Identification, Retrieval and Management
of Services in Ambient Networks

Key Words:Pervasive computing; context-aware networks;
gridsystems; autonomiccommunication; context-oriented networks;
programmable context networks.

Abstract. Connecting devices other than workstations to the
Internet is becoming commonplace now. Examples are the equipment,
traditionally connected to a computer like a printer, a scanner or a
disk (file server). In addition, the number of mobile devices like
PDA’s and telephones increases rapidly. All these devices are
capable of providing services to users. Ambient networks and
environments pose unique challenges, different from the
challenges in conventional and static networks. Devices that need
to join and leave the network dynamically require architectures
and protocols aiding at making ease of the interaction between
network participants. Service consumers need flexible ways to find
the exact service provider they need. Networks like these could
have static structure and dynamic content, but also could be
spontaneously created (i.e. ad-hoc networks) when devices appear
close together. This paperis a survey of protocols and taxonomy
of architecture capabilities of existing service discovery technologies.

1. Introduction

This paper describes existing service discovery protocols
that are in use today. It focuses on service registration, the
possibilities to search for a particular service in a network and
how it can be invoked and utilized. The presentation starts with
protocols oriented for relatively static environments, like DNS-
Service Discovery, Service Location Protocol, UDDI, and then
makes a step towards more dynamic networks — architectures
and protocols supporting dynamic network structures, like JINI,
Universal Plug and Play, Bluetooth. Finally, a strategy called
Salutation aiming at unifying different protocol approaches is
presented at the end. A short example is provided with each
protocol overview, demonstrating how discovering a service looks
like using the particular technology. A comparison of examined
protocols is provided as a last chapter.

2. Web Services as a Research Problem

There are many different technologies enabling Web ser-
vices to exist. Each one offers different level of completeness
and different degree of built-in support for applications (clients
and service suppliers). In a network, where a lot of services and
a lot of clients exist simultaneously, a mechanism for interac-
tion between them is necessary. Also, they may need to interact
without knowing anything about each other in advance. This
could be achieved by standartisation of steps for registration,
discovery and activation of possible services. How to find a
concrete service instance among all service suppliers? How to

N. Kalaydjiev

sift out by properties and attributes the results we have found, if
they are more than one? How to present this information to the
human user, so he can decide by himself, and how later suc-
cessfully activate the service and communicate with it? All these
are questions that a service technology has to take into account.
A complete service technology needs to offer a conception and
a mechanism for all steps from discovery to service activation.
Some of the major tasks and issues that it has to manage with
are:

« Client and Service Supplier mobility.

« Service auto-configuration when plugged into the net-
work.

« Formal service description of class, category, service
attributes, group.

« Service Registration a service needs ways to publish
itself so clients can discover it.

» Service Discovery — Lookup and Service Browsing.

» Filtering of possible services by particular criteria - class,
attributes, category, and group.

» Adequate and unique addressing of the service in a
network.

« Formal description of service activation — methods,
parameters, types.

* Application frameworks — API, easy and transparent
activation, proxies.

« Remote events — notifications for service registration/
deregistration, status change, etc.

» Abstraction of communication mechanism from particu-
lar network and media.

« Undependability of particular programming language and
hardware/software platform.

All service discovery protocols further on are examined
from the perspective of ways they realize the points described
above.

2. DNS-SD

DNS Service Discovery uses the standard existing infra-
structure to allow simple service discovery. It runs over IP-based
networks (small, enterprise, or even Internet) and does not need
any new configuration of existing DNS services, servers, and
packet formats to browse the network [1]. Locating a service
means finding its address on the network, when its type and
characteristics are already known. This resembles the way where
a conventional Web-browser finds the address of a host in Internet,
when it knows its name. A big advantage of DNS-SD is that it
does not require any new infrastructure to support service dis-
covery, meaning no new hardware or software addi-

information technologies
and control

T

2 2007 3

tions. All it needs is a running DNS server, which is true for many
present networks [1]. Normally all participants in the network are
already configured to use this DNS server (with manual configura-
tion or automatically via DHCP server). Furthermore, the DNS-SD
service does not have to be provided by the same DNS server
hardware that is currently providing an organization’s conventional
host name lookup service. Service discovery using DNS-SD can be
managed by the existing DNS server in the network, or by a
dedicated one, or both of them can work together.

Using Internet-protocol networks as granted, DNS-SD of-
fers the ability to query for services of a certain type in a certain
logical domain and receive in response a list of named in-
stances (network browsing, or Service Instance Enumeration)
[1]. That way for a single service type it is possible to obtain all
service providers that are available to operate the service. Later,
when a particular named instance is selected from this list,
using DNS the client can efficiently resolve that instance name
to the required information to use the service, i.e. IP address and
port number. An important detail about DNS-SD is that service
instance names should be relatively persistent. If a user selects
their default printer from a list of available choices today, then
tomorrow they should still be able to print on that printer with no
additional configuration. In DNS-SD this is achieved with one-to-
one mapping between service instance and service URL. Thus,
clients can remember the service URL of the service they have
already found, and do not have to search for it again.

To store information about services DNS-SD uses stan-
dard DNS records — SRV, PTR and TXT [1,2]. SRV records can
describe a service available in a domain, specifying host’s IP
address and port number to use. The protocol is either TCP
(when SRV record has the form _tcp.domain) or UDP (SRV form
is _udp.domain). For example, SRV record with the name
,_Ipr._tcp.mydomain.com.” would allow a client to discover and
get a list of all printers running LPR printer protocol in
mydomain.com. To allow naming of service instance, another
DNS record can be used — PTR. It allows creation of references
to SRV records, adding new attribute — the name of service
provider. Then the name of the service gets the following form:

nature of that additional data, and how it is to be used, is service-
dependent, but the overall syntax of the data in the TXT record is
standardized.

A service is registered like normal DNS-entries mainte-
nance [1,11]. This could be done manually, by some tool that
checks network members, or dynamically by each service itself,
using the Dynamic DNS Update. When no conventional DNS
server is running in the network, an alternative approach could
be use of Multicast DNS (mDNS) [3]. It provides the ability to do
DNS-like operations on the local network in the absence of any
conventional unicast DNS server using IP Multicast. Thus, the
network requires a little or no administration or configuration,
and it can work when no infrastructure is present, or during
infrastructure failures. DNS is organized as a hierarchy of serv-
ers, in the familiar Internet domain names. This scheme has
been shown to scale up to the entire Internet [11].

Nevertheless, DNS-SD is a static environment where par-
ticipants are relatively persistent and do not join and leave
network frequently. This. service discovery protocol is suitable
for persistent services in IP-based networks running TCP or UDP
protocols, allowing no personal configuration for any client.
Service clients are allowed to be as mobile as they need to, and
they can safely cache service URLs of services they know of.
Administration of registered services is awkward because DNS
databases are maintained by privileged users [11]. The big
advantage of DNS-SD is that it can use existing infrastructure,
standards, protocols and tools, and requires no need of addi-
tional software or hardware components.

