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Abstract. The paper proposes a Recurrent Neural Network (RNN)
topology and a recursive Levenberg-Marquardt (L-M) algorithm of its
learning capable to estimate the states and parameters of an anaerobic
continuous bioprocess plant in noisy environment. The analytical model
of the digestion bioprocess represents a distributed parameter system,
which is reduced to a lumped system using the orthogonal collocation
method, applied in four collocation points. The proposed RNN iden-
tifier is incorporated in an indirect adaptive control scheme (sliding
mode and optimal control) containing also an integral term. The
proposed control scheme is applied for real-time identification and
control of continuous fixed bad and recirculation tank bioreactor
model in five points, taken from the literature, where a fast conver-
gence, noise filtering and low mean squared error of reference track-
ing were achieved

1. Introduction

In last decade, the Artificial Neural Networks (ANNs) have
been widely employed to dynamic process modeling, identifica-
tion, prediction and control, [1-9]. Many applications have been
done for identification and control of biotechnological plants too,
[6], [10-12], [14-16]. Among several possible NN architectures
the ones most widely used are the Feedforward NN (FFNN) and
the Recurrent NN (RNN), [1]. The main NN property namely the
ability to approximate complex non-linear relationships without
prior knowledge of the model structure makes them a very
attractive alternative to the classical modeling and control tech-
niques. Also, a great boost has been made in the design of NN-
based adaptive control incorporating integral plus state control
action in the control law, [12]. The FFNN and the RNN have been
applied for Distributed Parameter Systems (DPS) identification
and control too, [2-9], [15]. Unfortunately, all these works suf-
fered of the same inconvenience, that the FFNNs used are of
higher dimension having great complexity which made difficult
their application. In [10-14], a new canonical Recurrent Train-
able NN (RTNN) architecture, and a dynamic Backpropagation
(BP) learning algorithm has been applied for systems identifica-
tion and control of nonlinear plants with equal input/output di-
mensions, obtaining good results. In the present paper, this
RTNN model will be used for identification, and indirect control,
of a digestion anaerobic DPS [6], [15], modeled by PDE/ODE, and
simplified using the Orthogonal Collocation Method (OCM) in four
collocation points of the fixed bed and one more- for the recir-
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culation tank. Here the BP learning is changed by the Levenberg
Marquardt (L-M) one, [16]. This DPS nonlinear plant, described
by ODE, has excessive high-dimensional measurements which
means that the plant output dimension is greater than the plant
control input one (rectangular system), requiring special refer-
ence choice, representing a data fusion technique. Here, the
used control laws are extended with an I-term, representing an
I-plus state action, capable to speed up the systems reaction
and to augment its resistance to noise.

2. Description of the RTNN Topology
and Learning

RTNN topology and BP learning. Block-diagrams of the
RTNN topology and its adjoint are given on figure 1, and

figure 2.
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Figure 1. Block diagram of the RTNN model
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Figure 2. Block diagram of the adjoint RTNN model

Following figure 1, and figure 2, we could derive the
dynamic BP algorithm of its learning based on the RTNN topology
using the diagrammatic method of [17]. The RTNN topology and
BP learning are described by the following equations:

(1) X(k+1) = AX(K) + BU(K); B = [B, ; BJ;
(@) Z,(k) = GIX(K)]; UT=[U ;U]

) V(k) =CzZ(k); C=[C,; Cl; Z"=[Z,; Z}];
(4) Y(K) = F[V(K)]; E(k) = T(k)-Y (K);

(5) A = block-diag (Ai), |Ai | < 1;

(6) W(k+1) = W(K) +n AW(K) + o AW, (k-1);
(7) E(K) = F[Y(K)] EK); FIY (K] = [1-YHK);
(8) AC(K) = E,(k) Z'(K);

(9) Ei(k) = G'[Z(K)] E,(k); EL(K) = CT(K) E,(K);
(10) AB(K) = E (k) UT(K); G'[Z(K)] = [1-ZAK)];
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(1) AA(K) = E,(k) X"(k);

