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Robust Decoupling Control of Induction
Motors by Exact Feedback Linearization
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Abstract. This paper presents an induction motor control system based
on the exact feedback linearization approach. The underlying model used
for control design is the fifth-order stator-flux model. Linearizing and
decoupling transformation and control law are derived. Effects of param-
eter variations on the control system structure are derived in the frame
of this approach. It is shown that the proposed control law does not
lose its linearizing and decoupling properties, though some additional
feedback connections enter the system structure. PID and PI controllers
are designed in the outer loops taking into account a second degree of
freedom, introduced by specified prefilters in both loops. Speed control
simulation results are presented, confirming the feasibility of the overall
control system.

1. Introduction

Due to its reliability, and relatively low cost the induction motor
is probably the most widely used electric machine and the choice
of many industrial applications. The following reasons, however,
present a serious challenge when designing induction motor control
algorithms:

*  the dynamic behavior of the motor is described by a fifth-order
highly coupled and nonlinear dynamical system:

*  rotor electric variables i.e. rotor fluxes and currents as well as
stator and air-gap fluxes are practically not measured;

® most of its physical parameters may vary significantly while
operating the motor - stator and mainly rotor resistance, due
to heating, magnetizing induction due to saturation, total moment
of inertia of the rotor and the viscous friction coefficient are not
easily estimated;

® _presence of unknown load torque.

The most renown solution dealing with the complicated motor
dynamics is given by the so-called field-oriented contro| [1,2). ltis
based on rewriting motor equations through a nonlinear
transformation in a specific coordinate frame, where rotor flux and
speed are asymptotically decoupled, i.e. the model looks like that
of a separately excited dc motor. The main drawback of this
technique is that the decoupling is valid only after the rotor flux is
constant. The dynamics of the currents also remain nonlinear.

The control algorithm investigated here is based on input-output
feedback linearizing techniques. The advantage of the input-output
linearization over the field-oriented control is the fact that, by applying
the linearizing transformation, a complete decoupling of the rotor
speed and flux is achieved, which enables the optimization of motor
performance without degrading the mechanical output regulation.
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Control designs, for the induction motor case, based on this approach
are found in [2, 6-8, 14-15], all using the rotor-flux model. In [13]
input-output linearization based control in current-fed mode, using
the stator-flux model is presented.

In this paper, an input-output linearization based control in full
(voltage command) mode, using the fifth-order stator-flux induction
motor model is presented. The respective nonlinear transformation
and control law are derived. The influence of variations in the main
motor parameters in the frame of this approach are derived and
discussed. A speed control scheme based on the linearized model,
realized in a two-degree of freedom frame for both, speed and flux,
subsystems is proposed. The outer control loops are realized by
output feedback using high-gain PID and P controllers in speed
and flux subsystems respectively. Prefilters, specifying desired time-
domain behavior, are added. Simulation results are presented.

2.Dynamic Modeling of the Induction Motor

The induction motor considered here is a three-phase
stator, three-phase short-circuited rotor machine. The following
considerations are valid for the case of a squirrel-cage rotor,
since it is equivalent to a three-phase short-circuited one through
a simple transformation. The common assumptions are adopted
for the modeling i.e. symmetrical construction, sinusoidal dis-
tribution of the field in the air-gap and magnetic circuits’ linear-
ity.

Remark: The rotor flux magnitude can be kept away from
the saturation zone by an appropriate control action, thus forcing
the assumption for linear magnetic circuits.

Writing the equations describing the motor dynamic be-
havior in the two-phase stator-fixed 6-8 frame and eliminating
rotor fluxes and currents, the following equivalent two-phase
stator-flux model is obtained:

D=0, Wy =Wy ic)~ el 0~ gilg
(1) Vsa = —Tsig, g,
l/’sﬁ = "rsis,a g,
Iy = ~Vise =100, + W, + n,(oly) oy, + (ol Yhibgi
Iy = ~Visg +n,wig, + Sy - n,(ol) oy, + (o1, )"'usﬂ;

b=w

where: iy, i, stator currents, ¥, W,,- stator fluxes

@ - rotor speed, @ - rotor position Usq» gy —voltage inputs
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to the motor, 7, —load torque, ;,, —phase stator (rotor) winding
inductances, r5;, —phase stator (rotor) winding resistances,

m, =2/3m — mutual inductance, n, —number of pole-pairs,
J -rotor moment of inertia; ¢ -viscous friction coefficient,

0 = (Uply =m* ) ls)" y=(ers +lsr X0l )" & = ry(0l )™

The complete derivation of the model can be found in
[1,2,3].