3. Service Location Protocol (SLP)

Service Location Protocol allows computers and other devices
to find services in an IP-based local network. The protocol and
the network need little or no static configuration to run SLP, as
long as the network supports UDP and TCP protocols [4]. SLP
can scale from small and unmanaged networks to large
enterprise networks and allow network participants to find

Service Instance Name = <Instance>.<Service>.<Domain>

UsualPrinter._lpr._tcp.mydomain.com

Some examples could be: AdvancedPrinter._lpr._tep.mydomain.com

WordTranslator._soap._udp.mydomain.com

Sometimes IP address and port number are not enough as
address information. For example, a printer can have a print queue
where documents can be sentfor printing, or afile server may have
multiple volumes, each identified by its own name. Therefore
additional information stays in the third DNS record — the TXT
record. This information should be regarded the same way as the
IP address and port number — it is one component of the
addressing information required to identify a specific instance of
a service being offered by some piece of hardware. The specific

existence, location and attributes of services they need, as well
as it allows services to be published on the network. In SLP
each service is identified by its unique URL, used to locate the
service [4,11,10]. This Service-URL specifies the name of the
service, protocol used to access it, its location and optionally
additional information about it, like some attributes. Moreover,
each service can be attended to one or more groups, called
scopes that logically divide the network [4]. When a device
needs a service, it can always specify a group where to look for

&)
(%]

2 2007

information technologies
and control

DNS Recdrd for NormalPrinter - i
SRV

host pra1.mydomain.com, port 515

kNormalPrinI‘er;‘,__lypr;‘_‘tcpt' ydbinain.édm 2

host prn4.mydomain.com, port 515
PTR EnhancedPriﬁter.Jpr.__tcp.mydomai'n.com1

""queue=q0", "papersize=A3",
"color=CMYK"

e

DNS Record for WordTranslator

SRV host wsserver.lnydomain.pom;'por'; ’8,0'8‘0

PTR WordTranslator._soap._udptmydomain.com i

won

: ytarge‘ti’]an g=de;bg"

CIXT "sré-lang=de;en'bg

DNS-query return

Client sends DNS query for
PTR records for
“Ipr._tcp.mydomain.com”, knowing
in advance the IP
address of the DNS-server

list with suitable
services

Normal Printer

DNS
Server

(Unicast) (Unicast)

Service Agent Directory Agent User Agent Service Agent User Agent

Acknowledgement
(Unicast) (Unicast)

Query Reply

User selects desired
printer from list

Figure 1. Operation of DNS-SD

Service Registration Service Query Service Query

Query Reply
(Multicast)

Figure 2. Service Discovery in SLP — left: when at least one Directory Agent
is present; right: when no Directory Agent exists

Client now knows
address information about
required service

information technologies Qi 7
x og 2 2007

and contro.

(&)
@

it, and thus isolating all services that it is not interested in. By
default, the scope is called DEFAULT, unless service is not
explicitly declared as a participant in another group or groups.

In SLP there are three components, interconnected in
a common network. These components are the service consumer
(called User Agent — UA), service provider (called Service Agent
— SA) and service directory (Directory Agent - DA) [4]. The
directory agent is a participant in the network that maintains
information about all active service providers in the network, and
is used by service consumers to discover services. It can be a
separate unit, or can be implemented by one of the service
providers. It is also possible that more than one DA exists to
allow balancing of load and data redundancy (in case of primary
crashes) in the network, as well as the operation with no directory
agent at all. When service consumer needs to find an address
of a particular service, it directs its question to the existing
directory agents. UA can know the address of DAs if prior
configured via DHCP server, informing all UA and SA about the
existing DAs, or via IP Multicast messages, searching for the DA.

The operation of SLP differs considerably, depending
on whether a Directory Agent (DA) is present in the network or
not. When a service consumer or provider first joins the network
it multicasts a query for DAs on this network. When SA discovers
a DA, it registers all its services at this DA. Then, all UAs can
unicast a query to DA and get the address of the service they
need. If there are no DA answers the client will assume that it
is in a network without DAs. In fact it can also add DAs later, as
they multicast a presence packet in a predefined interval that will
be received by all other devices, but normally UA s will multicast
a packet with the query. Then, all SAs that contain matches will
send a unicast answer back to the UA. As a rule all queries and
replies are sent in UDP packets, but when the answer is too big
to fit into single UDP packet, it will be sent over a connected
unicast TCP link. As UDP is an unreliable protocol, all lost
messages are repeated in some increasing time delay between
them. When the service provider leaves the network, it un-
registers its elf from DA.
Service Location Protocol possesses a sophisticated mechanism
for a service description and attribute-based filtering [4,10].
Each service has service type and may have an unlimited number
of name/value pairs, called attributes, and each attribute can
have a particular data type. These attributes can be present
inside the Service URL directly, or can be queried separately
from directory agents. When a service consumer needs a service,
it can query for all services of a specified general or concrete
type, as well as specifying constrains for attribute values, including
Boolean expressions (using LDAP rules). In SLP, services are
described with service templates. A template specifies the service
URL (a special URL scheme called service:), service description
and the allowed attributes specified by a service, in a formalized
description of the URL syntax and attributes [5]. The Servicetype
is standardized name identifying the semantics by which the
remainder of the URL is to be understood (the ,path“ part in
standard URL). It may denote either a particular network protocol,
or an abstract service type. As an example a Service-URL along
with the attribute names and data types for a shared printer could
look like this:

This denotes a service URL for a queue called tray1

for the abstract type printer, located at address
prn.mydomain.com. The relation between abstract and concrete
templates resembles the relation between base and derived
classes in object-oriented programming — each abstract

URL: service:printer://prn.mydomain.com/tray 1
class=string
Attributes: location=string
color=keyword

template can specify attributes that are automatically derived to
all its concrete types. The template also defines what additional
information could be present in the Service-URL. Together with
service’s address, this information forms the Service Access
Point. How this information is interpreted is defined inside the
template with a formal grammar using Augmented Backus-Naur
Form [5].Concrete types use URLs in the form of
service:<AbstractType>:<ConcreteType>.//<Address>
[/<Additionallnformation>].

When a service provider registers a service, it prepares
a service template, combined with a set of attribute values and
sends it to Directory Agents. Many Service templates are
standardized in public organizations called Naming Authorities,
like IANA, but a service can also use its own private naming
authority [5]. A query for ,service:<abstract-type>*“ matches all
services of that abstract type. If the concrete type is also included,
only these services will match the request. For example, a query
for ,service:printer* will match both ,service:printer: Ipr://
hostname® and ,service:printer:http://hostname*, whereas a
query for ,service:printer:http”“ would match only the second
service.

In addition to searching by service abstract or concrete
type, SLP allows attribute-based filtering of discovery results.
This means, that the User Agent can specify conditions for
attribute values (called predicate) [4], for example a minimum
required paper size, a minimum printer speed, and a color or
greyscale printing. A query for a color or laser printer running
any protocol (i.e. an abstract service type), printing on A4 with
at least 5 pages per minute is the following:

Exanple query:
Service Type: "service:printer"
Scope: DEFAULT
Predicate: (& (|(color=*)(class=Laser)) (&(paper-

size=A4)(pages-per-minute>=3)))

The Service Location Protocol provides a scalable
framework for the discovery and selection of network services.
It allows service providers to join and leave the network easily,
but requires IP networks running UDP and TCP protocols [11].
It offers rich tools for describing service and limiting discovery
results according to the predefined circumstances [4,5].
Implementation of this relatively complex protocol could be an
overhead for small ambient networks, although in some cases
itis possible to eliminate TCP and implement only UDP protocol.

34 2 2007

information technologies
and control

The protocol is capable of running without any manual
configuration [11], and the presence only of one service provider
and one service consumer is enough for them to make
successful handshaking and service discovery. Today most
implementations are daemons that can act both as UA and SA,
and often they can be configured to become a DA as well. But
it is important that this protocol is really used in practice in
today’s LANs. As a defect this protocol offers only a mechanism
to discover services, but it does not explain how to use them
afterwards. Service consumer has to know by itself how to
communicate with the service, so this SLP is not a complete
framework and technology for service management.

4. UDDI

UDDI (Universal Description, Discovery and Integration)
is a technology, whose primary purpose is to publish Web Services
into the World Wide Web. UDDI acts like a centralized repository,
where business can publish its services, and where clients can
look up for services they need. Several UDDI repositories exist
currently (IBM, Microsoft, SAP) [6], and they are interconnected,
i.e. the information is replicated on all of them and the client and
business can use each of these servers to access the same
information. The repository has the following main characteristics

[6]:

Publish Web
Service

S
Web Service
Provider

Query for
Web Service Service
Invocation

and Result Retrieval

» Description —for each Web Service description of
its semantic, functionality, parameters and address in the
network.

« Discovery —tools for searching the repository
byparticular criteria.

o Integration —integrate clients with web
services,interconnect the web services with other web services,
and business with the web services.

