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Abstract. Ihis paper presents an induction motor control system basedon the exact feedback rinearization approach. The ,nJrirving ilder usedfor control design is the fifth-ordei 
'stator-frux 

moder.'Linuiil,ng unodecoupling transformation and contror raware derived. Effects oi prrrr_eter variations on the contror system structure are derived in the frameof this approach' lt is, shown ihat the proposed control law does notlose.. its.tinearizing and decoupring properties, tnouln ;;; aioitionatfeedback connections enter the sviter'siructure. prD and pr controilersare designed in the outer loops taking into account a second degree offreedom, introduced by specitied preiirters in both roopr. sprJ controlsimulation results are presented, confirming the feasibir,tv ot1-n, overallcontrol system.
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1. Introduction

Due to its reliabirity, and relatively low cost the induction motoris probably the most widely used electric machine and the choiceof many industriar apprications. The foilowing ,,r.ronr,'however,
present a serious challenge when designing induction motor controlalgorithms:
. the dynamic behavior of the motor is described by a fifth_order

highly coupled and nonlinear dynamical systemlo rotor electric variables i.e. rotor fluxes and currents as well asstator and air'gap fruxes are practicaty not measuied;e most of its physicar parameters may vary significanily whireoperating the motor - stator and malnly rotorlesistance, dueto heating, magnetilng induction due to saturation, totalmoment
of inertia of the rotor and the viscous friction coefficient are noteasily estimated;

o pfosorce of unknown load torque.
The most renown sorution dearing with the compricated motordynamics is given by the so-cailed fiird-orient.o .ontroi ti ,zl. tt i,based on rewrit ing motor equations through a nonrineartransformation in a specific coordinate frame, wn6re.torliur rnospeed are asymptotically decoupled, i.e. the model looks like that

gf 3 geRaratery excited dc motor. The main drawback of thistechnique is that the decoupring is varid onry after the roior ttux isconstant. rhe dynamics of the currents arso remain nonrinear.
. Tl. contror argorithm investigated here is based on input-outputfeedback linearizing techniquesl The advantage of the input-outputlinearization over the fierd-oriented contror is thJfact tnat, ny appryingthe linearizing transformation, a comprete decoupring'oitne rotorspeed and flux is achieved, which .nabres the optimizaiion of motorperformance without degrading the mechani.ur oriprii.ilr.tion.

S. Enev

control designs, for the induction motor case, based on this approach
are found in [2, 6-9, 14-15], ail using the rotor-frux mooei. In [13]input-output linearization based contiol in cunentfed mode, usingthe stator-flux model is presented.

In this paper, an input-output rinearization based contror in furl(voltage command) mode, using the fifth-order stator-frux induction
motor model is presented. The respective nonlinear transformation
and control law are derived. The influence of variations in the mainmotor parameters in the frame of this approach are derived anddiscussed. A speed contror scheme based on the rinearized moder,realized in a two-degree of freedom frame for both, speeJano flux,subsystems is proposed. The outer contror roops are rearized byoutput feedback using high-gain prD and pr controilers in speedand flux subsystems respectivery. prefirters, specifying desired time_domain behavior, are added. simuration resurts arj presented.

2.Dynamic Modering of the Induction Motor
The induction motor considered here is a three-phase

stator, three-phase short-circuited rotor machine. The foilowing
considerations are valid for the case of a squirret-cage rotor,since it is equivalent to a three-phase short-circuited one"through
a simple transformation. The comm'n assumptions are adopted
f9J the modeling i.e. symmetricar construction, sinusoidar dis-tribution of the field in the air-gap and magnetic circuiGilinrrr-
itv.