Though the paper deals with speed control applications, a
position coordinate is added in the model and the following
mathematical analysis is carried out on the sixth-order model
obtained for generalization purposes.

The induction motor model (1) is put in the following form:

(2) x = f(x)+gu +8u, + f,, with
x =[x x X X, X xc]T =l y, Vsp Iy is/i o1

W =Ugy s Uy =Usp.

o o
n,J = (xxs —x%x,)—cJ 7 x
g Xy
=F
f(x)= o -
—yx, =n,xx +{x, +n,(0l)" xx,

=1
—yxs +n, %%, +$x,—n,(0l)” xx,

L X

g=[0 10 (o' 0 0]

g:=[0 0 1 0 (gl o]

fo=[~4", 0.0 0 0 0].

3.Input-output Linearization of the Stator-
flux Induction Motor Model

Basically, feedback linearization consists of applying a
nonlinear transformation on system variables i.e. expressing
them in a new ,suitable“ coordinate system, which will enable
the introduction of a nonlinearities canceling feedback, so that an
input-output or state linearization in the new coordinates is
achieved. Theoretical foundations and systematic procedures for
finding these can be found in [4,5,12].

For the induction motor case, by choosing the output func-
tions as the rotor position and stator flux square respectively

and applying the following coordinate transformation:

& (x) = h(x) =X

‘&, (%)=L h(x)=x;

e Ayx ) =n [T M, evwiojreedilons
2K (x)=h(x)=x+x;

x(x)=x,-0olx,;

e =l

where L h denotes the Lie derivative of the scalar

function 5, with respect to (or along) the vector field f and rep-

_ : oh
resents a scalar function defined by L_,-h=$

[ (iteratively
L"h=L,L""h),

the system (2) is transformed in the following normal
form:

151 = thl ;
G =L h+L L,
=L, ML L i T L L R T L, L Ty

5) Tl i L, hyu + L, b,
o L/‘/Zl;
(6) Zz 3 L/‘Zz.

For notation simplification purposes (x) is omitted in the

expressions that follow in the paper. The corresponding Lie
derivatives are given by:

L b ==n 0™ el v s x = xx, )+ I np+
" x (X, + X 05) — T (o) (x5 + 0
il e e

L L’k =cl’71,;

L h, = =2r(x,x, + X,%5) ;

L, L/.zhI = an_I (ei-nkaily ifs X9
L, Lt =, (i =(aly) % )i
Lglh2 =2x,, ngh2 =2x,;

L,z = ols(yx, +n,xx, - G, -n, (O'IS)_'x,x3) Sy

L, x, = olg(yx,—n,xx, - 4raia n, (ol ) xx,) - A

3) Y =h(x)=x,, y,=h(x)=x+x Choosing the linearizing control law in the form:
A By 0 ) o dad nghl
(7) 13 Bk vy =Lk,
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the linearized system is put in the following form:

¢ =%,
PR

(8) 'é Uyl P
Zfl . vz;

Y=L
9) wELy.

The matrix A(x), called ,decoupling” is given by:

L, L. et iInalng
A(x)={ B hl 82 fhl:|:
LI~'|hz Lé':hz
(10) :{an'l(xs—(o‘ls)“'x}) —n,,J"'(xd—(alS)'lxz)}.

2% P9

The decoupling matrix invertibility condition is given by:
det A(x) = =2n,J " (0l;) ™ (] +x5) +2n,J 7 (x,x, + X,05) % 0
which is satisfied during normal operaton of the motor,
though it can be monitored and kept away from zero by setting
appropriate reference values of the stator flux magnitude.
By choosing the control law as (7), the dynamics of the
original nonlinear system are decomposed into two parts: a
linear input-output map, given by (8) and a nonlinear, unobserv-

able through the outputs, internal part (9) described in %, and

%, variables. These are chosen in the form (4) in order to obtain

L, x;=0,i=12;j=12 thus rendering them independent
from the inputs and on the other hand ensuring the validity of the
transformation (4), [4,5]. This choice is possible since g, and

g, are constant vector fields, thus forming an involutive set.

The stability properties of these internal dynamics repre-
sent a general limitation of feedback linearization control. Ac-

cording to their definition 4 and %, can be considered as
normalized rotor flux values, thus their boundedness is guaran-
teed by the control action.

In figure 1 itis shown the resulting linear decoupled input-
output system. It is seen, that the problem of controlling me-
chanical output is rendered to controlling a triple integrator (for
position) or double integrator (for speed) and a single integrator
for the flux loop. As seen both subsystems are exactly decoupled.