UDDI registries come in two forms — a business and
test registry. The point is that developers can make experiments
and trials over the test registry and when the applicationis
stability is validated it can be moved to the business registry.
UDDI supports two types of access approaches — via Web or
via UDDI API. The first approach is a human-like onewit a
standard Web-browser and usual Web pages over HTTP for
service publication or searching. The other approach, UDDI
Application Programming Interface, is designed to be used by
computer programs and scripts. It is in fact a Web Service,
exposing the UDDI registry functionality. UDDI API includes func-
tions for searching and for publishing. Function calls are over
HTTP (for searching) and over HTTPS (for publishing), encapsu-
lated in SOAP messages. There are plenty of program modules
and libraries implementing the UDDI interface, which ease the
client programs or scripts access. Libraries like these are .NET
for C/C++, UDDI4J and JAXR for Java, UDDI4Py for Python and
many others.

UDDI Registry
refers to WSDL
description

Retrieve
WSDL

WSDL
- Documents

Web Service
Consumer
Figure 3. UDDI Service Discovery
information technologies 2 2007

and control s

o

"J
(G}

UDDI service description model includes Business
Entities, Services and Technical Models. Each business entity
specifies company or person publishing web services. Each
business entity has a unique identifier, called UUID, and can
define any relationship with other business entities. Business
entities publish one or more Web Services that describe
particular family of technical services. Finally each service has
a set of Binding Templates, specifying service entry point and
implementation details, which allow clients to connect and
communicate with the service. Service description however is
physically separated from the business entity. This separation
is realized with the usage of Technical Models (shortly tModels)
[6]. Each tModel describes one service and its properties and
characteristics. Each tModel has also a unique identifier, and
can be referenced from one or more business entity, service or
template.

The tModel, besides a name and service description
in one or more languages, refers also to external WSDL
description file. This external file is referenced in the form of
URI, and thus facilitates the publisher to change the description

SOAP Message for Service Query

addressed to UDDI registry (for example http://uddi.ibm.com/
beta/inquiryapi) that will query about all registered Weather
Forecast services. If business Key attribute refers to valid
Business Entity, then the search would be only for services
published by this Business Entity. When it is omitted (or an
empty string), the query will search all services no matter who
their publisher is. We specify the name of the service using a
wildcard character, thus ,Weather%forecast%" will match any
service name that begins with ,Weather" and contains the
characters ,forecast” anywhere to the right of the characters
,Weather®. The find qualifier in the example will return the
result sorted alphabetically. Maximum count of matched services
can be controlled with maxRows attribute — this would allow
the client to put some limitation on the result number and keep
the response message at an acceptable length. UDDI registry
itself will also automatically limit the maximum result count to
some predefined value [6]:

Once a suitable Web Service is found in the registry,
UDDI makes it possible for the user to download its technical
and user description. This includes the service's tModel and

<?xml version="1.0" encoding="UTF-8" 2>

<Envelope xmIns="http://schemas.xmlsoap lorg/soap/cnvelope/" >

<Body>

<find_service businessKey="" generic="2.0" xmins="urn :uddi-org:api_v2">

<findQualifiers>

<findQualifier>sortBy NameA s c</find Qualifier>

</findQualifiers>

<name>W eather%forecast% </name>

</find_service>

</Body>
</Envelope>

if necessary. For a detailed classification and taxonomy of each
tModel can be associated with two fields — identifierBag and
categoryBag. These fields are key-value pairs, and each field
defines one classification or identifier — the key is the name
of this classification or identifier, and the value has a meaning
in the context of this key. The value of each identifier is UUID
of another technical model or business entity. Sample identifiers
could be a Security Insurance Number. The category, on the
other hand, determines each tModel as belonging to some kind
of semantic class — for example standard taxonomy, user
keywords, industry classification system, or the standard UDDI
type taxonomy.

UDDI supports a service catalog. Each service can be
classified by different taxonomy parameters. Parameters can be
geographic location (with pre-defined index), an industry code,
or user attributes and keywords. Every client can search for a
service, specifying a service name (or just beginning of the
name), or additional conditions for narowing the result set with
different taxonomy parameters.

The following example is a SOAP message [8],

properties like the name and publisher. The client can also
search for other web services, published by the same publisher.
The technical model lets the users inform themselves about the
communication details like the network address where the
service is accessible, as well as the information about the
exposed method names, number and the type of their arguments,
the return value. This description uses language called WSDL,
or Web Service Description Language, which is in fact a XML
application. Thus the client can obtain all required information
to use the selected web service.

UDDI is Web Service itself. The communication
between client and UDDI is carried out using the same rulas
and protocols as the client would communicate with the service
itself. This allows usage of identical mechanisms to access
both the service and the exposed UDDI functionality. UDDI uses
standard, open, existing and proven protocols from the Internet
— transport protocol HTTP, communication protocols — SOAP
and XML. This allows easy communication between different
applications that do not know each other in advance, through
using the existing Internet standards like XML and HTTP. As a

(e
O

2 2007

information technologies
and control

consequence of this, each system, able to communicate via the
Internet standards can communicate with any Web Service,
without any importance of a particular program language,
hardware platform, operation system, etc.

UDDI makes clear separation between business and
technical aspects of the web services, and between service
publishers and the services themselves. Web service suppliers
(publishers) are grouped in a dedicated group, and the services
—in another group. Each service is bound to its own provider.
This model allows accurate description of the business
relationships between suppliers that is not affected by the
technical web service interaction. UDDI supports different
business relations like peer-to-peer, parent and derived, etc. On
the other hand, each service is physically separated from its
communication details. Business entities take the topmost
place in the UDDI data model higrarchy, and contain all the
services. Thus UDDI accents over the business aspect
(providers, companies, business organizations), and the
technical details take the second place. UDDI is not oriented to
the mobile and dynamic networks, where different devices and
nodes join and leave often the network. UDDI is rather oriented
to relatively static networks and static ,players®. It plays a great
role in the service discovery in the global network Internet.

9. JINI

Jini is another distributed computing environment that
offer ,network plug and play“ [9]. Jini can be used for mobile
computing tasks where a service may only be connected to a
network for a short time, but it can be used more generally in
any network where there is some degree of change. A device or
service can be connected to a network and announce its pres-
ence, and then clients that wish to use such a service can locate
it and invoke it to perform tasks. A Jini system (called also
federation) is a collection of clients and services all communi-
cating by the Jini protocols [9,12]. Jini is highly oriented to the
Java programming language, although neither clients nor ser-
vices are restricted to be written completely in Java. They may
include also a native code, but the front-end have to be Java-
compatible. Jini comes with a middleware library, that includes
an API so that the programmer can write services and compo-
nents that make use of this middleware. Jini has an implemen-
tation (in pure Java) of the middleware, as a set of Java pack-
ages. Using it in client or service the programmer can invoke
the Jini middleware protocols to join in a Jini federation.

Every Jini system is comprised of three main compo-
nents, connected in a network [12]. Components are a service
(such as a printer, weather forecast service, etc.), a client,
which would like to make use of this service, and a lookup
service (service locator), which acts as a locator between ser-
vices and clients. All these components are interconnected in a
network, and Jini specification is independent of the network
protocol used, although currently only TCP/IP implementation
exists [9,12]. To accomplish the task of remote control, Jini
uses server proxies. The proxy is downloadable at a client side
object, which exposes the interface with the remote service. The
proxy takes care of the service provider communication, prob-

ably using RMI, so the client only has to call proxy’s
methods to finish his job. The proxy is the part of the
service that is visible to clients, but its function will be to
pass method calls back to the rest of the objects that form
the total implementation of the service.

A special service, called the ,lookup service*, must
always exist in one Jini network [12, 9]. This service will
act like a repository for all published services — the
providers will register their services into the lookup ser-
vice, and the clients will query it when they need to use
a service. Such a service will usually have been started
by some independent mechanism. In fact, the' lookup
service is just another Jini service, but it is one that is
specialized to store services and pass them on to clients
looking for them. In a Jini network, several lookup ser-
vices can exist simultaneously, and each one of them has
its own set of registered services. A LAN may run many
lookup services to provide redundancy in case one of
them crashes [12]. Services can be semantically com-
bined in groups depending on any user defined property or
classification. Each lookup service can attend any number
of groups in the network. For example, a company may
have Engineering and Public groups, serving the Engineer-
ing Department and all other departments, and a dedicated
lookup service for any group. Lookup services in a net-
work can overlap and bring information redundancy in
order to raise the reliability in case one lookup service
fails or crashes. When a client needs a web service, the
first thing it should do is to find a lookup service. The
client may know the address of the lookup service in
advance, or can look for all existing lookup services in the
network. In the first case, the lookup service can be
directly accessed with an unicast request, using its ad-
dress. In the second case, the client should make a
multicast request in the network. This can be heavy op-
eration, and thus a maximum number of packet hops is
defined, and this case is preferred only for usage in local
networks. The Jini middleware offers support for both
cases with the classes LookupLocator (unicast) and
LookupDiscovery (multicast). The initial phase of both a
client and a service is thus discovering a lookup service.
Sun supplies a lookup service called reggie as part of the
standard Jini distribution. The specification of a lookup
service is public, and in future we may expect to see other
implementations of lookup services.