Remark' The rotor frux magnitude can be kept away fromthe saturation zone by an appropriate contror action, thus iorcingthe assumption for linear magnetic circuits. 
--'-' ' !r'|vv '

writing the equations describing the motor dynamic be-havior in the two-phase stator{ixed 6-e frame and eriminatingrotor fluxes and currents, the foilowing equivarent two-phasestator-flux model is obtained:
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to the motor, rr-loadtorque, /r,o, -phase stator (rotor) winding

inductances, trnr -phase stator (rotor) winding resistances,

mo=213m - mutual inductance, /tp -number of pole-pairs,

,r -rotor moment of inertia; c -viscous friction coefficient,

6 = (I*1, - m'y1l*lr)-' ,y*_(hr, +/rr^)(ololr)-, ,( = ro(ololr)-l

The complete derivation of the model can be found in

[1 ,2 ,3 ] .
Though the paper deals with speed control applications, a

position coordinate is added in the model and the following
mathematical analysis is carried out on the sixth-order model
obtained for generalization purposes.

The induction motor model (1) is put in the following form:

(2 )  *  =  f  ( x ) *g f t t *gzuz+1 , ,  w i th

x =[r, xz x3 x4 x, x6)r =10 Vro VrB iro irp 0)'

U t = U s o ,  U z = U s p .

and applying the following coordinate transformation:

' € , ( x ) - 1 4 ( x ) = x 6 ,

' 6 r@)=Lr4 ( r )=x , ;
l A \
rt/ '6r@) = Lf h,(x) = n rJ 

-' 
(xrx, - xrxa) - cJ 

-t 
x,;

' € , { * ) -h r (x ) - *3+t ;

Z,@) - x2- olrxo;

Xr@) - xi- olrx,

where Lrh denotes the Lie derivative of the scalar

function A with respect to (or along) the vector field / and rep-

resents a scalar function defined by L,h=!f (iteratively

L; 'h= Lf  LJ^- th) ,

the system (2) is transformed in the following normal

'1, = Lr4i
'€ r= Lr 'h ,+ Lr ,L,h, ;
'4. = Lrt h, + Lr,Lrzhr.u, + LrrLr2h,.u, + Lr,L,z h,;

5 )  2 i  - r
Yr - -th + Lo,h,u, + Lr,4'uz

i, _ Ll Xri
(6) 

2, _ L1zz.

For notation simplification purposes (r) is omitted in the
expressions that follow in the paper. The corresponding Lie
derivatives are given by:

Lrtlq - -n,,J-'(cJ-t + T)(xzxs 
- xrxo) + c2 J-2 x, +

+nf,J-t x,(xrxo * xrxr) - r?,J 
-t(o/r)-' 

x,(4 + t):

Lr,L,4 - -J- 'rr i

Lr,Ll'4 = cJ-2tti

Lrh, = -Zrr(xrxo+ xrx, ) ;

L s , L J . 2  h r  =  n  r J  
- ' ( t ,  -  ( o I r ) - ' " ,  )  ;

Ls,L f2 ht = -n 
rJ 

- ' 
(xo - (oI r)- ' "r 

);

Lr,h, = 2*r., Lr.rh, -2xri

LlXr = olr(yxo + n,xtxs - ( *, - no(olr)- '",r,) - txo .

Ly Xz = ol, (T xs - n r,xfl 4 
- ( *, + n n(o1,1-t x,x2) - rsxs

Choosing the l inearizing control law in the form:

[ ' '  l  =  A ( ;u ) - '  l ' '  
-  t . i : ' ]

( 7 )  L , ;  I  l v ,  -  L ,h .  I

f (x)  -

,nJ-'(xrx, - xrxa) - cJ-' x,
-fsx+

-fsxs

-Txq - n,xtxs + ( x, + n o(ol r)- ' x,x,

-yxs * n pxtx4 + ( x, - n r(ol r)-' *r*,

x

s,=[o 1 o 1olr)- '  o o] '

sz = [o o 1 o. 1ol, )-' o]'

f,-l-J-'r, o o o o o]'

S.lnput-output Linearization 0f the Stator'
flux Induction Motor Model

Basically, feedback linearization consists of applying a
nonlinear transformation on system variables i.e. expressing
them in a new ,,suitable" coordinate system, which will enable
the introduction of a nonlinearities canceling feedback, so that an
input-output or state linearization in the new coordinates is
achieved. Theoretical foundations and systematic procedures for
finding these can be found in [4,5,12].

