to be equivalent R ~ Sif
the following condition holds:

@ pRsp(RIY=p(Ssup(RY)
@) pRInf(RY)=p(Sinf(RY)

|§ - Fl, i.e., the midpoints of R

3) sup(R,S)

6) P(RS —f{\r -

It means that |r - S| =

and S coincide.

In practical cases when R ~ S and one have to make a
choice in the sense of <, the condition (6) should be modified.
We say that R < Siif

(100 p(Rinf (R, ) =p(Sinf (R 9)and I < S
or

(1) p(R inf (R, 9) =p (S inf (R 9) and r<s.
We use, further, the notation R < Siin the usual sense,

when ' < S and 1 < §, and in the case of inclusion,

RO S when p (R inf (R, 9) < p (S inf (R 9).
The conditions (6) and (7) lead to the following result, as
proven in [5].

Let m(P) denote the midpoint of P, m(P) = ( P+ p)/2.

Then
(12) R< Sif and only if m(R) < m (S

Let [m(R), A(R)] denote the interval R, R=[I, r ], where
mR) = (F + r) / 2 is the midpoint of R, and
AR) = (F -1 )/ 2 s the half-width of R, so that

=[m(R) - A(R), m(R) + A(R)],
or, using the new notation

(13) R=[m(R), A(R)]
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The following result is easily shown:

letR S and T O I(R). Then T = R+ Sif and only if
(14) m(T) = m(R) + m(§)

(15) A(M) = AR) + A(S)

Now we introduce some fuzzy graphs concepts [12].
We shall consider in the finite graph G, G [J E x E a path

from x, to x,, that is an ordered r-tuple P = (X, X,, ..., X)

where x, [J E, k= 1,2,...,r and with the condition
[0 XX 1) M, ()ﬂk 1 Xirny” 0, k=1r-1

Let X OIY denote the operator min (X, ). With each route
a value is associated by

(X, s X, ) =
(16)
Mo (X, %, ) Ofg (%, 2 % ) Dees Ol (X 0% )
Let H(x;x) be the set of all routes between x and x.
H(x:X,) =
{h(xi;xj) =(Xil =X %, X, :Xj)l

X, OEk=2r-1

(17)

The strongest route H*(xl,xj) from x to X can be obtained

1°(%,%;) =
18 =¥ X . =X,
(18) H(EXi)I(xl Xis X e X% = X))

where X OY = max {X, Y}.

The value defined by (16) may be extended to operators
other than ‘7 under the restriction that these considered have
the properties of associativity and monotonicity. Such an opera-
tor is for example, the product operator ‘<’ (ordinary multiplica-
tion), for which

If a,bl7 [0, 1], than axb < allb

3. Polynomial Algorithms
for Most Reliable Route Problem

The aim is to develop simple algorithms for solving the
most reliable route problem, when the possibilities of not being
stopped on the segments of the route are uncertain. The concept
of interval possibility is introduced as an extension of the fuzzy
set concept of possibility to describe the uncertainty that usually
exists when possibilities have to be evaluated.

The algorithms are based on the strongest route concept
given by (18). Let 77 denote the interval possibility of not being
stopped on the arc (i, j). Following [4], we consider the possi-
bility as the degree of truth or the plausibility of an assertion, in
the case, the plausibility of not being stopped on the arc (i, j).

3.1. Most Reliable Algorithm Based on ‘[T
Operator for Acyclic Network
Let Pj denote the maximum possibility from node 1 to

node j. By definition P, = 1.0. The values of P, | =2t are
computed recursively using the formula
(19) P, =maxmin{R, 7}

where i ranges over the set N of all immediately preceding
nodes linked by an arc to the node j, and s denotes the
possibility between the current node j and its predecessor
node i.

To obtain the optimal solution of the strongest route prob-
lem, it is necessary to identify the nodes encountered along the
route. The following labeling of the node j is used:

(20) Node j Label = [P, K]
where k is the node immediately preceding the node j, which
yields PJ..

Consider the situation when there exist several equivalent
routes to a given node. For example, in figure 1, there are three
equivalent routes (1 -i-r), (1-j-r)and (1-z-r) with the
same possibility of 0.5. A possible way to deal with the situation
is to consider three equivalent strongest route solutions. On the
other hand, it is easily seen that the route (1 - z- r) is preferable
to the two remaining routes. As a tool to find a unique preferable
route we can use the following procedure:

(21) s’=argmax{P, +m.}
s=i,j,z

that is, we choose as immediately preceding node the node S
which yields the greatest value of the sum (Prr). In the
example on figure 1, the label of node rbecomes [0.5, Z]. Adding
possibilities is meaningless. Hence, the procedure (21) is just
a ,tool“ to select a preferable route, and to try to break tie in
a non-arbitrary manner.

