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Abstract. Classifications are frequently used declarative knowledge
units that facilitate understanding different subject concepts by
professionals and researchers. Almost each lecture course in-
cludes different classifications so their effective teaching and learn-
ing by means of special purpose applications is of research inter-
est. The current paper deals with a Task-Oriented Environment
for Constructing Classifications to support both teacher and
learner. An ontology model of a task for this purpose and mining
its pedagogical parameters from teacher’s and learner’s side are
proposed. The results of a preliminary study for verification of the
proposed metrics are also discussed.

1. Introduction

Classifications are abstract concepts introduced for
the human’s better understanding, systematization, recogni-
tion, comparison, and contradiction of real world objects.
Together with other declarative knowledge units, such as
definitions and descriptions they form the corresponding
professional language. The popular object-oriented method-
ology in the software engineering domain relies on the
concepts class, object, and class diagram. In INTERNET for
many professional domains classifications are accessible
with a big number of classes, hierarchical structure, and
hyper-links.

However only one commercial application CA-CL [16]
was found for classifications constructing and using in
different domains. This application offers a lot of user func-
tions from simple (rename, change, merge and split classes)
through moderate (checking for the classification status,
single and multiple attributes, class hierarchy, inherited at-
tributes, restriction of the assumed values) to complex (in-
consistency in the class hierarchy, multiple inheritance, syntax
in the object dependences, executing string search). From
the teaching point of view some of the functions are not so
important, others not easy to use. But the main disadvan-
tage of CA-CL is that there are no relationships among
different types of classes.

For the needs of researchers Dubois et al. [4] intro-
duced the concept fuzzy classification. The difference be-
tween this type of classifications and the professional ones
in that the degree of belonging of a sub-class to the super-
class, as well as of belonging of an example attribute to the
typical one, can be less than 1. The main proposal of the
cited authors is a combination of the object-centered pre-
sentation with the theory of probabilities. The object-

oriented presentation allows to create a compact,
understandable and easy for processing a homogeneous
knowledge base, making inferences in a way similar to the
expert’s one. The probability theory ensures appropriate
reasoning to cope with the intypicality, uncertainty, inde-
terminacy in these knowledge units. The above mentioned
features are far from the real human’s model of the classi-
fications and the way they are presented and manipulated
in the teacher’s mind.

The development of common cognitive skills for clas-
sifications begins in the primary education and continues
in the secondary one. A taught classification consists of a
limited number of classes, attributes, and examples and a
good school practice of classifications teaching includes
principles and recommendations for a test-like lesson [19].

Obviously the teacher needs an intelligent tool to
construct qualitative classifications, compare the learner’s
classification with the expert’s one, provide precise knowl-
edge assessment and diagnostics, as well as assign subtasks
for misconceptions remedial. The only system found for
these needs in the primary schools is EpiList I [7]. Its first
version was based on instruction without loop, e.g. the
learner explicitly performs classification tasks from particu-
larity to generality in the form of a game. The system
explains the learner’s errors implicitly by means of compari-
sons and generalizations. The second version EpiList II
presents a more effective adaptive control system with a
close loop [11] that explicitly monitors the learner’s skills
for inferences and instruct him/her for their acquisition. The
system registers how many times the learner has attempted
correctly or incorrectly to take part in the game. In such a
way EpiList II monitors 11 skills, namely: generalization,
comparison, and contradiction with three levels of diffi-
culty, as well as positive and negative examples. An over-
lay learner’s model is embedded to identify four levels of
cognitive competency (skills missing, unknown competency
in one skill, insufficient competency, and competency).

In the higher education to instruct subject classifica-
tions of the basic objects (algorithms, programs, languages,
schemes, etc.) the lecturer relies on the learned common
cognitive skills for classifications. In the lecture material
these objects are classified according to different features
and each class is connected with typical attributes, their
values and examples. Such a classification is presented by
the lecturer usually in a mixed style, e.g. as a text fragment,
table, classification tree. The relationships to sub-classifica-
tions of the produced objects with other classifications of
the same objects but according to other features are re-
minded. The learned classifications facilitate understand-
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ing, application, analysis, and synthesis of the procedural
knowledge units, such as formulae, algorithms, schemes,
systems, etc.