(12) Vec(AA(K)) = E, (k)" X(k),
where X, Y, U are state, augmented output, and input vectors
with dimensions N, (L+1), (M+1), respectively, where Z and U,
are the (Nx1) output and (Mx1) input of the hidden layer; the
constant scalar threshold entries are Z, = -1, U, = -1, respec-
tively; Viis a (Lx 1) pre-synaptic activity of the output layer; T is
the (Lx1) plant output vector, considered as a RNN reference; A
is (NxN) block-diagonal weight matrix; B and C are [Nx(M+1)]
and [Lx(N+1)]- augmented weight matrices; B and C, are (Nx1)
and (Lx1) threshold weights of the hidden and output layers; F[ ],
G[.] are vector-valued tanh(.)-activation functions with corre-
sponding dimensions; F’[.], G’[.] are the derivatives of these
tanh(.) functions; W is a general weight, denoting each weight
matrix (C, A, B) in the RTNN model, to be updated; AW (AC,
AA, AB), is the weight correction of W; n, o are learning rate
parameters; AC is an weight correction of the learned matrix
C; AB is an weight correction of the learned matrix B; the
diagonal of the matrix A is denoted by Vec(.) and equation (12)
represents its learning as an element-by-element vector prod-
ucts; E, E, E,, E,, are error vectors with appropriate dimensions,
predicted by the adjoint RTNN model, given on figure 2. The
stability of the RTNN model is assured by the activation functions
(-1, 1) bounds and by the local stability weight bound condition,
given by (5).

Theorem of stability of RTNN as system identifier. Let the
RTNN with Jordan Canonical Structure is given by equations (1)-
(5) (see figure 1) and the nonlinear plant model, is as follows:

Xa(k+1) = fIXq4 (k), UK)];

Ya (k) = g[Xq ()],
where {Y, (), X, (.), U(.)} are output, state and input variables
with dimensions L, N,, M, respectively; f(.), g(.) are vector
valued nonlinear functions with respective dimensions. Under
the assumption of RTNN identifiability made, the application of
the BP learning algorithm for A(.), B(.), C(.),described by equa-
tion (24)-(31), and the learning rates n(k), ou(’k) (considered as
time-dependent and normalized with respect to the error) are
derived using the following Lyapunov function:

L (k) = Li(k) + La(k),
where Li(k) and Li(k) are given by

Ll(k) = %ez(k);

L2 (k) = tr(Wa ()W, (k) +tr(We (k) Wy (k) +tr (We () W¢ (k)
where )

Wa(k) =A(k)— A", Ws(k) = B(k) - B, We(k) =C(k)-C"

Are vectors of the estimation error, and the system
weights (A",B*,C"), and (A(k),B(k),C(k)) denoted the
ideal neural weight and the estimate of the neural weight at the
k-th step, respectively, for each case. Then the identification
error is bounded, i.e.

L(k+D=L(k+1)+L,k+1);

AL (k + 1)=L(k + 1) = L(k) <0,

where the condition for AL1(k+1)<0 is that

(1 L) (1 +L)
\/5 < Mmax < -—\/_2— 8
J max J/ max

And for AL2(k+1)<O0 we have

ALz (k+1) < —nmax e (k+1)|* = amax|e(k)|* +d (k+1).
Note that nm.x changes adaptively during the RTNN learn-

3
ing and nmax=m:alx{nl} ;

Where all: the unmodeled dynamics, the approximation
errors and the perturbations, are represented by the d-term. The
Rate of Convergence Lemma completed the proof.

Rate of convergence Lemma. Let AL, is defined. Then,
applying the limit's definition, the identification error bound con-
dition is obtained as

— 1< 2
pmzz([zz(z)\ >+ E@-1) 2) <d.
—>c0 P

Proof: Starting from the final result of the theorem of RTNN
stability

AL(k) < —n(k)|E(k)| * —a(k)|EGk-1) *+d

and iterating from k=0, we get

L(k+1)—L(0)s—iIE(t)\ Z—i\E(t—m 2+dk;

iﬂE(r); *H{ B~ 2) <dk—L(k-+1)+L(0) <ck+L(0)

From here, we could see that d must be bounded by weight
matrices and learning parameters, in order to obtain:
AL(k) € L(x0).