For the induction motor case, by choosing the output func-
tions as the rotor position and stator flux square respectively

( 3 )  l t = 4 ( x ) = x o , l z = 4 ( x ) = 4 * t
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the linearized system is put in the following form:

t F  - t . F .
9 t  -  9 z t

'1, ='6, - J-ttr ;
' t r=vr+cJ-2rr ;

'€, = vr)

X, = LyIi

i, _ LyIz.

The matrix A(x) , called ,,decoupling" is given by:

A(x) =lto'"4 4=t"4f =
I Lr,4 Lr,4 -l

(1 0) =lnoJ' 1*, - (oI)-'xr) -nrJ-t (xo -(otrl-'rr)-l.

l_ 2*, 2x, I

The decoupling matrix invertibility condition is given by:
det A(.x) = -2nrJ-'1ol)-'(xl + xl\ + 2noJ-t (xrxo + xrxr) + 0

which is satisfied during normal operaton of the motor,
though it can be monitored and kept away from zero by setting
appropriate reference values of the stator flux magnitude.

By choosing the control law as (7), the dynamics of the
original nonlinear system are decomposed into two parts: a
linear input-output map, given by (8) and a nonlinear, unobserv-
able through the outputs, internal part (9) described in 7, and

7, variables. These are chosen in the form (4) in orderto obtain

Lr,ti =0, i -1,2; i =1,2 thus rendering them independent
from the inputs and on the other hand ensuring the validity of the
transformation (4), [4,5]. This choice is possible since g, and

g2are constant vector fields, thus forming an involutive set.
The stability properties of these internal dynamics repre-

sent a general limitation of feedback linearization control. Ac-

cording to their definition h and Iz c"n be considered as
normalized rotor flux values, thus their boundedness is guaran-
teed by the control action.

ln figure / ff is shown the resulting linear decoupled input-
output system. lt is seen, that the problem of controlling me-
chanical output is rendered to controlling a triple integrator (for
position) or double integrator (for speed) and a single integrator
for the flux loop. As seen both subsystems are exactly decoupled.

Effecb ol Variations in Motor Pararneter Values
To study the effects of variations in motor parameter val-

ues, let assume uncertainties on these parameters, formalized
in the following form:

7  = J - ' r T o  =  k T  ,  c ,  = c + A c  ,  r r r =  r . ,  * A r . , .  , r * r = r r * A r *

System (2) can be rewritten as:

(11) *  = f  (x)* gpr* gzuz+/r(x)+/*(x) + f  , , (x)+ f ,

o o o o ] '

16, - Lr4i

(12) '€, = L/4 * Lr,,Lrh, + Lr,L1h;
'€, = Lf h, + Lr*L,24 + Lr,Lr'4 + Lr,Lr214 +

+ Lr,Lrz4 + Lr,Lr2h,.u, + Lr,Lr24.ur;
'€r= Lt \+ L1,h+ Lr lhur+ Lr , \ .uz i

(13) 2, = LlXt+ Lvrtri

2, - Lytz+ Ly*tz

where all Lie derivatives that are equal to zero are omitted and the
present ones are given by thefollowing expressions:

Lr^Lr4 = (k -I)(noT 7xrx, - hxo) - gi*) -LcHx, =

= (k -l)tT-LcU'€2' Lr,LrT _ -H rri

Lr_4'4-NprTlolof'(4*o-x*)=-No@t)^('€r*d'6),

4,Lr'4=\nr7(otr\'(*r*o-44)=-At(otr)'(6r+d'5);

Lr,,Lr'\ = -ri (k -l)@ol @rx, - xrxo\ - &r) +Lcclc72 x, =

= -ci (k -l)'€, +LccH2'(r, Lr,Lt'4 = clrirrr;