It is not clear enough from the known e-learning
systems if the classifications present separated lecture re-
sources, constructing by both lecturer and student. The
current paper deals with a subject-independent Task-Ori-
ented Environment for Classifications Constructing (TOECC)
aimed to improve the process of their teaching and learning.
In the next section a platform-independent architecture of
the environment is presented. Then an ontology model of
a task for classification constructing and the concept quali-
tative classification are introduced. Section 4 deals with
mining the author’s pedagogical parameters, and sections 5
describes the implementation of the teacher’s tool proto-
type. An algorithm for generation of subtasks is proposed
in section 6. The learner’s pedagogical parameters are pre-
sented in the next section.  Section 8 contains the results
of a preliminary study for verification of the proposed metrics
on the programming languages classification are given.
Finally, the authors’ team results are summarized.

2. Architecture of the Task-Oriented
Environment for Classifications
Constructing

By the author of the lecture material the TOECC is
seen as a repository of classifications separated from the
other taught knowledge units such as algorithms, programs,
schemes, etc. The environment helps the student to perform
the task for classification constructing and its subtasks, as
well as to assess his/her performance in comparison with
the author’s one. TOECC also facilitates the instructor in
planning, monitoring, and assessing a test-like practical
exercise.

Similar to other task-oriented environments developed
by Zheliazkova’s team [1,9,13] TOECC architecture consists
of standard and specialized tools supporting a homoge-
neous Knowledge Base (KB) integrated in the environment
Data Base (DB) (figure 1). Four standard editors are in-
cluded: a word processor (e.g., MS Word), a text editor
(e.g., MS Notepad), a graphics editor (e.g., MS Paint), and
a help file creator (e.g., MS HTML Help Workshop). The
examples with .bmp files (images, schemes, diagrams) pre-
pared by means of the graphical editor are imported in the
Word document of the lecture material. It is hierarchically
structured by the author and converted to a .hlp file for a
context-dependent help.

The specialized tools are three, called respectively
teacher’s tool, student’s tool, and task manager. The au-
thor, student and instructor operate with these tools through
a highly interactive and intuitive user interface. By means
of the first two tools the author’s and student’s classifica-
tion knowledge is extracted and text files with a fixed struc-
ture and extension .cls are generated. From the environment’s
point of view the author’s .cls file is seen as a separated text

resource. The student’s .cls file presents the student’s
overlay model at the task level.

The task manager extracts the instructor’s pedagogi-
cal knowledge and store it in a text file with a fixed structure
and extension .ecs. It serves as a program/plan for a test-
like exercise, invoking subprograms, e.g. .cls files.

The interpreter-evaluator parses the .cls file to com-
pute the author’s/task’s parameters (knowledge volume,
degree of difficulty, planned time). After a construction task
is performed by the student, the tool computes his/her
results relatively to the author’s ones. The tool also pro-
vides diagnostics of the student’s knowledge refreshing
his/her task model.

The author’s .cls and instructor’s .ecs files are stored
in the KB that can easily be extended with other classifica-
tions and examples. Such files can be opened and edited by
means of Notepad to avoid the slow process of their edit-
ing-generating. In such a way different equivalent tasks and
exercises can be created for different students and groups.

The main purpose of the task manager is to present
and sort the exercise tasks according to instructor’s prefer-
ences and to interpret his/her directives for intervention
during the plan execution. After an exercise finishes, its
parameters similar to the task ones are accumulated as sta-
tistical experimental data in the Task Base (TB). This base
together with the KB and students’ models are integrated
in the DB. It is supposed to be used for the needs of an
environment for individualized planned teaching in different
professional domains [19].
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Figure 1. Architecture of TOECC

3. Ontology Model of a Task
for Classification Constructing

According to Hendler [17] “An ontology comprises a
set of knowledge terms, including the vocabulary, the se-
mantic interconnections, and some simple rules of inference
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and logic for some particular topic. Under its implementation
the subject contents is integrated with this structure for
faster, deeper, and substantial knowledge acquisition.” A
lot of researchers in the area of ontology-based courseware
[2,3,6,8] share his opinion.

A subject-independent ontology model of the task for
classification constructing is shown in  figure 2  as a special
type of a root tree. The correspondence of its components
to the terms of object-centered representation follows:

• The root node  0c  corresponds to the basic class
at the hierarchical level 0, it has no super-class and it
is filled with the object name plus the feature name for
classification;

• Its right nodes-children { }00
2

0
1 ...,,, maaa  at the same

level present the rang 0A  of the typical attributes values,
specified for that abstract object and are filled with string
values;

• Its left nodes-children { }00
2

0
1 ...,,, rppp  at the same

level present the set 0P  with other classifications of the
same object but according to other features and are filled
with pointers to those knowledge blocks;