Unicast discovery can be used when a client already
knows the machine on which the lookup service resides,
so it can ask for it directly. It is identified by URL in the
form jini://host/ or jini://host:port/. If no port is given, it
defaults to 4160 [9]. When the lookup service gets a
request on this port, it sends an object back to the server.
This object, known as a registrar, acts as a proxy to the
lookup service, and runs in the service's JUM (Java
Virtual Machine). Any requests that the service provider
needs to make of the lookup service are made through
this proxy registrar. Any suitable protocol may be used to
do this, but in practice implementations will probably use
RMI. A summary of the whole picture, along with sample

information technologies
and control

2 2007

37

Java code for unicast search is shown in figure 4.

If the location of a lookup service is unknown, it is
necessary to make a broadcast search for one. UDP supports
a multicast mechanism, which the current implementations of
Jini use. Since multicast is expensive in terms of network
requirements, most routers block multicast packets. This usu-
ally restricts broadcast to a local area network, although this
depends on the network configuration and the time-to-live (TTL)
of the multicast packets.

1. Unicast Query for
LookupService

% -Java Classm
Client or Service ~_— File

LookupService
Provider 2. Registrar Host
returned myLookupService

Figure 4 . Unicast Lookup Service Search

Simple Java code illustrating unicast LookupService search:
try {

LookupLocator lookup =new LookupLocator("jini//myLookupService");

ServiceRegistrar registrar = lookup.getRegistrar();

System.out.printIn("' Service registrar at " + registrar.getLocator().getHost();

}
catch(BException e) { // handle exception...

}

There may be any number of lookup services running
on the network accessible to broadcast search. In a small
network, such as a home network, there may be just a single
lookup service, but in a large network there may be many —
perhaps one or two per department. Each one of these may
choose to reply to a broadcast request. Multicast search sends
out UDP packets (to address 224.0.1.84, port 4160) [12,9]. In
Jini, this is done with LookupDiscovery class, registering an
application-defined listener with the DiscoveryListener object.
When receiving the search request, every LookupService in the
network that attends the requested group, will reply back and the
framework will call the discovered() method of DiscoveryListener.
Thus, application will have called its discovered() method for
each LookupService in interest. Service providers could register
their services to all LookupServices, and clients can query them
for services they need:

The process involves also copying the remote
ServiceRegistrar object locally to the client [12,9]. Jini internally
ships compiled class-files from LookupService, and makes them
alive through serialization. To transfer data, Jini uses a TCP

socket connection. The local object, called Registrar, runs as a
java-object in the application’s address space, and the applica-
tion makes normal method calls to it. When needed, it commu-
nicates back to its lookup service. For application it acts like a
proxy to the LookupService — it does not cache any information
on the application side, but gets ,live"’ information from the
lookup service as needed. The Registrar is used by service
providers to register their services, as well as by clients to
discover services. When the service is registered, its provider
passes the service object to the lookup service. Often, this
object is another proxy object that communicates back to the
service provider, but it can also be a stand-alone object that
implements the whole service. The service object gets cached
in Lookup Service's repository, together with additional service
attributes. When a client requests this service, the Lookup Ser-
vice sends back the service object to it. Having this object, the
client can execute methods on it, and when it is a proxy object,
it will delegate these invocations to the service provider using
some remote invocation scheme(usually JavaRMI). Services are
registered for a specified time period, called Lease, and they
regularly update the lease to show they are alive. When the
lease time runs out, the service is automatically unregistered.
This allows safe removal of services whose provider crashed.
The concept is depicted below in figure 5.

Every service has its own Service
ID, which is a ,universally unique identi-
fier", and it is unique over time and space
with respect to all other service IDs gen-
erated by all lookup services. Every newly
registered service obtains its own Service
ID. This could be used by the client and
LookupService to quickly discover the ser-
vice in need. Alternatively, a client may
want to find a service satisfying a number
of interface requirements at once. For ex-
ample, a client may look for a service that
implements both Clock and Alarm. Finally,
the client can specify a set of attributes
that must be satisfied by each service. Each attribute required
by the client is taken in turn and matched against the set offered
by the service. For example, in addition to requesting a Clock
with an Alarm, a client entry may specify a specific time format.
All this information is stored in an object of class
ServiceTemplate, and sent to the LookupService. On the other
hand, when services are registered the provider sends all infor-
mation about the service in Serviceltem object. These objects
are what LookupServices store about each service it knows of.

For each registered service the LookupService stores an
instance of a service class along with a set of attribute entries.
A client can search for suitable services either by asking for an
instance of a specific class, or by asking for an instance of more
general class with the additional information that it can support
particular characteristics and attribute values.

The Entry class allows services to advertise their capabili-
ties in flexible and simple ways. Their primary intention is to
provide extra information about services so that clients can
decide whether or not they are the services they want to use [9].
For example, suppose a printer capable of handling a number

)
oR)

2 2007

information technologies
and control

Simple Java code illustrating multicast Look upService search for all groups:

try {
LookupDiscovery discover=new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

discover.addDiscoveryListener(new DiscoveryListener() {

public void discovered(DiscoveryEvent evt) { // LookupService discovered

ServiceRegistrar[] registrars = evt.getRegistrars();

for(ServiceRegistrar registrar : registrars) {
System.out.println("Found registrar at " + registrar.getLocator().getHost());
}
}

public void discarded(DiscoveryEventevt) { //LookupService discarded

}
1
}

catch(Exception e ... // handle exception...

LookupService

1.Provider registers the
service, sending Proxy

2.Client sends query
for the service

Proxy class file and service
class file attributes
Serviceld

Entry(]

) of input file formats. It could do so by exporting a service object
implementing Printer along with an Entry object saying that it can
handle plain text and another Entry object saying that it can

) handle PostScript files. The service implementation can just add
more and more information about its capabilities without altering
the basic interface. Every object that is exported as an attribute,
has to implement the Entry interface. This empty interface is
used only to distinguish the Entry objects. When a client wishes

' to find services that can handle particular attributes it uses Entry

class to specify which fields it needs. For any particular Entry, the

client specifies which fields must match exactly, and which fields
it does not care about [12]. As a simplification, client is not
allowed to perform quantative checks, i.e. client cannot search for
printer whose speed is at least 5 pages per minute, nor any
Boolean expressions. The client can only specify particular values

3.LookupService sends

: Service
- : Service Implemen-
Client back the service Proxy tatiorli o
Proxy Proxy \§
.class file .class file

4.Client interaction with
Service Proxy are delegated
to Service Implementation

Figure 5. Interaction between Client, Service Provider and Lookup Service in a Jini system

to some of the fields and to ignore values of other fields. If a field
has value of null, it will be ignored in matching. Thus primitive
types (such as int or char) cannot be used as fields - they have to
be wrapped by their corresponding Java-class (like Integer or Char-
acter). Matching services in repository to the requested service
template is a subject to the following rules [12]:

« A service item (item) matches a service template (tmpl)
if: item.servicelD equals tmpl.servicelD (or if tmpl.servicelD is
null); and item.service is an instance of every type in
tmpl.serviceTypes; and item.attributeSets contains at least one
matching entry for each entry template in tmpl.attributeSet.

« An entry matches an entry template if the class of the
template is the same as, or a superclass of, the class of the
entry, and each non-null field in the template equals the corre-

information technologies
and control

2 2007 39

sponding field of the entry. Each entry can be used to match
more than one template. Note that in a service template, for
serviceTypes and attributeSet, a null field is equivalent to an
empty array; both represent a wildcard.