T P, .05

Figure 1

We are considering an acyclic network with natural con-
secutive numbering of nodes from 1 to n, such that the number
of any node j is greater than the number of all immediately
preceding nodes linked by arcs to node j. The problem is to find
the most reliable route from the starting node 1 to a destination
node t, t < n.
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The algorithm based on ‘(J operator consists of the fol-
lowing generalized steps:

Step 1: Set j = 1. Assign to the source node (node 1) the
label 1.0, .

Step 2: Set j =] + 1. Compute the possibility PJ. to node
j using the formula (19). Label the node j by using the labeling
procedure (20).

If there are several equivalent routes to node j, use (21)
to determine the preferable preceding node s'.

Break a remaining tie arbitrarily, if any.

Step 3: If j =t go to step 4, else go to step 2.

Step 4: Obtain the optimum route H between nodes 1 and
t by tracing backward from node t through the nodes using
label’s information.

3.1.1. Analysis of the Complexity of the Most Reliable
Route Algorithm Based on ‘(T Operator for Acyclic Network

Consider the network in figure 2. The cardinality [N,| of
the set of entering arcs N, into node j is (j — 1), |NJ.| =] -1.

Figure 2

P, =min{R,, m,} 0 We need only (1 + 0) = 1 com-
parison to determine P,

P, = max{min(P, rt;) , min(P,,m,)} 0 We need
only (2 + 1) = 3 comparisons to determine P,.

P(n-l)= max{ min(P,, 1 (n_l)), min(Pz,nzm_l)), min(P3,7g,m_1)),
min (P, ), min (P, )} O We need only
((n-2) + (n-3)) comparisons to determine P, .
P.=max {min(P_, 7t ), min(P,, 77, ), min(P,,7t, ),
min(P,,7,), min(P,7¢),..., min(P_, 7, )} O We need
only ((n—1) + (n-2)) comparisons to determine P_ .

Hence, to obtain P, we need (j — 1) + (j — 2) = (2j - 3)
comparisons and j =2,N.
The total number of comparisons is Z(j -, Z(J -2).
i= =

We set x=j-land 0=j-2
and we obtain

ZX + §5 =
(n-)xn N (n=2)x(n-1)
2 2

— (n_l)(nz_"n_z) - (n_l)z

So, it is a polynomial algorithm, with complexity O(n?).

Numerical example

Consider the network in figure 3, with possibilities s given
along the arcs. Determine the most reliable route from node 1
to node 9.

Figure 3

Using the algorithm as we have described in section 3.1
we obtain the following results:

P, =[1.0, -;

P,=min{P, i}, =min{10, 0.8} =

= 0.8 with label [0.8, 1];

P, = maxmin{P,md =

=max {0.5, 0.5, 0.5} = 0.5, with labels

[0.5, 2], [0.5, 3], [0.5, 4]

From (21) it follows

s=arg max {(0.8 + 0.5), (0.9 + 0.5), (0.7 + 0.5)} = 3;

So, P, = 0.5, with label [0.5, 3];
and so on. The computational results are summarized
in figure 3.

After having P, our problem is almost solved. Note that we
have found the most reliable routes from node 1 to any node in
the network. The optimal solution is obtained starting from node
9 and tracing backward using the label information:

90 (07,50 50 (0.7,3) 0 30 (09,1) O 1

So, the most reliable route His 1 - 3 - 5 -9, with
possibility 0.7.

The complexity is bounded by O((n-1)?)=64 comparisons.

3.2. Most Reliable Route Algorithm Based on

‘x’ Operator for Acyclic Network

Consider an acyclic network with natural consecutive
numbering of nodes from 1 to n, such that the number of any
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node j is greater than the number of all immediately preceding
nodes linked by arcs to node j. The task of this new algorithm
is to find the most reliable route from the starting node 1 to a
destination node t, t < n.

The parameters P, and 77, and the labeling of node j,
namely [Pj, K] have the same meaning as in the algorithm based
on ‘07 operator in section 3.1. The only difference is that the
maximum possibility Pj from node 1 to node j is obtained using
the recursive formula

(22) P, =ma(Pxm)

where i ranges over the set of all preceding nodes N.