• Its lower children { }11
2

1
1 ...,,, nccc  at the next level 1

present the list 1C  of sub-classes and are filled with their
names. Generally each internal node, for example, 1

iC , cor-

responds to a sub-class, has a list 1
iA  of right children

{ }11
2

1
1 ...,,, imii aaa  and a list 1

ijC  of sub-classes (in figure 2) there
are no children and a pointer to a knowledge block, for
example, 1

np , presents a pointer to a knowledge block, con-
taining a sub-classification of this object. The terminal nodes
{ }22

2
2
1 ...,,, inii rrr  of a super-class 1

iC  correspond to a set 2
iR

of example representatives of the supper-class and are filled
with the names of the real entities.

In a classification tree ( )LNT ,=  the set of nodes N

consists of four intersecting sets, filled respectively with
classes, attributes, representatives (examples), pointers and
images for a concrete classification: .IPRACN ∪∪∪∪=

The set of arcs L  of this tree also consists of four intersect-
ing sets XBTE ,,, , including respectively deepness,
wideness, practical, and external relationships, e.g.

.XBTEL ∪∪∪=
The kinds of relationships in the ontology model in

figure 2 that are four will be discussed hereinafter.
By default, a deepness relationship ><= jik cce ,

between a super-class ic  and its children class jc  is
“divided-into” relationship. An wideness relationship

><= jik act ,  between class ic  and attribute value ja  is
“has-a-property” relationship. A practical relationship

><= jik rcb ,  between a class ic  and its example jr  is of
type “is-represented”. An external relationship ><= jik pcx ,

between a class ic  and a pointer jp  to the knowledge

block is of type “is-related-to”.
The process of classification constructing can be

viewed as filling the empty nodes (slots) of the classifica-
tion tree with the elements of the subsets I,PRAC ,,, . This
mental activity is performed first by the author, as a source
of the knowledge, and later by the student, as a receiver of
the knowledge. For this purpose the checking of the tree
structural correctness is more than desirable. In the context
of classifications this means: validation of the main features
for a root tree, namely: connectivity, availability of a root
node, reachability of each terminal node through a simple
path and acyclity. Secondary, two special restrictions also
have to meet each classification tree: 1) Each element of the
above-mentioned subsets has to be pointed out only one
time as super-class; 2) Only the four early mentioned rela-
tionships types are permitted.

The well-known classical algorithms for the root tree
editing, searching and sorting cannot be directly applied to
the proposed ontology model. There is a need of a new
interactive algorithm, taking into account not only the spe-
cial features of the classification tree but mining the peda-
gogical parameters values from the author’s and student’s
performances too.

4. Mining the Author’s Pedagogical
Parameters

It is reasonable to compute the knowledge volume 1Q
in the author’s classification as the sum of both nodes and
relationships numbers: 12 1111 −=+= N.LNQ . The last is a
result from the main statement of the common theory of
graphs according to which 111 −= NL .

It is supposed that the subsets ,,, 111 RAC  11,IP  are
viewed when the task for constructing is performed by the
student. This means some degree of system’s prompt, re-
spectively decreases the system’s confidence in his/her
knowledge. The degree of system’s prompt pC  determines
what part of the author’s knowledge is accessible to the
student, when he/she constructs this knowledge unit. In

Figure 2. Ontology model of a classification task
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case of a classification with significant volume
pC  is determined as ( ) ..N./NQ/NCp 5012 1111 ≈−==  If ( )ij cY ,

5,,1…=j , means that local subsets respectively
( ) ( ) ( ) ( )iiii cXcBcTcE 1111 ,,, , ( )nic i ,...,1= , belonging to  the ith

class, then the quality of the author’s classification is de-

fined as ( )[ ]∑∑
= =

σ=
n

i j
ijq cYC

1

5

1
, where the function

( )[ ] ( )
( )⎪⎩

⎪
⎨
⎧

∅=

∅≠
=σ

ij

ij
ij cYif,

cYif,
cY

1

0
.

When ( )[ ] ( )5,...,1 0
1

1 =>σ∑
=

j,cY
n

i
i  the classification is well

balanced respectively its deepness, spacity, usefulness and
connection with other classifications of the same object,
but according to other features. Informally this means avail-
ability at least of one connection from each type, that well
concurs with the human presentation about good classifi-

cations. In particular cases when: 1) ( )[ ] 0
1

2 =σ∑
=

n

i
icY  classifi-

cations can be called non-spaced; 2) ( )[ ] 0
1

3 =σ∑
=

n

i
icY  classifi-

cations can be called non-practical; 3) ( )[ ] 0
1

4 =σ∑
=

n

i
icY  classi-

fications can be called isolated. By definition ( )[ ] 0
1

1 >σ∑
=

n

i
icY ,

close but never equal to 1, as a classification tree has at
least two terminal nodes, e.g. without children.