Figure 1. Input-output linearized system

Effects of Variations in Motor Parameter Values

To study the effects of variations in motor parameter val-
ues, let assume uncertainties on these parameters, formalized
in the following form:

J =J_l’.7/) = k.—/—y C,y=C+AC; EsS s grATH ylgy = Ty +A1y

System (2) can be rewritten as:
M)y 2= fx)+gu +g,um* L (XY e+ f.(x)+ [

with: 0

0
0 oy
0 -
x)=A o ()= g &
Fi®)=0n, (Olls) " x, —(0l,) " x, I i ~(ol) " x,
(Ol 5, =01, ', =terly )ty
0 0

[.(x)= I:(k —1)(;1',,‘7‘(,\'2,(5 —xx,)—cJx)=AckJx, 0 0 0 0 O:IT

fo=[-kIt, 00 0 0 0]

Withvariables definedasin (4), expressions (5) and (6) take the
followingform.

T

G P
(12) &, =L’ h+L, Lh+L, Lh;
&=L+ L, L h+L, L +L, L’h +
it Lerfzh1 + LglL].zh, u, + Lg:szh, 1/
& =Lohy + Ly by + L byt + L by auy;

(13) X= Lf;ﬁ + LfRZI;
/1.’2 = Lsz i L/'RZQ

where all Lie derivatives that are equal to zero are omitted and the
present ones are given by the following expressions:
L, Lk = (k=1)(n,J (x,x; — x,x,) - cJx,) ~Acklx, =
=(k—1)1§3 —ACk.—]—lfz, Lf,th1 :—kj’r 3

L L h =5, (01 O, =x,) ==L @) (& +T S,
Lf.\-szhl :Arsnpj(o'ls)_l () —)(2)%):-_A,«S(ois)-l(lé‘:B +c71§);

L, L/.zh1 =—cJ (k —1)(111,.7(x2x5 —x,x,) = cJx)) +Acckd *x, =
=—cJ (k=1)'&, +AcckI *'E,, 3% Ml 8 Th

Ly hy = =205 (x,x, + x,5) =Arg I'rg.Lh,

L. x =Arldy'x, —~Arlx, L, % =Arl e x, —Ar ;' x,
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Applying the same linearizing control law (7), the input-
output system is put in the following form:
(14 6="%
]é&: =k 153 —k, iécz _k‘TTL;
‘£ =k, 'E, —k,'E, + v, +ck] 7T,
zfl =k,Lh, +v,

k, =Ar(ol,) " +Ar(ol) " + T (k=1);

(15) ky = el (Ar(oly) " +Ar(0l) ™ +AckD);
ky =Ackl , ky=Drglr,

Figure 2 visualizes the structure of the resulting input-
output system in presence of uncertainties.

172 ]
Lk, @
Vs e 4 Vs
P

Figure 2. Perturbed input-output system

The following conclusions can be made as a result of the
‘carried out mathematical analysis:

o the mechanical subsystem remains not affected by the
flux one;

o it preserves its linear properties, though some additional
feedback connections (either positive or negative depending on
the direction of parameter values variations) and disturbances
appear in its structure;

ethe integration properties of the mechanical subsystem,
except for the inherent from its physical structure one, are lost;

oflux subsystem also remains linear;

estator resistance variation induces a state dependent dis-
turbance signal in the flux subsystem, which restores the cou-
pling with the mechanical subsystem.

Following these considerations it can be concluded that the
linearizing and the more important decoupling property of the
designed control law are not affected by parameter variations i.e.
these properties of the control system are rendered robust to
parameter variations.

4.Speed Control Based on Input-output
Linearization

In this section, a speed control scheme for the input-
output feedback linearized induction motor is proposed. Based
on the carried out uncertainty analysis, the following transfer
function describes the speed subsystem of the linearized motor
in the general case:

DSy 2 k
vi(s) 8 +k +k)s+kk, +kk,

(16)

The motor parameters used for simulation purposes are
chosen as:
1, =20,132, 1, =132, [;=105H, [, =1.33H, m=0957H.,
J =0,0005Nms>, ¢ =0,00014Nms , n, = o

Assuming parametric variations in the following ranges

Ar =(=0,2+0,5)r,, Ac=(0+1)e¢, J,=(1=2J/k=(1+0,5)/
the resulting transfer function is specified by:

s) _ (0,5+1)
V|(S> Sl +(—5,82—1‘14,48)5_1_(_3.1_:_8).