Jini objects may also be interested in changes in other
Jini objects, and would like to be listeners for such changes. Jini
supports remote events, but mostly the implementation is up to
Java-programmer, as Jini offers only the concept [12,9,10]. The
remove events architecture takes into account the nature of
network communication and handles possible problems like
unreliability of network delivery, time required to transfer an
event message, and listeners could leave the network without
removal from object they listen to (for example in case of service
crash), so they are allowed time out like service’s lease mecha-
nism. A remote event is serializable object and can be moved
around the network to its listeners. Jini makes no assump-
tions about guarantees of delivery, and does not even assume
that events are delivered in order. The Jini event mechanism
does not specify how events get from producer to listener —
it could be by RMI calls, or by some other mechanism. The
event source supplies a sequence number that could be used
to construct state and ordering information if needed. Each
event is identified by its eventld, an application-defined integer.
There are no standard events, like AWT or JavaBeans events.
Each event has a particular meaning in the context of the service
that generates it.

Jini is a complete framework for distributed computing
that fits perfectly for Web-services requirements. It offers flex-
ible ways for services to publish and for clients to search
published services, and it offers means to interact with objects.
It is targeted towards static as well as mobile networks. It
supports mechanisms for services to dynamically join and
leave the network, leasing and good discovery based on service
attributes, described as Java-Entry objects. The technology is
not dependent on particular network transport [12], but it uses
not a few things from TCP and UDP protocols, so implemen-
tation of these protocols would be also necessary today to
create a Jini service or a client. Jini is certainly useful for
the home environment, as long as interfaces for the desired
devices are being developed. This is one of the drawbacks:
much is still left unspecified, interfaces for certain devices still
have to be implemented, while they are already available for
consumer electronics in other service discovery solutions [9].
Because of Java language used in, every device or computer
that wants to use Jini, needs to have a Java Virtual Machine,
making it hard for embedded and poor-resource systems.
However, currently more and more embedded and mobile
devices are equipped with Java Micro-Edition, so maybe in
future Jini will take part not only in conventional networks
but also in mobile and ad-hoc networks.

6. Universal Plug and Play

Universal Plug and Play (UPnP) is more than just a simple
extension of Plug and Play technology [14,10]. It is designed to
support a zero-configuration, invisible networking, and an
automatic discovery for a variety of devices. The scope of UPnP

encompasses many existing, as well as new and exciting
scenarios including home automation, printing and imaging,
audio and video entertainment, kitchen appliances and others
[14]. The supported devices are classified into standard
categories, and special groups are working towards complete
standardization for wide range of vendors. The goal is to
enable the emergence of easily connected devices and to
simplify the implementation of networks in home and corporate
environments, by defining and publishing UPnP device and
service descriptions built on open, Internet-based communication
standards. Since UPnP is distributed, open network architecture,
defined by the protocols used, it is independent of any particular
operating system, programming language, or physical medium
[14,9]. UPnP does not specify the APIs applications will use,
allowing operating system vendors to create the APIs that will
meet their customer needs. Currently, more and more devices
(mostly routers) are shipped with UPnP support, and support is
built in some operating systems, like Windows XP [17]. The
ultimate goal is to allow data communication among all UPnP
devices regardless of any media, hardware platform and wired/
wireless connection. UPnP claims to be media independent
[14]. This means that it can run on any medium including
Ethernet, IrDA, Bluetooth, FireWire, phone lines, or even power
lines. It uses common base protocols, proven in practice and
widely adopted in global network Internet — IP, TCP, UDP,
HTTP and XML. In UPnP network, there are 3 logical components,
interconnected in a network [14]:

» Devices — An UPnP device offers one or several services,
and can even embed other devices. A single physical device
may include multiple logical devices. Multiple logical devices
can be modeled as a single root device with embedded devices
(and services) or as multiple root devices (perhaps with no
embedded devices). For instance, a Video Cassette Recorder
device may consist of a Tape Transport Service, a Tuner Service,
and a Clock Service. Every device offers services that are
specific to its nature — obviously services within a Video
Cassette Recorder will be different from those within a printer.
Set of services which are typical for every device type are
standardized by working groups in order to ease interaction. All
information is described in a XML device description document
for each device.

e Services. A service offers some functionality over the
network. It exposes it as actions and models its state with state
variables. For instance, a clock service could expose the action
SetTime and have a state variable called CurrentTime. Using
the actions clients can control the service, or query it for
information. Services are contained within devices, and one
device may contain as many services as necessary.

« Control Points. A control point in an UPnP network is a
component that discovers and controls devices. It can query
devices for services in interest, invoke actions on services, and
subscribe to service’s events. Anytime the state of the service
changes, an event will be sent to the control point. Normally
devices in the network will act also as control points, thus
enabling true peer-to-peer networking.

A service in an UPnP device consists of a state table, a
control server and an event server. The state table models the
state of the service through state variables and updates them

40 2 2007

information technologies
and control

when the state changes. The control server receives action
requests (such as SetTime), executes them, updates the state
table and returns responses. The event server publishes events
to the interested subscribers whenever the state of the service
changes. This architecture allows all control points to be informed
about the state of any device in the network, and at the same
time to keep low network traffic.

Although UPnP claims to be completely media
independent, the addressing scheme is based on IP addresses
and TCP/UDP [9, 14]. Other devices connected in different
networks like HAVi, CAN or X10 can also participate in the UPnP
network through an UPnP bridge or proxy [14]. Each device in
UPnP network is identified by unique IP address. When a device
joins the network, it first looks for a DHCP server using IP
multicast (this automatically realizes the necessity of DHCP
client implementation in each device). For managed networks
where a DHCP server exists, it will assign IP address to the
device. Otherwise, the device chooses IP address randomly
based on some algorithm. Devices could use textual name as
well, but then they have also to implement a DNS server, or
somehow find and use an existing one and dynamically
update it.

When a device obtains an IP address, we assume that
it joins the network. When this happens, the device informs
other devices in the network about its existence and capabilities,
and possibly learns about other network devices. Device
advertisements and discovery uses the Simple Service Discovery
Protocol (SSDP) [15, 10], which is an enhancement over HTTP
and runs as UDP packets (HTTPU). It can also run with IP
multicasting, i.e. sending UDP packets to more than one receiver
(HTTPMU). Device advertises its presence by multicasting a
NOTIFY message (using HTTPMU protocol) with notification type
alive. When device leaves the network it can do it cleanly
without interrupting any of the other devices. All devices are
informed about this change again with the NOTIFY message and
notification type byebye. The interaction can be described as
five consecutive processes — discovery, description, control,
event notification and presentation [14].

When a device is added to the network, the UPnP
discovery protocol allows that device to advertise its services
to control points on the network. Similarly, when a control point
is added to the network, the UPnP discovery protocol allows that
control point to search for devices of interest on the network.
The fundamental exchange in both cases is a discovery message
containing a few, essential specifics about the device or one of
its services — its type, universal service identifier, and a URL
to more detailed information.

Service discovery in UPnP does not need a central
repository or lookup service — service query is multicasted
in the network, and all participants reply back when they meet
the query criteria. This is a two-step process — first all
devices are multicast searching for an abstract service type.
Devices and services are discovered by using SSDP’s M-
SEARCH messages over HTTPMU [14,15]. At this stage, the
control point can refine its criteria to one of the following:

» Search for all device and services (search target is
,ssdp:all“).

« Search for root-level devices only, and does not

search for embedded devices or services (search target is
L,upnp:rootdevice").

« Search for a particular device, knowing its universal
ID (UUID). Device UUID is standardized and is specified by UPnP
vendor (search target is ,uuid:device-UUID").

« Search for any device of a particular type. Device
types are standard and are defined by the UPnP Forum working
committee (search target is ,urn:schemas-upnp-org:
device:device Type: version®).

« Search for any service of a particular type. Service
types are standard and are defined by UPnP Forum working
committee (search target is ,urn: schemas-upnp-
org:service:service Type: version®).