The most reliable route algorithm based on ‘x’ operator
consists of the following generalized steps:

Step 1: Set j = 1. Assign to the source node (node 1) the
label [1.0, -].

Step 2: Set j = ] + 1. Compute the possibility P, to
node j using the formula (22). Label the node j by using the
labeling procedure (20).

Break a remaining tie arbitrarily, if any.

Step 3: If j =t go to step 4, else go to step 2.

Step 4: Obtain the optimum route H between nodes 1 and
t by tracing backward from node t through the nodes using
label’s information.

3.2.1. Analysis of the Complexity of the Most Reliable
Route Algorithm Based on ‘x’ Operator for Acyclic Network

Consider the network in figure 2 (see, section 3.1.1). The
cardinality |N.| of the set of entering arcs N, into node j is
(-1, IN|=j-1.

P,= {Pxr,} OO We need only 1 multiplication

to determine P,

P,= max{(Pxr,),(P,xr.)} [0 We need only 2

multiplications and only 1 comparison to determine P,

Pn-1: max{ (Plxni(n-l))’(PZXTQ(n-l))’ (Paxﬂé(n-l))' e

(PpXTh 2t O We need only (n— 2) multiplications
and (n - 3) comparisons to determine P_,.

P,= max{(Pxm,),(PX1,), (Px1t,), (PXT,),

(Px1), -.(P X7 )} O We need only (n - 1)
multiplications (mwlt) and (m — 2) comparisons (comp) to
determine P .

Hence, to obtain P, we need only (j — 1) multiplications
and (j — 2) comparisons.

The total number of multiplications is Z(J’ -1,
£

The total number of comparisons is i(i -2,
£

We set x =j—1and =] — 2, and we obtain:
The total number of multiplications is @,

T, _ (n-)xn
Q=X =""—

The total number of comparisons is ¢,

_Ses . (-2x(n-)
¢_;5_ 2

The running time of the algorithm is limited by O(multi =
@ comp = ¢).

Numerical Example

We will consider the network given in figure 4 to illustrate
the algorithm. The problem is to determine the most reliable
route from node 1 to node 9. The computational results are
given in the same figure.

The computation results are as follows:

P, =[10];

P,= {Pxm,} = {1.0x0.8 = 0.8, with label [0.8, 1];
and so on.

[0.63,3]

110, _ [0.567, 5]

s
Y

[0.36,3]

Figure 4

The optimal solution is obtained tracing backward from
node 9 and using the label information1 - 3 - 5 - 9. The
corresponding possibility is 0.567.

Comment

Equivalent routes may appear more often when the first
algorithm is used. In many cases the second algorithm
which utilizes the operator ‘<’ automatically yields the most
preferable route and eliminates the need to use the selection
procedure (21).

On the other hand, in the cases of large networks, the
second algorithm requires more time for computations than the
first algorithm based on the operator ‘0.

3.3. Most Reliable Route Interval
Algorithm Based on ‘x’ Operator
for Acyclic Network

In this section, we shall consider an acyclic network with
natural consecutive numbering of nodes from 1 to n, such that
the number of any node j is greater than the number of all
immediately preceding nodes linked by arcs to node j. The
problem is to find the most reliable route from the source node
(starting node 1) to a destination node t, t < n.

Let Pj be the interval possibility from node 1 to node j,

and P, =[_|Oj,|7Jj]. By definition for the starting node 1,

|

N
N
I

20079
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= [1.0,1.0]. The destination node is denoted by t, t < n.

The interval values of P, j = 2.t will be computed recur-
sively using the formula
(23) P, =max (P}

where i ranges over the set of all preceding nodes NJ.. T is the
interval possibility between current node j and its predecessor
i, and 7T, =[qj, ﬁj],qj =0,i ON,.

To obtain the optimal solution of the problem, we will use
the following label of node j:

(24) Nodej Label ={[P,,p,], ki}
where k1 is the node immediately preceding j, which yields the
maximum PJ..

The interval most reliable route algorithm consists of the
following generalized steps:

Step 1. Set j = 1. Assign to the source node (node 1) the
label [[1.0, 1.0], —].

Step 2. Set j = j + 1. Compute the possibility PJ. to
node j using the formula (23). Label the node j by using the
labeling (24).

Step 3. If j =t go to step 4, else go to step 2.

Step 4. Obtain the optimum route H between nodes 1 and
t, starting from t and tracing backward through the nodes using
label’s information.