As a consequence, we obtained: A(k)e L(e<), B(k)e L(e<),
C(k)e L(<).

The Rate of Convergence Lemma used is given in [13].
The complete proof of that Theorem of stability is given in [11].

Recursive Levenberg-Marquardt learning. The general re-
cursive L-M algorithm of learning, [16] is given by the following
equations:

(13) W(k+1) =W (k)+ P()VYIV (OEW (k)];
(14) YW (k)] = g[W (k),U (k)]
(15) E*[W (k)] =Y, (k)— gl (k)UK

(16) DY[W(k>]=5§V—g[W,U(k>] |

W= (k)

where W is a general weight matrix (A, B, C) under modifica-
tion; P is the covariance matrix of the estimated weights up-
dated; DY[.] is an nw-dimensional gradient vector; Y is the
RTNN output vector which depends of the updated weights and
the input; E is an error vector; Yp is the plant output vector,
which is in fact the target vector. Using the same RTNN adjoint
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block diagram (see figure 2), it was possible to obtain the values
of the gradients DY.] for each updated weight, propagating the
value D(k) = | through it. Applying equation (16) for each ele-
ment of the weight matrices (A, B, C) in order to be updated,
the corresponding gradient components are as follows:

(17) DY[Cij(k)] = Dl,i (k)zj (k);

18) D;; (k)= FTY,(K)I;

19) DY[A (K] =D,, (k) X, (k);

20) DY[B; (k)] =D,; (k)U; (k);

21) Dy, (k) = Gil[zi (KIC, Dy (k) .
The P(k) matrix was computed recursively by the equation
(22)P(k)=o*(k){P(k-1)-P(k-1)Q[W (k)]

SHW(KIQTTW(EK]P(k-1)},

where the S(.), and Q(.) matrices were given as follows:

(23) SWK)] = oK) A(K) + QTWK)IP(k - 1)QWK)];

(
(
(
(

v/r4)

“lo 1L | L ool

0

10t <p <107
JJivse
097 <of 4 <1:10* < A0) < 10°

The matrix €(.) had a dimension (Nwx2), whereas the
second row had only one unity element (the others were zero).
The position of that element was computed by

(25) /= smod( Vm) + 1. 4> NVw.
After this, the given up topology and learning will be ap-

plied for an anaerobic wastewater distributed parameter central-
ized system identification and I-term control.

3. Indirect Adaptive Neural Control
with I-term

Sliding mode control with I-term. The block-diagram of the
control system is given on figure 3.

It contained a recurrent neural identifier RTNN 1, and a
Sliding Mode (SM) controller with entries — the reference signal
R, the output error Ec, and the states X and parameters A, B,
C, estimated by the neural identifier RTNN-1. The total control
is a sum of the SM control and the I-term control, computed
using the equation

(26) V(k+1) =V(Kk) + To Ec(k).
The linearization of the activation functions of the local

learned identification RTNN-1 model, which approximated the
plant, leads to the following linear local plant model:

(27) X(k+1) = AX(Kk) + BU(K); Y (k) = CX(K).
Where L > M (rectangular system), is supposed. Let us

define the following sliding surface with respect to the output
tracking error

(28) Sk+D)=Ek+D+Y yEk-i+D; |y KL,

where S(.) is the sliding surface error function; E(.) is the
systems local output tracking error; y, are parameters of the
local desired error function; P is the order of the error function.
The additional inequality in (28) is a stability condition, required
for the sliding surface error function. The local tracking error is
defined as E(k) = R(k) — Y (k), where R(K) is a L-dimensional
local reference vector and Y (k) is an local output vector with the
same dimension. The objective of the sliding mode control
systems design is to find a control action which maintains the
systems error on the sliding surface assuring that the output
tracking error reached zero in P steps, where P<N, which is
fulfilled if S(k+1) = 0. As the local approximation plant model
(27) is controllable, observable and stable, [10], [15], the matrix
A is block-diagonal, and L>M (rectangular system is sup-
posed), the matrix product (CB) is nonsingular with rank M, and
the plant states X (k) are smooth non- increasing functions.
Now, from (27), (28) it is easy to obtain the equivalent control
capable to lead the system to the sliding surface which yields:

(29) U, (k) =(CB)’ |:—CAX(k) +R(k+D) +iyi E(k—i +J):|;

i=1

(30) (CB)" =[(CB) (CB)™*(CB)".