The main temporal parameter of author’s performance
is the time of constructing, i.e. the time interval
Dt1 = t1f – t1s, where t1s (t1f) is the current system time
when teacher starts (finishes) the classification construct-
ing. The main derivative parameter is the rate of construct-
ing, defined as v1 = Q1/Dt1. It is a function of the author’s
personal characteristics and the system’s user interface too.

5. Implementation of the Author’s
Tool Prototype

Nowadays the most popular subject-independent sys-
tem for creating different types of ontologies is Protégé [2]
but some difficulties and restrictions have been found us-
ing it for the teaching purpose [5]. That is why to verify the
above-proposed metrics a WINDOWS-based tool proto-
type has been implemented by the authors of this work.
DELPHI 7.0 programming environment has been chosen for
this purpose due to highly intuitive visual programming
with high degree of code generation and availability of a
rich Visual Component Library (VCL) [10].

Before implementing the tool’s prototype the UML
project of TOECC was developed [9]. For representation of
a classification in the computer memory the VCL tree inter-
face components were used. Three kinds of diagrams were
drawn to visualize the functional requirements, teacher’s
activity and dialog forms as special kind of classes. The
tool’s use case diagram is shown in figure 3 and the activ-
ity diagram in figure 4.

Figure 3. Use Case diagram of the teacher’s tool Figure 4. Activity diagram of the teacher’s tool
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Figure 5 presents the class diagram in which a rect-
angle has three sections respectively for the class name,
attributes, and methods. Almost all methods present event-
handlers, invoked when an user action (button pressing,
mouse moving, menu choice, timer signal, and so on) oc-
curred.

The tool’s user interface is simple and easy for use
even by the teachers or non-professional programmers
(figure 6).

The tool offers to describe the task in a free text
format (the field Task), and its classification tree. For each
node the following data can be set up: name (Name),
attributes (Attributes), representative (Examples) and image
(Image). The menu-item File contains standard items for
opening an existing file and creating a new file, to save it
and exit. From the menu-item Options the commands Add
Node and Delete Node, as well as Links to other classifi-
cations for the same objects but according another feature
are available. In the panel Parameters the values of the
pedagogical parameters (knowledge volume, degree of sys-
tem prompt, quality of classification, start time and finish
time of the constructing task) are given. As a result of the
task preparation a standard text file with a fixed format is
generated (figure 7).

6. Mining the Student’s Pedagogical
Parameters

As a precise and sensible measure for knowledge
acquisition the degree of proximity of the student’s classi-
fication tree to the teacher’s one can be used [14,15]. It is
reasonable for an intelligent system to interpret this prob-
lem solution as syntax pattern recognition of two classifi-
cation trees in the range between 0 and 1. This is in line
with the statement that the criteria for deciding whether the
student has mastered a skill can be described in terms of
percentage of a perfect score (e.g., 80%, 90%, 100%). The
classical syntax methods in Pattern Recognition turned to
be inappropriate for computation of the degree of proximity.
Through several formal definitions we will come to an origi-
nal formula for it.

Definition 1. A syntax node type c is the ordered
couple nci = (i, S), where i stands for its number in the list
of such nodes and S stands for a text constant. The degree
of proximity of two c-type syntax nodes n1ci and
n2cj, belonging to two different lists L1 and L2 is

( )
⎩
⎨
⎧

=
≠

=
21

21

  ,1
  ,0

2 ,1
SSif
SSif

nnC i
c

i
cb . If ( ) 12 ,1 =i

c
i
cb nnC , those nodes are

called equivalent.
Definition 2. Syntax node type we will call a given

couple ( )LtLt ,=  where ),,(  IVCt ∈  means the type of its
elements, and L  is a traditional list of the string constants.
The power of a syntax list .LLt =

Definition 3. The coefficient of the proximity of two
syntax lists tL1  and tL2 , belonging to different trees 1T

and 2T :

 

 

Figure 5. Class diagram of the tool prototype

Figure 6. Tool’s screen

Figure 7.  Generated text file
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Informally, it gives the number of the equivalent syn-
tax lists in the L’s tree T2 respectively to the maximal power
of the powers on the author’s list L1 and the learner’s list
L2.