3.3.1. Analysis of the Complexity of the Most Reliable
Route Interval Algorithm Based on ‘<’ Operator for Acyclic Network
Consider the network in figure 2. The cardinality [N,| of
the set of entering arcs N, into node j is (j — 1), |NJ.| =j-1.

Each comparisons of two intervals V =[v, v] and

W =[w,w] includes many comparisons and many additions.
P, = {Pxm,} = {[p,, p,]* [

=[P,y p, 2|0 We need only 2 multiplication to de-

termine P,

P, = max{(P,xr,), P,xm.)}, [ We need only 4 mul-
tiplications and only 1 comparison (of two intervals)
to determine P,

E121ﬁlz]}

= max{(Plxni(n-l))' (P2x7-5(n-1))' (PSXTg(n-l))' s

(P X st O We need only (2n — 4) multiplica-
tions and (n — 3) comparisons to determine P_,.

Pn = rnax{(Plxn.-ln)' (szTgn)' (PSXTI:;n), o

(PyXTr. 1)} O We need only (2n — 2) multiplications
and (n - 2) comparisons to determine P .

To obtain P, :[Ej,f)j] we need (j - 1) multiplications
of nonnegative intervals and (j - 2) comparisons of intervals.

The total number of multiplications is in(j -1, and

the total number of comparisons is Z(j -2),
Z

We set x =j — 1 and =] — 2, and we obtain

The total number of multiplications is &,

n-1

E = 2)( X = n-l n
XZ_l (n-1)
The total number of comparisons is y,
Zd - (n- 2) (n-1
The running time of the algorithm is bounded
by O(multi = €, comp = ).

Numerical Example

Consider the network in figure 5. The parameters along the
arcs are nonnegative interval possibilities s of not being stopped
between nodes i and j.

Using the algorithm described in section 3.3, the following

(110,10, 1. [[0.408,0.76], 5]

@ 108, 10][

052,075.3

1.9 4 :/ '///””,"
Py w{D)

[[0.24,0.50], 3]

Figure 5

computational results are obtained:

P, = [1.0, 1.0], with label [[1.0, 1.0], -];
P,= {P,xm,} = [0.7, 0.9], with label [[0.7, 0.9], 1];

Py = max{R x 3} = max {[0.8, 1.0], [0.49, 0.81]} =

=[0.8, 1.0], with label [[0.8, 1.0], 1];
and so on.

The optimal solution is obtained by using label’s informa-
tion:

9 - [[0.408, 0.760], 5] - 5 — [[0.48, 0.80], 3] -

3 - [[0.80, 1.00], 1] - 1 — [[1.0,1.0], -].

Hence, the most reliable route is 1 - 3 - 5 - 9 with
the corresponding interval possibility [0.408, 0.760].

In figure 5, the solid lines indicate the most reliable route
from the source node 1 to the destination node 9.

3.4. Most Reliable Route Algorithm Based on
Interval Possibility for Acyclic Network

Consider an acyclic network with natural consecutive
numbering of nodes from 1 to n, such that the number of any
node j is greater than the number of all immediately preceding
nodes linked by arcs to node j.

Assume that the possibilities T, are uncertain and known

to fall within some intervals m, m= [m,

i» m;]. The interval
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extension of (22) can be written as

(25) P, = maqR xm;}

where P, =[Ej,|_oj], P =[P, p] and ‘X denotes the interval
multiplications, and, by definition P, = [1.0, 1.0].

The formula (25) is represented in the form

logP; =max{logR, +log 7y}
where, if F denotes any of the intervals P P, or T,
log F =[logF ,logF]. Since logr; <0, and IogR <0, maxi-
mizing this sum is equivalent to the following minimization
problem

(26) U, = EQL?{Ui +D;}

where
(27) Uj =

The operation min {} is performed on the basis of (6)
and/or (10), (11).

A more effective interval acyclic algorithm, using the mid-
point and half-width notation (13), R = [ m(R), A(R)], can be
developed.

Let u denote the real shortest distance from 1 to node j.

- log Pj, U =-log P, Dij =—log 71

The real values u, j=2t are computed using the recursive
noninterval formula

(28) U = M+ b

where du is the midpoint of Dij, u = 0.
The following labeling of node j is used

(29)node j Label = [u;,k2,4A,,]

where k2 is the node immediately preceding j and k20 N, , that

leads to the shortest distance u, and A, is the half-width
of Dkzj.