The SMC avoiding chattering is taken using a saturation
function inside a bounded control level taking into account plant
uncertainties. The proposed SMC cope with the characteristics
of the wide class of plant model reduction neural control with
reference model, and represents an indirect adaptive neural
control.

Optimal control with I-term. The block-diagram of the
optimal control system is given on figure 4.

It contained a recurrent neural identifier RTNN 1, and an
optimal controller with entries — the reference signal R, the
output of the I-term block V, (26), and the states X and param-
eters A, B, C, estimated by the neural identifier RTNN-1. The
optimal control algorithm with |-term could be obtained extend-
ing the linearized model (27) with the model of the I-term (26).
The state space equation of the extended system is given by the
following equation:

A Ec Iy
Term
R b Yr
» SMC Plant >
Bl
Figure 3. Block diagram of the indirect adaptive SM control
with |-term
30
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R Optimal - Yp
Control | U Plant —
R i O
Figure 4. Block diagram of the real-time optimal control with I-
term containing RTNN identifier and optimal controller
(31) X, (k+1) = AX, (K) + BU(K),
where X_=[X|V] Tis a state vector with dimension (L+N) and
A 0 V4
A = + , B =
s\ Acprea | |-/

The optimal I-term control is given by

(32) U(k) =- [B,"P(k)B_+ R] *[B_"P(k)B_] X (K),
where the P_is solution of the discrete Riccati equation

P (k+1)=A_T[P,(k)-P(k)B (B_P(k)B+R) B[P (K)]A_+Q.

The given up optimal control is rather complicated and
here it is used only for purpose of comparison.

4. Analytical Model of the Distributed
Parameter Bioprocess Plant

The block diagram of the anaerobic digestion systems is
depicted on figure 5.

0.
EXZZ(IUQ_ED)XZ’ ‘uzz.uk%,
(349 K§X2+S’1+KT
S _E, 9°S 9§
35 = -D — k. X
(35) ot 2 azz ot 1My
S, E, 9°S, 0S,
= —= -D +kou, X, ,
(36) at H 2 azz at ZILLJ_ 1
(37) %(Oit):%, Sz(o,t)zszvm(g—:lRSﬁ, R D(\?/T
aSl(1,t)=0, 882 (1t) 0.
z
(39) G- (S.0-8,). T - Tr(s, a0 -5,).

For practlcal purpose, the full PDE anaerobic digestion
process model could be reduced to an ODE system using an
early lumping technique and the Orthogonal Collocation Method
(OCM), [6], [15]. The precision of the OCM approximation of
the PDE model depended on the number of measurement (col-
location) points, but the approximation is always exact in that
points. If the number of points is very high and the point positions
are chosen inappropriately, the ODE model could loose identi-
fiability. Furthermore the ODE plant model here is used as a
plant data generator for neural identification and control of PDE
system and the number of point not need to be too high. So to
fulfill this objective we need a reduced order model having only
four points, (0.2H, 0.4 H, 0.6H, 0.8H), but generating 18 mea-
sured variables (X, ;; X,;; S, S, ; i=1-4 plus S, S, for the
recirculation tank). So the plant input/output dlmenS|ons are
M=2, L=18. The reference set points generated for all that
variables keep the form but differ in amplification due to its
position. The plant ODE system model, obtained by OCM is

Xmi dX i
(40) = (:u1| _ED) Xl,i , o= (:uz,i _ED) Xz,i )
(41) 1 1i 1, '
d T Q‘r d T Q‘r
@2) 3 T(%(lt)—sﬁ), j‘; - (S 00-5,)
(43) djz'l :%NijBl,]Sll _DNifAl lsz,l +k2;11 X2,| _kQ#Z,IXZ
Figure 5. Block-diagram of the anaerobic digestion t = =
bioreactor s, Q s, Q
\ . . . (44) dt = V(Sl,N+2 SlT ) ' T = V(Sz,m+2 SZT ) '
It consists of a fixed bed bioreactor, pump and a recircu- T T
lation tank. The physical meaning of all variables and constants L R
(also its values), are summarized on fable 1. _
The PDE anaerobic digestion bioprocess model, [14], is (45) Sa = R+1 Sk (t)+ R+1 Sar
described by the following equations:
K K,R
ax Sl (46) Sk N+2 = — Sk in (t) SkT + Z K Skl
——,u—sDX, W= ey ————» ' R+1 +1
(33) (1 ) X, 1= KX +S
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Table 1. Summary of the variables in the plant model