Though the coefficients of the characteristic polynomial
are not independent, as seen from (15) and (16), quite different
dynamic behavior is still possible in presence of uncertainties,
ranging from that of stable to that of unstable second-order
transfer functions.

The desired dynamic behavior of the speed response is
specified by the following transfer function:

1600

Hiiy ey priiens bnsr
s~ +80s + 1600

The above given design broblem is approached by a two-
degree of freedom control system. The speed control loop is
realized with high-gain PID-controller with transfer function given
by:
s7 +80s+1600
G, (s)=k,, ———

() =Koy 5(0,00Ls +1)
with the following goals:
e ensuring zero steady-state error;
e reducing the effect of parameter variations by moving

the dominating closed-loop poles to the zeros of G,,,(s),

being z,,,,, = —40 , and determining fast output dynamics.
Pole-zero maps of the closed-loop system (dominating
poles only) for the specified parameter variation range and
k., =1000 are given in figure 3.
Then a prefilter with transfer function is F(s) added. The
step responses of the obtained system, again for the entire

n
)
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Actual and Reference Rotor Speed, radis.
& ;!

i

Actual and Reference Stalor Flux Square, Wh*2
T T

Figure 5. Overall control system

o8 1 A

Figure 6. Transient responses( time in seconds on the x-axis )

n !ﬁ
Figure 3. Pole-zero maps Figure 4. Step responses
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o = 000 are shown in

range of parameter variations and &
figure 4. i
As seen, the control system is practically insensitive to

variations in the linearized model.
Higher k,,, values add to this result, though increasing

its value should account for the presence of load torque distur-
bances and the risk of violating control input limits.

It must be noted that any arbitrary reference signal in the
prefilter's dynamic range is also tracked with the same perfor-
mance.

The flux control is realized by using a high-gain PI control-
ler and a prefilter designed with the same idea, specified by:

s +40 40
G,(s)=k,——_ F,(s5)=
PI() Pl §10eF 2() P

The block diagram of the overall control system is given
in figure 5.

Flux Estimation ]

The stator flux components are usually recovered by simple
simulation of their equations (equations 2 and 3 in (1)). As
seen, a pure integration is involved in the process, and the
presence of dc component in the integrator input can lead to
divergence of the estimates. Another potential problem is the
sensitivity of the estimates to a stator resistance variations,
especially in the low rotor speed region. In [16], a stator resis-
tance tuning algorithm is presented and the flux is recovered with
the above mentioned simulator. A thorough overview of problems
and solutions, related to this stator flux estimation scheme is
given in [17]. Different algorithms for stator resistance estima-
tion along with modified flux observers are presented in the
literature [9-10]. In [18], sliding-mode approach is used to
eliminate completely stator resistance in flux estimation, and a
method for motor parameters identification is found in [11].

These problems are not in the scope of this paper and it
is assumed that flux components are estimated accurately, i.e
stator resistance value is known.

Simulation Results
Figure 6, visualizes some transient responses of the de-
signed control system. In this particular simulation, parameter

deviations and controller gains are set to Ar=05r,
J,=L5Jand &k,, =k, =500respectively. At 1=0,4s. a
2Nm load torque, unknown to the controller is applied. Accord-
ing to the proposed control design o,, and l//s2,-e,-, seen in
figure 5, are generated by the following scheme

@, ()= F ()R (5), Wy, (s) = F,(s)R,(s), where R (s)and

R, (s) represent series of step functions, given by the respective
reference values.
As seen the outputs are able to track without significant

error the desired references and no coupling is present.

5.Conclusions

In this paper, an input-output linearization based induction
motor control is presented. Nonlinear transformation and a con-
trol law are derived using the fifth-order stator-flux model. Un-
certainty analysis in the frame of this approach is carried out
and the effects of variations in the principal parameters of the
motor are derived and discussed. It is shown that the proposed
control law does not lose its linearizing and important decoupling
properties, though some additional feedback connections and
disturbances enter the system structure. PID and Pl controllers
are used in both outer control loops to counteract these struc-
tural changes. Both control systems are given second degree of
freedom by a respective prefilter specifying desired output dy-
namics. Simulation results are presented.

Flux estimation related problems are not treated in the
paper and the introduction of stator resistance tuning and dc
component compensation schemes in the control system is a
matter of further research. Another direction for further develop-
ments of the work can include simulations of both linearizing
and outer loops, as well as the flux observer with their discrete-
time realizations in order to assess more realistically the fea-
sibility and the practicality of the proposed control system.
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