Then, after receiving the IP multicast, all matching
devices return back small piece of information about themselves,
like type, ID and URL for more information. At this stage they
do not return more information, like attributes, name, provider
and capabilities. The information is returned with standard
,HTTP/1.1 200 OK* reply, and the data is returned in HTTP
headers. The control point running the discovery process can
iterate then through all device replies and query their URL for
additional information. This additional information is retrieved
via a standard HTTP GET request on the specified URL. The
returned resource is the full device description, including all its
embedded devices, services and state variables, formatted in
one XML document.

Having this description, the control point can obtain
more information about the service, and to decide if this is the
service that will do the job. The description brings detailed
information about device — like its universally unique identifier
(UUID), its name, manufacturer, model, URL for vendor-specific
information. To aid displaying the device in more-sophisticated
control points with graphical interface, the device can offer one
or more icons with different image size, and a URL to retrieve
them. The description also presents all embedded devices that
exist inside the root device and the most important, the offered
services. Each service has type (standardized identifier, as
published by the working groups or vendor-specific type) and
id (also standardized by the same group). It supplies 3 URLs
— Service Control Protocol Definition, control and event URLSs.
The first refers to another XML file with description of actions
offered by the service along with description of arguments they
take —a name, a meaning and a type, as well as the state
variables that this service has. The second URL can be used
to control the service by activating its actions. For remote calls
UPnP uses the SOAP protocol —all actions with their parameters
and return value are executed with messages formatted
according SOAP specification [8].

Note thatthe control point can request service description
XML, but for standard services itis not obligatoryto do it. Since all
actions, services and devices are standardized, the control point
can assume that some actions for particular device types are
present, aswellasit can knowactions’ parameters and theirreturn
type. Thus it is not necessary to add additional network traffic
for standard service descriptions [14].

Each control call, performed on a service, can change
its internal state. This internal state can also be changed during
its work, due to the external circumstances or service's
algorithm. InUPnP, the state is modeled with non-empty set of state

information technologies
and control

2 2007 4

variables [14]. Each variable has a name and a data type. The
change of variable’s value is considered as an event and can
be signaledtoall control points that are interested. Statevariables
like these are evented. Particular state variables can also be
specifiedas non-evented, for example one whose value changes
too rapidly, or that contain a value too big for eventing. To
determine the current value for such non-evented variables,
control points must poll explicitly the service. Each control point
can subscribe for changes in state variables. A subscriber is
sent all event messages from the service, and all subscribers
receive equal information about service’s status change. Event
messages are XML messages according the GENA standard

Description URL

Control URL

Event URL

More Service Descriptions. . .

Embedded Devices. ..

Presentation URL

Event URL
Presentation URL

[16], sentwithIP unicast to all subscribers with HTTPU protocol.
Service control via SOAP messages [8] is not the only way
to control the service. For humans, UPnP offers additional
mechanism for visualization and control of the service — the
presentation URL [14]. This URL refers toHTML page that shows
service’s status and allows basic or complete control overit. This
allows a userwith standard Web browserto observe and supervise
the service. The specification does notsay howthis HTML page will
look like and what possibilities it will offer — thisis uptothe device
manufacturer.
Universal Plug and Play is a technology promising that
can make true pervasive networking in near future. It has all

Service Description

Device Description
i Action 1
Device Type & UUID
Argument 1
Device Name & Model
: s 5 Service Control Protocol Argument 2
Definitio
Manufacturer Details - : eU1 Ran . Stite:Variableil
Icons for visualization —
More Action Descriptions...
Service 1
; State Variable 1
Service Type & ID
Control URL Do e

Event on change

Invoking actions from
services - SOAP

- Control. |
Server

)

State Table

X

Internet Browser

Subscribing and receiving
events - GENA

_ Event
iServer;

M.

Client

Client uses standard browser to check and control

the device

Figure 6. Discovery, Description, Control, Eventing and Presentation in UPnP

42 information technologies

and control

2 2007

that is required to achieve its goal. Foundation on standard and
proven protocols helps UPnP to extent easily [14]. An important
feature of UPnP is automatic configuration of IP addresses of
devices being plugged in. UPnP can work with no central directory
of addresses or service repository. UPnP comes with predefined
standard templates for existing home and office appliances and
hence it takes a high position among the service discovery
solutions in home environments [9,11,10]. But among all these
advantages UPnP has two major problems — first is the
requirement for security [11], and the second is the necessity
for implementation of all mandatory technologies — HTTP
server, DHCP client, TCP/IP, HTTPU and HTTPDU, XML parsers
and others [14]. This is surely easy for desktop computers, but
it may be a problem for embedded devices with limited
resources. Nevertheless, UPnP is a promising technology that
surely will be a player in service discovery.

7. Bluetooth

Bluetooth is a wireless, short-range ad-hoc network,
offering instant connectivity between different devices. It uses the
globally available 2.4-GHz ISM (industrial, scientific, and medical)
frequency band and targets mobile devices as well as desktop
computers and periphery. The operating range is typically around
10 meters (but there are also wider standards), and Bluetooth
offers smaller price compared with other wireless technologies
because of the integrated single-chip radio [18]. Mobile devices
usually have limited resources, so Bluetooth protocol stack is
designed to be as simple as possible according device resources
and capabilities. It includes radio frequency protocol (RF), the
Baseband protocol, Link Manager Protocol, a Host Controller
Interface, Logical Link Control and Adaptation Protocol, RFCOMM
(for cable replacement) and finally Service Discovery Protocol
(SDP).

Bluetooth supports two types of connections — point-to-
point connections and piconets [18]. When a device initiates
communication with other devices, it can form a new piconet.

Each piconet has a master device (the one that initiated the
communication) and up to seven slave devices. Any slave device
communicates always with the master device, and never with
another slave device. Several piconets can occupy a common
physical area without mutual disturbing - this is achieved through
a dynamic change of the radio frequency in small steps, called
hopping. A single device can participate in more than one piconet,
and thus forming networking structures called scatternets, but it
can be master device in maximum one piconet. All piconets
inside a scatternet can work independently and simultaneously.
Standard mechanisms are provided for a device to change dy-
namically its role as a master or a slave.

Bluetooth specification offers standard approach for dis-
covering services [18,19]. It is called Bluetooth SDP and is
optimized for ad-hoc networks and resource-constrained de-
vices. It is a simple protocol that allows client applications to
discover the existence of services provided by server applica-
tions in the vicinity of the user, as well as the attributes of those
services. The attributes of a-service include the type or class of
service offered and the mechanism or protocol information needed
to utilize the service. Having located available services, a user
or client may choose to use any of them.

SDP uses a request/response model where each transac-
tion consists of one request message (called Protocol Data Unit,
PDU) and one response PDU. The specification defines standard
type of PDUs — each one has a header with PDU and transaction
identifiers, and a variable-size payload part with parameters for
a request or response. Generally, each type of request PDU has
a corresponding type of response PDU, but if server finds that the
request is not formatted as it is expected to be, it can respond
with an error PDU [19].

Each service in terms of the Bluetooth SDP has a 128-
bit universally unique identifier (UUID) that defines the service
functionality. Each service can also be associated with one or
more attributes. Each service attribute describes a single char-
acteristic of a service. A service is always an instance of par-
ticular service class. The service class is standardized and

ServiceSearchRequest Service Record(s)
(PDU) & -
e Service UUID
uibute | Type | Value
SDP \ .
SDP Server
Client :
ServiceSearchResponse \ J

(PDU)

Figure 7. Service Discovery in Blugtooth SDP

information technologies
and control

2 2007 P

describes the attributes that the service possesses. A service
class can be subclassed and the derived class inherits all
attributes from the base class, as well as new specific attributes.
A service can be an instance of more than one service class as
well. Attributes can be standard ones, common for all services,
or specific to the concrete service. In either case, every attribute
has its own UUID, and additionally name and data type. For
standard or universal attributes, the data type and usage directions
are defined and standardized. Data types for all attributes can be
null value, unsigned integer, signed integer, UUID, string, boolean
value, URL, etc.