Lt,4=-2Arr(*r,*o+ \x) =Ar, lrr.14

L, * fr, 
-- Ar*Uit *o - Lr*I *t xr, L y o Iz - L r *l rlit x, - L r*I ot x,

(8)

(e)

(5) and (6)take the

Figure 1. Input-output linearized system

with: I o I
l o l
l o l

l-rtl =Ahl 
(o\r,)-t x,-(ot*)-t xol r' tt I =

ItoU)-'n-(ol*)-rx, I
L O J

f ,,(x) = 
[(t 

- l)(n, J (xrx, - xrxn) - cJxr) -A,cHx,

y , = l - H r , 0  0  o  0  0 ] ' .
With variables defined as in (4), expressions

followingform.
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Applying the same linearizing control law (7), the input-
output system is put in the following form:

t i .  l u' F  - ' r  .
- t  t l  t

t )  , l r  ,  l r  , ='  
5 :  =  k '5 ,  -  k r '5 .  -  kJ  T L i

l L  _  t -  l f  t -  t E  ' = r'5t = Kt 5t 
- Kz 5: * Vr + CkJ 

-Tt.l

' ( , = k , L , . h , * v "

k, =Lr*(oL ) '  +A5 (ol,  )- '  + ci (* - t) ;

k. = c7 {L^r,,1o1,,)-t +Ar, (o/. )-r +Lc'ki):

k :  =Lck7 ,  k ,  =A r '  / r r .

Figure 2 visualizes the structure of the resulting input-
output system in presence 0f uncertainties.

Figure 2. Perturbed input-output system

The following conclusions can be made as a result of the
carried out mathematical analysis:

o the mechanical subsystem remains not affected by the
flux one;

o it preserues its linear properties, though some additional
feedback connections (either positive 0r negative depending on
the direction 0f parameter values variations) and disturbances
appear in its structure;

rthe integration properties of the mechanical subsystem,
except for the inherent from its physical structure one, are lost;

rflux subsystem also remains linear;
.stator resistance variation induces a state dependent dis-

turbance signal in the flux subsystem, which restores the cou-
pling with the mechanical subsystem.

Following these considerations it can be concluded that the
linearizing and the more important decoupling propefty of the
designed control law are not affected by parameter variations i.e.
these properties of the control system are rendered robust to
parameter variations.

 .Speed Control  Based 0n Input-output
Linearization

In this section, a speed control scheme for the input-
output feedback linearized induction motor is proposed. Based
on the carried out uncertainty analysis, the following transfer
function describes the speed subsystem of the linearized motor
in the oeneral case:

(1 4)

(1 5)
rtt(s)

(16) uJt 
=

s2 + (k, + ft., )s + k,k. + kk,

The motor parameters used for simulation purposes are
chosen as:
rs =20,13{2 , ro = l3{2 , l, =1.05H , Ln=1.33H , m--\.WH ,
J = 0,0005 Nrns2,c = 0, 000l4Nms, n,, = 2 .

Assuming parametric variations in the following ranges

Ato = e0,2+0,5)h , Ac = (0 + l)c, J,,=(I+2)J l11=(I+0,5)l
the resulting transfer function is specified by:

a\s)
v, (s)

(0,5 + 1)

s2 + (-5,  82 +14,48)s + (-3.1 + 8)

Though the coefficients of the characteristic polynomial
are not independent, as seen from (15) and (16), quite different
dynamic behavior is stil l possible in presence of uncertainties,
ranging from that of stable to that of unstable second-order
transfer functions.

The desired dynamic behavior of the speed response is
specified by the following transfer function:

4(s)  =
1600

s ' + 8 0 s + 1 6 0 0

The above given design problem is approached by a two-
degree of freedom control system. The speed control loop is
realized with high-gain PID-controller with transfer function given
by:

. r ' r  +80s+1600
G",r,(s) =kr,,,

s(0,00l .s + l )  '

with the following goals:
o ensuring zero steady-state error;
o reducing the effect of parameter variations by moving

the dominating closed-loop poles to the zeros of G,,,,,,(s) ,

being Z,znn = -40 , and determining fast output dynamics.