Variable Units Name Value
4 ze[0,1] Space variable
T D Time variable
E, M*/d Axial dispersion coefficient 1
D 1/d Dilution rate 0.55
H M Fixed bed length 3.5
X4 g/L Concentration of acidogenic bacteria
Xs g/L Concentration of methanogenic bacteria
Sy g/L Chemical Oxygen Demand
S, Mmol/L Volatile Fatty Acids
S Bacteria fraction in the liquid phase 0.5
k; g/g Yield coefficients 42.14
k, g/g Yield coefficients 250
ks g/g Yield coefficients 134
Iy 1/d Acidogenesis growth rate
5 1/d Methanogenesis growth rate
Wi max 1/d Kinetic parameter 1.2
Uas 1/d Kinetic parameter 0.74
Kis g/g Kinetic parameter 50.5
Kos g/g Kinetic parameter 16.6
Kp g/g Kinetic parameter 256
Qr M*/d Recycle flow rate 0.24
Vr M’ Volume of the recirculation tank 0.2
Sit g/L Concentration of Chemical Oxygen Demand in the recirculation tank
Sor Mmol/L Concentration of Volatile Fatty Acids in the recirculation tank
Qi M*/d Inlet flow rate 0.31
Vs M? Volume of the fixed bed 1
Vet M Effective volume tank 0.95
Siin g/l Inlet substrate concentration
Soin Mmol/L Inlet substrate concentration
oxygen demand) and S, (volatile fatty acids). The two plant
K =— Ai2a K =— Az inputs are S, (concentration of acidogenic bacteria in the sub-
(47) ™ Aionies ’ ! Airnea ! strate) and S, (concentration of methanogenic bacteria in the
' ' substrate). For lack of space we shall show graphical results
(48) A=Agp™", A= [wm ] L @, =(-1)22, only for the X, variable. The topology of the RTNN-1 is (2, 20,

(49) B=r¢_1 1 1—‘=|:Tm,l ]’ Tm,l =(I _1)(| _2) zm_3 ’¢m,| = Zim_1

(50) i=2..,N+2, ml=1..,N+2.

The described above simplified model will be used as data
generator for system identification and control simulations.

5. Graphical Simulation Results

Simulation results of system identification. The centralized
RTNN identified 18 output plant variables, which are 4 variables
for each collocation point z=0.2H, z=0.4H, z=0.6H, z=0.8H of the
fixed bed as: X, (acidogenic bacteria), X, (methanogenic bac-
teria), S, (chemical oxygen demand) and S, (volatile fatty acids),
and the next variables in the recirculation tank: S (chemical

18), the activation functions are tanh(.) for both layers. The
learning rate parameters for the BP algorithm of learning are
=0, n=0.4, and for the L-M learning — the forgetting factor is
o~=1, the regularization constant is p=0.001, and the initial value
of the P matrix is an identity matrix with dimension 420x420.
The simulation results of RTNN-1 system identification are ob-
tained on-line during 400 days with a step of 0.5 day. The
identification inputs used are

s, =05+0.02sin[ =L }+0.1sin[ Tt }+0.04c08 L |
100 100 100

S,,,=0.5+0.1sin 7t +0.1sin ot +0.1cos gt
100 100 100

Table 2 and table 3 compared the Means Squared Error
(MSE%) results of the BP and L-M neural identification of plant
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Table 2. MSE% of the BP identification of all output plant variables in all measurement points