Each service contains at least one attribute - the ser-
vice class attribute. This attribute is mandatory and presents a
list of all service classes UUIDs that this service is instance of.
The attribute is called ServiceClassIDList and the UUIDs are
ordered from most particular to the most common class. Ser-
vice discovery in a piconet is based on SDP servers and SDP
clients. It is decentralized, meaning that no central repository or
service locator is used — the job is done by SDP servers and
clients. These are software components that communicate in
between and carry out the discovery process. A SDP client sends
a discovery query to SDP server, and the server replies back to
it. Every SDP server maintains a directory with all services
offered by the device that owns it, and is responsible for re-
quests reply. Each Bluetooth device has at most one SDP server,
but can act as a SDP client to many servers. All of the informa-
tion about a service is maintained by an SDP server within a
single service record. The service record consists entirely of a
service record handle and a list of service attributes. SDP allows
the following set of service inquires:

« Search for services by service class — a SDP client
supplies the service UUID.

o Search for services by service attributes — a SDP
client supplies the service UUID as well as a set of attribute UUID
that should match the service description.

e Service browsing — SDP client can browse for all
services in a particular group.

The process of service discovering uses its own chan-
nel in a point-to-point communication, and allows the client to
narrow its requirement by specifying different attributes that the
service should contain. SDP supports searching only by at-
tributes whose data type is UUID, and the searching uses exact
match of requested and service’s UUIDs. It cannot search by
integer, string, boolean or other types of attributes — they are
intended for directions how to use or visualize the service. When
SDP client performs a search, it prepares a search pattern,
where it includes all required UUIDs. Then it sends this pattern
in a request PDU to the SDP server. The server checks the
search pattern against all service records that it stores. A search
pattern matches to a service record only if each UUID from the
pattern matches a corresponding service attribute. There is no
matter of the order of UUIDs in the pattern, and no matter how
they are ordered in the service record - all that is necessary is
that any UUID from the pattern exists somewhere in the service
record’s attributes. Each search pattern contains at least one
UUID and this could be the UUID of the service class (recall the
ServiceClassIDList attribute).

Bluetooth specification allows each service to attend to

one or more logical groups. Groups can be hierarchically orga-
nized, and each one has its own UUID. Each group is described
by a special service of class ServiceGroupDescriptior with par-
ticular value of its group identifier. When another service wants
to attend to a group, it sets its BrowseGroupList attribute to the
identifier or identifiers to the group. Thus, browsing for all ser-
vices in particular group gets easy — the SDP client just needs
to include only the group’s UUID in the search pattern. As a
result it will receive responses from all devices that attend the
group (because all they have the specified group UUID in their
BrowseGroupList attribute). Generally, all services attend the
common group called PublicBrowseRoot, and thus any other
device can browse them.

Bluetooth is not a simple technology, but it uses a simple
service discovery protocol [19]. It does not offer any means to
notify other network participants about new device that joins the
network, or device that leaves it. There is no event notification
when services become unavailable. In a dynamic ad-hoc net-
work, it is expected that devices often join and leave the net-
work, so the lack of this mechanism is a serious disadvantage.
Despite of this, Bluetooth SDP offers implementation-simple and
at the same time quite powerful discovery mechanism, suited
for mobile and resource-constrained devices. To compensate
the lack of means to access services, nofifications, service
advertisement and registration one can use other service dis-
covery protocol above Bluetooth SDP, like Salutation [10].

8. Salutation

The Salutation Architecture aims at solving the problems
of interoperability between a broad set of devicesand equipment
and in an environment of widespread connectivity and mobility
[20]. It provides a standardmethod for applications, services
and devices to describe and to advertise their capabilities to
other applications and devices, to find out their capabilities. The
architecture takes in mind that customers’ networks are not
made up of a single manufacturer’s pieces of equipment, and
all they do not work in the same manner. Thus, Salutation tries
to offer a single, versatile protocol for service discovery and
utilization [20].

The first issue is the network diversity. All service discov-
ery protocols, described in the article, are tied to particular
transport protocol —TCP/IP, UDP, and Bluetooth. This makes
them hardly interoperable, because devices in different net-
works would need network bridges to communicate in between.
Salutation Architecture is designed so that it can sit atop any
communication technology, for example, a wireless connection
or an Ethernet. Given the diverse nature of target equipment in
an environment of widespread connectivity, the architecture is
a processor, an operating system, and a communication proto-
col independent, and it allows for scalable implementations,
even in very low-price devices.

The second issue is a service discovery. Even though
Jini, Bluetooth and UPnP all have a discovery protocol, the three
protocols are incompatible. A Jini device cannot communicate
with a device that uses only the Bluetooth service discovery
protocol. However, the Salutation Discovery Protocol offers com-

44 2 2007

information technologies
and control

mon means and mechanisms where devices can use same pro-
tocol, and they would at least be able to determine the capabilities
of the other devices in the network. Additionally, since same soft-
ware could be used with a Java- or Bluetooth-enabled device, or
one using some other network protocol, Salutation may be the
most cost-effective way to develop applications for any networked
device. The architecture enables applications, services and de-
vices to search services or devices for a particular capability, and
to request and establish connections and use their capabilities.
The software that manages the Salutation protocol is
called the Salutation manager [20,9,10]. It offers a set of APIs
for client applications and acts as a service registry, discovers
what services are on the network and whether they are available,
and manages the session. It uses common transport manager,
responsible for network communication. The Salutation Manager
contains Registry to hold infor—-mation about Services. Option-
ally, the Salutation Manager Registry may store information about
Services that are registered in other Salutation Managers. All
requests by other equipment for Salutation resources would be
directed toward other Salutation Managers, which would respond
accordingly. The Salutation Manager can discover other remote
Salutation Managers and can determine the Services registered
there. Service Discovery is performed by comparing the required
service types, as specified by the local Salutation Manager, with
the service types available on a remote Salutation Manager.
A device can use the Salutation discovery protocol to
ask other devices on its network about their capabilities. The
inquiry passes from the Salutation manager to the transport
manager, which prepares the inquiry to run over the transport
protocol used by the network. It makes its way over the network
to another Salutation-compatible equipment, which supplies the
information, and also learns about the initiating device. This
combination of communicating devices could also be connected
to a different device by a second network running a different
transport protocol. The device in the middle needs two transport

Server

Desktop
Computer

Cell
Phone

managers, one for each network protocol, but only one Salutation
protocol. The Salutation application interface offers standard API
and allows service consumers to interact with the Salutation
protocol. Salutation Architecture allows software developers to
write one application that works with several existing Salutation
environments — primarily in office automation equipment. It
could be the bridge between Bluetooth and Jini devices, as well
as to other platforms and networks. Salutation is non-proprietary
and thus the specifications open and available for third party
development and since Salutation chooses a middle way be-
tween autonomy (Jini) and standardization (UPnP), it is easy for
vendors to adapt to the specifications [9].

9. Comparison and Cohclusion

The paper described some of the existing technologies
for service discovery. An obvious conclusion is that there are
far too many standards at this time. Many protocols are well
suited for a range of problems, but are weak in other areas.
Currently there is no universal protocol fitting perfectly into all
the requirements like acceptable resource demands, network
traffic, and technology completeness. Common comparison of
described protocols is shown below (Salutation is not shown in
comparison because it is not examined independently):

A key architectural issue is the way in which the information
about existing services is stored in the network. Discovery
protocols can be separated into two major groups — one with
central Directory (Repository) and another where devices search
for services by broadcasting messages into the network. The
directory itself can be mobile or static. Protocols like DNS-SD,
SLP, UDDI and JINI maintain a centralized directory that is able
to serve any client with information they need. An example of
mobile repositories is Directory Agents in SLP [4] and Lookup
Service in JINI [13]. DNS-SD and UDDI on the other hand, have
static repositories [6]. Others, like UPnP and Bluetooth,

Cell Phone

Transport Layer

Transport Layer

Figure 8 . Salutation in action

information technologies
and control

2 2007 A

o

use network broadcasting and rely that every suitable service
will reply when a request is broadcasted into the network. This
solution gives a great level of dynamism for services, and
allows flexible and automatic service/client configuration. Main-
taining state and discovery requests may involve quite a big
traffic in the network for the later case. On the other hand, the
lapse of centralized directory makes the network more robust
and secured against directory service failures.