Definition 4. An adjacency of a syntax node nc
i

is a list Ai
c = (ni

c, Lv, Lp, Li), where each of the lists
Lt(t∈{C, V, I, P}) could be empty and there is a link between
each element ni ∈ Lt and nc

i.

The power of the adjacency is Ipv
i
c LLLA +++= 1 .

Definition 5. The degree of proximity of two adjacen-
cies i

cA1  and i
cA2  belonging to different trees 1T  and 2T

is:

Figure 8. Graphical interpretation of misconception excess

is the average level of misconception excess. The constant
a is interpreted as the minimal value of R3 under the minimal
value of  L, and the constant b as the maximal value of R3
under the maximal value of learner (figure 9). The rudeness
of  the  misconceptions at the higher levels is greater than
those at the lower levels.

Definition 12. The final assessment R0 = R1.R2.R3
will give more precise and sensible L’s knowledge evalua-
tion as it takes into account three indicators: correct knowl-
edge, misconception excess, and rudeness of the miscon-
ception excess.

Figure 9. Graphical interpretation of its rudeness

Informally it gives the number of the equivalent syn-
tax nodes in an adjacency of the learner’s tree in proportion
to the maximum of powers in the author’s adjacency i

cA1

and of the L’s one i
cA2 .

Definition 6. A syntax path presents a list of adjacen-
cies ( )121 ,...,,, −= l

ccc
i AAAiP , where i  is a code identifying a

path in a tree. ( )1,...,1 −= ljA j
c  belongs to a node at the level

j  and has a connection between k
cn  and 1+k

cn  ( ).lk 1,...,2,1 −=

The power of such a path is 1−= lP i .
Definition 7. Coefficients of the proximity of semantic

paths iP1  and iP2 , belonging to two different trees 1T  and
2T  ( ji =  is not obligatory):

Informally, it gives the number of the equivalent nodes
in a path of the learner’s tree in proportion to the maximal
of the powers in the author’s path iP1  and iP2 .

Definition 8. The semantic tree is a list ( )m
mPPPT ,...,, 2

2
1
1= ,

where m  is the number of the paths in this tree, e.g.    .

Definition 9. The coefficient of the proximity of T1
and T2 is the proportion:

Informally, it gives the total number of the equivalent
nodes in the learner’s tree in proportion to the maximal of
the powers of the author’s tree T1 and the learner’s
one T2.

Definition 10. A syntax node represents a misconcep-
tion, if it exists as a child class for a given parent class in
the student’s classification, and does not exist as a child
class for the same parent class in the teacher’s classifica-
tion. If m is the number of such nodes then the function of
misconception excess is

Here R2min corresponds to the minimal value of R2
under m = n, and the value of f defines the kind of the
function change (figure 8).

By means of 0 ≤ R2 ≤ 1 the knowledge evaluation
R1 = Cp(T1, T2) can be decreased thus punishing the L for
his/her missing and/or wrong knowledge.

Definition 11. The function R3 of rudeness of the mis-
conception excess is

               where
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7. Generation of Subtasks
Formulation

The subtasks levels in increasing order of their com-
plexity may concern: a node, list of nodes, occurrence, path
of occurrences, and sub-tree of paths. The same levels of
the L’s errors will be also valid in increasing order of their
roughness. Normally all levels of the errors are expected in
the L’s performance. That is why of interest is the genera-
tion of the subtask formulation in the limited natural lan-
guage and strategy for the errors remedial under limited
time. Table 1 presents in pseudo-code subject and lan-
guage independent frames for generation of the subtasks
formulation at different levels. ( )4,...,1=kSk  stands for the
text constants; &I a slot for the system variable denoted as
i ; + symbol for concatenation of the text constants.

Together with computation of the coefficient of prox-
imity a typical list IL  is generated with the values of the
micro variables for a given level of errors.

The structure of its elements depending on I  is also
given in the table. The order of the elements as well as their

order under the concatenation depends on the used natural
language. In this relation some of the slots kS  could be
empty. The learner’s performance is successful, if there are
no errors discovered. In other case a detail report for the
missing and wrong relationships is generated. The remedial
begins with the first error at the higher level, for which
remedial the rest of time will be enough.

A level will be generated, if he/she has enough time
to do it. Under the assumption for a constant rate of the
knowledge acquisition during the session the rest time is

cpr ttt −= , if it is bigger then ( ) ct.Q/Q 1 , where Q  is the
knowledge volume of a given subtask.