Further it is assumed that the network is described using
interval notation with midpoint and half-width. It is also assumed
a natural consecutive numbering of nodes from 1 to n, such that
the number of any node i, iON |1 is greater than the number
of any immediately preceding node k2, k200N,, and where N
is the set of nodes, N = {1, 2, ..., n}.

Hence, a preliminary step includes the conversion of in-
terval possibilities to log interval possibilities, using (27), and
then, the conversion of the usual interval notation in (26) to
midpoint and half-width notation, using (13).

The algorithm consists of the following generalized steps:

Step 1. Assign the label [0, —,
Setj=1

Step 2. Setj =) + 1. Compute the shortest distance from
source node 1 to node j, by using recursive formula (28). Label
node j by using (29).

If j <t repeat step 2.

Step 3. Obtain the optimum route H between nodes 1 and
t, starting from node t and tracing backward through the nodes

0] to the source node 1.

using the label’s information.

Step 4. Obtain the half-width A(U) of the interval solution
U, adding the corresponding A”. encountered along the optimum
route H*

AU,) =
(i,))0HY
Step 5. Obtain the interval solution U,
U= [u-AU), u+ AU) |

Step 6: Obtain the shortest route logarithmic interval length
and convert back to non-logarithmic notation.

3.4.1. Analysis of the Complexity of the Most Reliable
Route Algorithm Based on Interval Possibility for Acyclic Net-
work

Consider an acyclic network in figure 2. The cardinality
IN.| of the set of entering arcs N into node j is (j — 1),
IN | =(-1).
u,=u, +d, 0 We need only 1 addition to deter-
mine u,.
u, = min {(u, +d_,), (u, +d,)} O We need only 2
additions and 1 comparison to determine u,.

u( p=min{(u +d ), (u,+d, ) (U +d, ), ...
(u, + (nz)(nl)} O We need only (n -2 addltlons and
(n - 3) comparisons to determine Uiy

u,=mn {(u +d ), (u +d,) (u +d,),
(u,, +d,p)} O We need only (n - 1) additions and (n - 2)
comparisons to determine u .

Hence, to obtain u, we need (j — 1) additions and (j - 2)
comparisons.

The number of additions is Z(j _1).
]:

The number of comparisons is Z(j -2),
]:
We set X=J—1and 5= -2 and we obtain
n-1
n—1)xn
ZX _ (n=Dxn
& 2

:Zj (n—Z);(n—l)

The total number of additions is T,
_l X
r= % + (n—1) (total half-width) + 2 additions to obtain

the traditional interval representation + 2 additions to convert
logarithmic interval length to non-logarithmic interval length.
The total number of comparisons is @,

© - ;5 (n=2)x(n-1) 2)"(n N
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Table 1 - Logarithmic transformation of interval possibilities

Road m =[m;,m] | log my | log mmy | [~1-Tx[logm;. logm;] | [M(logm). A(logm)]
segment

(U)

(1,2) [0.70,0.90] | -0.1549 | -0.0458 [0.0458, 0.1549] [0.1004, 0.0546]
(1,3) [0.80, 1.00] | -0.0969 | 0.0000 [0.0000, 0.0969] [0.0485, 0.0485]
(1,4 [0.50,0.70] | -0.3010 | -0.1549 [0.1549, 0.3010] [0.2280, 0.0730]
,3) [0.70,0.90] | -0.1549 | -0.0458 [0.0458, 0.1549] [0.1004, 0.0546]
2,5) [0.50,0.70] | -0.3010 | -0.1549 [0.1549, 0.3010] [0.2280, 0.0730]
2, 6) [0.40,0.60] | -0.3979 | -0.2218 [0.2218, 0.3979] [0.3100, 0.0880]
3,4 [0.65,0.75] | -0.1870 | -0.1249 [0.1249, 0.1870] [0.1560, 0.0310]
3,5) [0.60, 0.80] | -0.2218 | -0.0969 [0.0969, 0.2218] [0.1590, 0.0625]
3, 6) [0.40,0.60] | -0.3979 | -0.2218 [0.2218, 0.3979] [0.3100, 0.0880]
3,7) [0.30,0.50] | -0.5228 | -0.3010 [0.3010, 0.5228] [0.4119, 0.1109]
3, 8) [0.30,0.50] | -0.5228 | -0.3010 [0.3010, 0.5228] [0.4119, 0.1109]
(4, 6) [0.40,0.60] | -0.3979 | -0.2218 [0.2218, 0.3979] [0.3100, 0.0880]
@,7) [0.70,0.90] | -0.1549 | -0.0458 [0.0458, 0.1549] [0.1004, 0.0546]
4,38) [0.40, 0.60] | -0.3979 | -0.2218 [0.2218, 0.3979] [0.3100, 0.0880]
(5, 9) [0.85,0.95] | -0.0705 | -0.0222 [0.0222, 0.0705] [0.0464, 0.0242]
(6,9) [0.70,0.90] | -0.1549 | -0.0458 [0.0458, 0.1549] [0.1004, 0.0546]
(7,9) [0.60, 0.80] | -0.2218 | -0.0969 [0.0969, 0.2218] [0.1590, 0.0625]
(8,9) [0.60, 0.80] | -0.2218 | -0.0969 [0.0969, 0.2218] [0.1590, 0.0625]