Colloc. X] Xz S]/S]T Sz/SZT
point

z=0.2 5.9981E-7 2.1006E-6 1.5901E-4 2.8282E-4
z=0.4 3.7111E-7 1.6192E-6 9.8240E-5 2.0506E-4
z=0.6 2.3145E-7 1.1308E-6 6.1119E-5 1.3908E-4
z=0.8 1.4997E-7 7.7771E-7 3.9595E-5 9.4061E-5
Recirc - - 3.0694E-5 7.3404E-5
Tank

Table 3. MSE% of the L-M identification of all output plant variables in all measurement points

Colloc. X] Xz S]/S]T Sz/SZT
point

z=0.2 5.0843E-7 1.8141E-6 1.3510E-4 2.5476E-4
z=0.4 3.1428E-7 1.3934E-6 8.3839E-5 1.8217E-4
z=0.6 1.961E-7 9.6976 E-7 5.2303E-5 1.2200E-4
z=0.8 1.2669E-7 6.6515E-7 3.3940E-5 8.1905E-5
Recirc - - 2.6318E-5 6.3791E-5
Tank

variables for the fixed bed and the recirculation tank.

The figures 6-8 showed the BP identification of the vari-
able X, in four collocation points. The figures 9-11 showed the
L-M identification of the same variable X, in the same four
collocation points.

Note that the form of the plant process variables in the
different measurement points is equal but the amplitude is dif-
ferent depending on the point position. The given in table 2 and

table 3 M SE results showed slight priority of the L-M learning
algorithm over the BP one. The comparison of figure 7 and
figure 10 showed that the L-M algorithm converged faster than
the BP algorithm but it is paid with a greater complexity of the
L-M one.

Simulation results of the centralized sliding mode adaptive
control with I-term. In this case the indirect adaptive I-term
control is a sum of the I-term control signal and the SM control

0.05
WA A\ [ A\ A\
5 ooV | /\V o 0.035 /\ A ﬁ f
N N
. LM \ AR AV A
0.035 0.03 \J
0.03 V 0.025 X/ Y
0 100 200 300 400 0 100 200 300 400
0.03
0.035 "‘\ /“\ /\
0.03 2 £ 0.025 £\ £ A
? 4 ¥ f
N N
: WAVAVAWAVE YATRVAUAY
AR VA VA
0.02
0 100 200 300 400 0 100 200 300 400
Figure 6. Neural identification of the plant output X, in four measurement points for the total time of BP learning :
a) z=0.2H, b) z=0.4H, c¢) z=0.6H, d) z=0.8H
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Figure 7. Neural identification of the plant output X, in four measurement points for the beginning of BP learning:
a) z=0.2H, b) z=0.4H, c) z=0.6H, d) z=0.8H
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Figure 8. Three dimensional plot of the neural identification of the plant output X, in four measurement points of BP learning:
a) z=0.2H, b) z=0.4H, c¢) z=0.6H, d) z=0.8H
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Figure 9. Neural identification of the plant output X, in four measurement points for the total time of L-M learning:
a) z=0.2H, b) z=0.4H, c¢) z=0.6H, d) z=0.8H
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Figure 10. Neural identification of the plant output X, in four measurement points for the beginning of L-M learning:
a) z=0.2H, b) z=0.4H, c) z=0.6H, d) z=0.8H
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Figure 11. Three dimensional plot of the neural identification of the plant output X, in four measurement points of L-M learning
a) z=0.2H, b) z=0.4H, c¢) z=0.6H, d) z=0.8H
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Figure 12. I-term indirect control of the plant output X, in four measurement points for the total time of L-M learning:
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Figure 13. I-term indirect SM control of the plant output X, in four measurement points for the beginning of L-M learning:
a) z=0.2H, b) z=0.4H, c) z=0.6H, d) z=0.8H
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Figure 14. Three dimensional plot of the I-term indirect SM control of the plant output X, in four measurement points of L-M learning
a) z=0.2H, b) z=0.4H, c) z=0.6H, d) z=0.8H

information technologies
and control

3 201 37



Table 4. MSE% of the I-term indirect SMC of all output plant variables in all measurement points

Colloc. X[ Xz S[/S[T SZ/S)T
point
7z=0.2 2.6969E-8 1.7122E-7 9.9526E-6 2.1347E-5
7z=0.4 1.3226E-8 1.2511E-7 5.2323E-6 1.2903E-5
7z=0.6 1.0873E-8 6.5339E-8 3.2234E-6 7.0511E-6
7z=0.8 5.9589E-9 4.4750E-8 1.6759E-6 4.4548E-6
Recirc - - 1.1842E-6 2.5147E-6
Tank
0.032
0.04f 0.03r: i
X 0,035} 5— Rl X 0.026f b i - o
' 0.024 3 _ ]
0.03 0.022
0 200 400 600 800 1000 0 200 400 600 800 1000
0.024
£ g 0.018} !