The protocols presented offer means how to find and
interact with particular service. Most of discovery protocols
examined in the paper are not fully complete. Some of them,
like DNS-SD, SLP and Bluetooth measure up to retrieval of
service address, and do not even specify how to invoke and
perform an action over the service. UDDI and UPnP go further
and offer description via WSDL or XML [6,14]. JINI probably is
the most complete technology from above, because it realizes
the remote invocation mechanism by a standard programmer’s

framework for transparent service activation through proxies
[13].

To ease the interoperation between devices, a
programming framework is highly recommended. It should offer
an API for discovery, addressing and transparent activation of
services. Having standard interface would allow services to
register themselves and to be invoked by clients by minimum
effort both for the service supplier and for service client. Also,
the underlying details of communication, if it is SOAP, XML,
WSDL or other will not be so important for applications. The
framework can use the best one, fitted to its requirements, or
even use several possibilities to enable bridging between different
protocols. DNS-SD, SLP, UDDI, JINI, UPnP and Bluetooth protocols
are independent between each other and cannot work in
cooperation. Most of them can work together with others inside
the same physical network without mutual disturbance, but do
not offer interconnection. Many of these protocols are logically

Property DNS-SD SLP UDDI JINI UPnP Bluetooth
Discovery Model Centralized Centralized Centralized Centralized, Peer-to-Peer, Peer-to-Peer
(DNS-Server) (Directory Lookup Service Search by
Agent), possible Multicast
Peer-to-Peer
Mobility Static supplier Yes Static ~Yes Yes Yees
directory
Service auto- No No No No Yes Yes
configuration :
Service Grouping By subnet Yes (scopes) No Yes No Yes,
hierarchical
Service Manually by Auto-advertise Auto- Auto-advertise ~ Auto-advertise - Auto-advertise
Registration administrator advertise
Web-
interface
Service Browsing Yes Yes No Yes Yes Yes
Search and Filter No Rich: boolean and Good: Good: class and Good: category Good: class and
logical _category attributes attributes
Addressing URL/IP Addr. URL/IP Addr. URL URL URL 128bit UUID
Activation No No WSDL No XML No
Description
Activation, No No No Proxy (RMI) SOAP + Internal
Framework presentation
URL
Remove Events No No No L iiYes Yes No
Network/Media TCP/IP TCP/AP, UDP TCP/P TCP/IP,UDP T CP/IP,UDP Own protocol
stack, wireless
Progr.language, Any Any Any Java Any Internal
platform
Additional HTTP HTTP XML, No XML, SOAP, No
technologies SOAP, HI'TP
HTTP
In use today Rarely Yes Rarely Yes Yes Yes
44 2 2007 information technologies

and control

compatible [11], and can be mapped and bridged between with
additional tools and services. Another possibility is to use hybrid
solutions as a combination of more than one technology. An
example could be the simplicity of Bluetooth’s discovery with
another richer discovery, like Salutation [10]. Actually, discovery
really should be universal, and it should not be necessary to
implement an array of equivalent protocols, or to have multi-
protocol proxies [11]. Devices participating in ambient networks
not always can offer enough computing power and storage to
implement heavy and complex discovery protocols, as well as
containing a code to support different protocols and mappings
between them.

References

1. DNS-Based Service Discovery. hitp://files.dns-sd.org/draft-cheshire-
dnsext-dns-sd.txt.

2. DNS SRV (RFC 2782) Service Types.
hitp://www.ietf.org/rfc/rfc2782.txt.

3. Multicast DNS.

http://files.multicastdns.org/draft-cheshire-dnsext multicastdns.txt.
4. RFC 2608. Service Location Protocol, Version 2, http://www.ietf.org/
rfc/rfc2608.txt.

5. RFC 2609. Service Templates and Service:Schemes.http://
www.ietf.org/rfc/rfc2609.txt.

6. OASIS. UDDI Version 2 Specifications. http://www.uddi.org/
specification.html.

7. Piergiorgio Cremonese. Veronica Vanni. UDDI4m:UDDI in Mobile
Ad Hoc Network. Second Annual Conference on Wireless On-demand
Network Systems and Services (WONS’'05).

8. W3C. Soap Version 1.2. http://www.w3c.org/TR/soap.

9. Stefan Fischer.Service Discovery in Home Environments. http://
www.ibr.cs.tu-bs.de/courses/ws0203/skm/articles/hsd5.pdf.
10.Choonhwa, Lee, Sumi Helal.Protocols For Service Discovery In
Dynamic And Mobile Networks.

11.McGrath, Robert E.Discovery and Its Discontents: Discovery
Protocols for Ubiquitous Computing.

12. SUN Microsystems. Jini Architecture Specification. http://
www.sun.com/jini.

13. Jan Newmarch. Jan Newmarch’s Guide to Jini Technologies.
http://jan.netcomp.monash.edu.au/java/jini/tutorial/Jini.xml.

14. UPnP Forum. UPnP Specification. http://www.upnp.org.

15. UPnP Forum. Simple Service Discovery Protocol (SSDP). http:/
/www.upnp.org/resources/specifications.asp.

16. UPnP Forum, General Event Notification Architecture (GENA).
http://www.upnp.org/resources/specifications.asp.

17. Stephen J. Bigelow. Universal Plug and Play: Networking Made
Easy. http://xml.coverpages.org xmlPapers200308.html#
BigelowUPnP.

18. Bluetooth SIG. Specification of the Bluetooth System. Volume
I:Core Specification. http://www.bluetooth.com/dev/specifications.asp.
19. Eugene A. Gryazin. |Service Discovery in Bluetooth. http://
www.cs.hut.fi/~gryazin/SD_in_Bluetooth.pdf.

20. Salutation Consortium. http://www.salutation.org.

21. Peer Hasselmeyer , On Service Discovery Process Types. http:/

/www.hasselmeyer.com/pdf.isco 05.pdf.

Manuscript received on 25.07.2006

Eng. Nikolay Kalaydjiev was born in 1979.
He graduated the Technical University in 2002
as a computer engineer. Since 2004 he is
a PhD student at the Institute of Computer
and Communication Systems at the Bulgar-
ian Academy of Sciences. His scientific inter-
ests include computer networks, communi-
cation, addressing and discovery of services
in ambient networks in pervasive and em-
bedded computing environments.

Contacts:
nik@iccs.bas.bg

continuation from 30

Emil Ivanov was bom in Sofia in 1949. He re-
ceived the MSc degree in Electrical Engineering
from Technical University of Sofia in 1972. He
received his PhD in Signaling Systems in 1987. He
is an Associated Professor and he is the Head of
the Department of Telecommunication and Signal-
ing of Todor Kableshkov Higher School of Trans-
port. His research interests are in the Safety and
Risk Modeling, Railways Control and Command
Systems, Safety Certification, Dependability of Telecommunications and
Signaling Systems. He has about 80 publications in this area.

Contacts:
e-mail: eivanovevtu.bg

Eckehard Schnieder (born in 1949) received
his M.S. in electrical engineering with specialisation
in control and computer engineering in 1972
from the Technical University Braunschweig. Until
1979 he worked as a research scientist at the
same university concerning advanced electrical
drive control systems simulation. He received his
Ph.D. in 1978. From 1979 until 1989 he joined

Siemens Transportation Systems in Braunschweig, where he was re-
sponsible for the German maglev TRANSRAPID operation control system’s
design and development as well as for the automatic control of Siemens
people mover. Since 1989 is he a full professor and head of the Institute
of Traffic Safety and Automation Engineering, formerly Institute of
Control and Automation Engineering, and board member of the Centre
of Transportation of the Technical University Baunschweig. He directed
the first formal modeling of the European Railway Control System
(ETCS). In 2005 he received the grade of Dr. h. c. from the Todor
Kableshkov Higher School of Transport Sofia, Bulgaria. His main re-
search interests are the discrete event systems, control system synthe-
sis, automated system design, design tools, operations control systems,
localization techniques, e.g. satellite navigation.

Contacts:

Technical University of Braunschweig, Institute for Traffic Safety
and Automation Engineering, Langer Kamp 8, D-38106
Braunschweig, Germany,

e-mail: e.schnieder@tu-bs.de

information technologies
and control

2 2007 a7