Pole-zero maps of the closed-loop system (dominating
poles only) for the specified parameter variation range and
k,,,,, = looo are given in figure 3.

Then a prefilterwith transferfunction is 4(s) added. The
step responses of the obtained system, again for the entire

inf orrnation teclrnolocries
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Figure 3. Pole-zero maps Figure 4. Step responses

TL

Figure 5. 0verall control system

Linearizing
Controller
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I
I
W

Figure 6. Transient responses( time in seconds on the x-axis )
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range of parameter variations and k*o= 500 are shown in

figure 4.
As seen, the control system is practically insensitive to

variations in the linearized model.

Higher kn,, vahrcs add to this result, though increasing

its value should account for the presence of load torque distur-
bances and the risk of violating control input limits.

It must be noted that any arbitrary reference signal in the
prefilter's dynamic range is also tracked with the same perfor-
mance.

The flux control is realized by using a high-gain Pl control-
ler and a prefilter designed with the same idea, specified by:

G", (s )  =0r ,4 ,  4 ( r )  =  !0 t^ .s  s + 4 0 '

The block diagram of the overall control system is given
in figure 5.

FIux Estimation
The stator flux components are usually recovered by simple

simulation of their equations (equations 2 and 3 in (1)). As
seen, a pure integration is involved in the process, and the
presence of dc component in the integrator input can lead to
divergence of the estimates. Another potential problem is the
sensitivity of the estimates to a stator resistance variations,
especially in the low rotorspeed region. ln [16], a stator resis-
tance tuning algorithm is presented and the flux is recovered with
the above mentioned simulator. A thorough overview of problems
and solutions, related to this stator flux estimation scheme is
given in [17]. Different algorithms for stator resistance estima-
tion along with modified flux obseruers are presented in the
l i terature [9-10]. In [18], sl iding-mode approach is used to
eliminate completely stator resistance in flux estimation, and a
method for motor parameters identification is found in [11].

These problems are not in the scope of this paper and it
is assumed that flux components are estimated accurately, i,e
stator resistance value is known.

Simulation Results
Figure 6, visualizes some transient responses of the de-

signed control system. In this pafticular simulation, parameter
deviat ions and contro l ler  gains are set  to  A&=05rn,

J o -1,5J and k,o = kr, =500 reSpectively. At r = 0,4s. a

ZNmload torque, unknown to the controller is applied. Accord-

ing to the proposed control design ont and V?,,r,seen in
figure 5, are generated by the following scheme

o,,r(s) = 4 (s)R, ( i  ,  w\*r(s) = 4(s)&(s), where R,(s) and

&(s) represent series of step functions, given by the respective
reference values.

As seen the outputs are able to track without significant
error the desired references and no coupling is present.

5. Conclusions

In this paper, an input-output linearization based induction
motor control is presented. Nonlineartransformation and a con-
trol law are derived using the fifth-order stator-flux model. Un-
ceftainty analysis in the frame of this approach is carried out
and the effects of variations in the principal parameters of the
motor are derived and discussed. lt is shown that the proposed
control law does not lose its linearizing and impoftant decoupling
properties, though some additional feedback connections and
disturbances enter the system structure. PID and Pl controllers
are used in both outer control loops to counteract these struc-
tural changes. Both control systems are given second degree of
freedom by a respective prefilter specifying desired output dy-
namics. Simulation results are presented.

Flux estimation related problems are not treated in the
paper and the introduction of stator resistance tuning and dc
component compensation schemes in the control system is a
matter of fufther research. Another direction for further develop-
ments of the work can include simulations of both linearizing
and outer loops, as well as the flux observer with their discrete-
time realizations in order to assess more realistically the fea-
sibility and the practicality of the proposed control system.
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