So, the running time of the algorithm is limited by O(addi
=T, comp = ®).

If we develop the most reliable route algorithm (based on
interval possibility for acyclic network) based on traditional in-
terval representation, the complexity of the algorithm will be very
high. To compare two intervals many comparisons and many
additions are needed.

Numerical Example

Consider the network represented in table 1. Using (27)
and (13) the network in figure 6 is obtained.

[0.2075, 3, 0.0625]
[0.104,1,0.0546] [0.228, 0.073

[0.2539, 5, 0.02419]
[0.1004, 0.0546] ©)

25\
. \J 'Q%

[0,-,0]

[0.4604,3, 0.1109]

Figure 6

m, =[m,,m2]=[0.7, 0.9],

log T2 -0.0458 and
[-1,-1] x[log 11,,,l0g 7T12] =[0.0458 , 0.1549].

Using the midpoint and half-width notation (13) we obtain

the equivalent representation of the interval, D, D,,= —log 7z,
=[0.1004, 0.0546] .

As an
then logm,, =-0.1549,

example,

Using the algorithm we obtain the following results:
u, = 0, with label [0, -, 0],

u,=u +d,=0+0.1004 = 0.1004,

with label [0.1004, 1, 0.0546];

u, =minf{u, +d,}_
i=1,2

=min {(u, +d_), (u,+dy} =

=min{(0+ 0.0458), (0.1004 + 0.1004)}

= 0.0458, with label [0.0485, 1, 0.0485];

and so on. All the computational results are summarized
in figure 6.

Tracing backward using label’s information the most re-
liable route is as follows:

9 [0 [0.2539, 5, 0.02419] O 5 O [0.2075, 3, 0.0625]

0O 3 0 [0.0485, 1, 0.0485]] O 1 O [0, -, 0].

The half-width of the optimal solution is:

Ay =D, + A+ A, = 01352,

We have got the midpoint and half-width values, and now
it is possible to obtain the interval possibility.

U, = [Ug, uel = [0.1187, 0.3891].

UJ. =-log PJ.;

Thus, log P, = [-0.3891, -0.1187];

So, P, = [0.408, 0.760].

The most reliable route is (1 0 3 0 5 0 9), and the
corresponding interval possibility are [0.408, 0.760].

4. Conclusions

Four algorithms are proposed for solving the most reliable
route problem in finite fuzzy networks. The uncertainty about the
reliability of a route is represented in a possibilistic setting. The
plausibility of not being stopped on a segment of the route is
described using the corresponding possibility. The new algo-
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rithms maximize the possibility of not being stopped on the route
between an origin node and a destination node. The analysis of
the complexity of all five algorithms is evaluated.

The first and second algorithms are based on the usage
of ,and“ and ,product® operators to determine the strongest
route, that is, the most reliable route in a finite fuzzy network. In
the case of large networks, the second algorithm requires more
time for computations than the first algorithm.

The third algorithm uses multiplication of interval possi-
bilities and yields directly the largest interval possibility of not
being stopped on the route. It is suitable for networks in which
the time needed to obtain the solution itself is not a crucial
factor.

The fourth algorithm for acyclic network is based on the
concept of interval possibility. The transformation of the initial
representation into logarithmic form is accomplished only once
at the beginning and than the simple midpoint algorithm for
solving interval acyclic algorithm.

The complexity of these new algorithms is evaluated, all
algorithms are polynomial.

In [19, 20], the author proposed a method to solve the
most reliable route problem with less degree of uncertainty. If the
probabilities of a given network are with higher degree of uncer-
tainty, i.e., the probabilities are given by upper and lower limits
within which values are expected to fall, this method can not be
used to solve the problem.

Numerical examples are given to illustrate the efficient
assessment of the solution and the workability of the developed
algorithms.
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