0.022 = : - o ] B
® 1 T 3 : 3
X 0.02f-k s & 0.016}E o

UL : 0.014 E ... {

0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 15. Indirect control without I-term of the plant output X, in four measurement points for the total time of L-M learning:
a) z=0.2H, b) z=0.4H, c¢) z=0.6H, d) z=0.8H

computed using the state and parameter information issued from
the RTNN-1 neural identifier. The X, control simulation results
are given on figures 12-14.

The MSE numerical results for all final process variable
and measurement points, given on fable 4, possessed small
values.

The given on figures 12-14 graphical results of I-term
SMC showed smooth exponential behavior, fast convergence and
the removal of the constant noise terms and uncertainties.
Figure 15 illustrated the behavior of the SMC system without I-
term perturbed by a constant noise. It showed that the constant
input perturbation of the plant caused a deviation of the plant
output X, with respect of the set point R, and this occurred for
all other plant output signals and measurement points.

Simulation results of the centralized I-term optimal control
using neural identifier and L-M learning. The integral term ex-
tended the identified local linear plant model so it is part of the
indirect optimal control algorithm. Figures 16-18 illustrated the
X, I-term optimal control results. The MSE numerical results for
all final process variable and measurement points control re-
sults, given on table 5 possessed small values.

The given on figures 16-18 graphical results of I-term
optimal control showed smooth exponential behaviour, fast con-
vergence and the removal of the constant noise terms.

Conclusions

The paper proposes a new neural identification and control
methodology for distributed parameter bioprocess plant. The
simplification of the DPS given by PDEs is realized using the
orthogonal collocation method in three collocation points, con-
verting the PDE plant description in ODE one. The system is
identified using RTNN model and BP and L-M learning, where
a high precision of convergence is achieved (the final MSE%
for both BP and L-M learning algorithms is of order of E-4). The
comparative results showed a slight priority in precision and
convergence of the L-M over the BP. The obtained simulation
results of centralized adaptive indirect SM and optimal control
with I-term exhibited a good convergence and precise reference
tracking. The M SE% of plant outputs tracking for the two con-
sidered methods of control is of order of E-5 in the worse case.
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Figure 16. I-term optimal control of the plant output X, in four measurement points for the total time of L-M learning:
a) z=0.2H, b) z=0.4H, c) z=0.6H, d) z=0.8H
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Figure 17. I-term optimal control of the plant output X, in four measurement points for the beginning of L-M learning:
a) z=0.2H, b) z=0.4H, c) z=0.6H, d) z=0.8H
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Figure 18. Three dimensional plot of the I-term optimal control of the plant output X, in four measurement points of L-M learning:
a) z=0.2H, b) z=0.4H, c¢) z=0.6H, d) z=0.8H

Table 5. MSE% of the I-term optimal control of all output plant variables in all measurement points

COZZOC. X[ Xz S[/S[T SZ/S)T
point

z=0.2 2.0672E-8 1.5262E-7 9.3626E-6 1.4949E-5
z=0.4 1.3819E-8 7.5575E-8 5.6917E-6 1.0197E-5
z=0.6 1.8115E-8 4.7505E-8 2.8872E-6 6.1763E-6
7z=0.8 1.5273E-8 5.9744E-8 1.6295E-6 4.2868E-6
Recirc - - 1.3042E-6 2.5136E-6
Tank

The graphical simulation results showed that all control methods
with |-term could compensate constant plant input noises and
the |-term removal caused a system outputs deviation from the
reference signals. The M SE study ordered the control methods
used as: indirect optimal and sliding mode, but the difference
between them is little.
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