In table 2 a simple algorithm is perceived for formu-
lation of a subtask d(I) for classification at a given level I.

Table 1. The algorithm for remedial in pseudo code

IF performance = failed 
 Generation of a step-by-step report 
 Current level := highest 
 WHILE (rest time = enough) 
 AND (current level > lowest -1) DO 
  Current subtask := first subtask; 
  WHILE (rest time = enough) AND 
  (current subtask > last subtask -1) DO 
   Generating current subtask; 
   IF current subtask = failed 
   THEN 
       Consultation with the teacher; 
   ENDIF 
   Current level := next level 
 ENDWHILE 
ENDIF 

 

If the current subtask has been performed unsuccessfully,
the learner possibly needs a consultation with the teacher.
When all subtasks at the given level are performed by the

L, he/she will get lower level. This process finishes when
the planned time is over, or the last subtask at the lowest
level is performed. The following algorithm in pseudo-code
models more precisely the above-described heuristics strat-
egy for remedial.

8. A preliminary Study
To put the environment in the practice a preliminary

study was carried out with the aim to test the validity of the
formulae for the author’s and student’s parameters. The
subject area Programming Languages was selected. The
author’s task performance was simulated by a professional
programmer during one computer session. Three variants of
the programming languages classification were chosen for
comparison (figure 7): the first one – class hierarchy plus
attributes’ values and instances, the second one – class
hierarchy plus attributes’ values, and the third one – only
class hierarchy. There were no pointers and images in the
three variants.

The results shown in table 3 for knowledge volume
are in the scope of the human teacher expectation. The
system’s prompt is approximately constant as the knowl-
edge volume is considerable for the tree variants. The quality
of the first variant is highest but less than 1 as for some
classes attributes’ values are absent and the classification
is isolated. The quality of the third variant is lowest as it
does not contain any knowledge about attributes and rep-
resentatives. The time of constructing decreases as knowl-
edge volume decreases, and the rate of constructing is
approximately constant as it is supposed that the personal

Table 2. Algorithm for generation of a subtask

Table 3. The computed pedagogical parameters

( ) '':Id =  
Current operand := first operand; 
WHILE current operand  ≠ last operand + 1 DO 
 IF current operand = kS THEN 
            ( ) ( ) kSId:Id +=  
 ELSE  
            Extracting the value of the micro variable   

&v from IL ; 
  ( ) ( ) vId:Id += ; 
 ENDIF 
 Current operand := next operand; 
ENDWHILE 

 

 
Variant

Knowledge 
volume, Q1

System's 
prompt, Cp

Quality, 
Cq

Time, 
min:sec

Rate, 
min–1

First 103 0.504 0.875 11:45 8.7

Second 87 0.505 0.500 20:30 8.3

Third 23 0.521 0.208 02:33 9.2
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characteristics could not be changed during one short ses-
sion. The figures give the descriptive knowledge represen-
tation in the way the system stores it in a standard text file.

The validation of the formulae for computing the pa-
rameter R0 of the L’s performance under the accepted val-
ues of the parameter constants (table 4) also was tested.

The performances were simulated by an undergradu-
ate student during one computer session. The author’s
classification tree for this experiment is given in figure 10.

Table 4. The computed parameters

Figure 10. Experimental A’s classification tree

In this and next figures 11a-f a recognized class node
is represented by a numbered circle, a recognized attribute
node j to class node k by a rectangle named akj, a recog-
nized instance node j to class node k by a rectangle named
”ikj”, a misconception class node by a thick circle, a mis-
conception attribute or instance node by a thick rectangle.
Figures 11a and 11b illustrate the influence of the recog-
nized class nodes on the degree of proximity R0. For
figure 11a it is less but closer to 1.00 because all class
nodes had been recognized by the L. For figure 11b it is
less because only a part of the class nodes had been
recognized. The L is punished with a decrease of the evalu-
ation when the L’s classification tree has misconception
class nodes (figure 11c). Figures 11c and 11d demonstrate
the influence of the position of the misconception class
nodes in the hierarchy. The conclusion is that at higher
levels this influence is stronger. Examples in figures 11e
and 11f show the weaker influence of the misconception
attribute and instance nodes on the L’s evaluation.

Parameter Constant Value
R2 f 1
R2 R2min 0.5
R3 Lmin 1
R3 Lmax 7
R3 R3min 0.9
R3 R3max 0.99
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9. Conclusions

The ontology-based task for classification construct-
ing is performed by the student in a way closer to the
author’s one. Metrics for computation of several pedagogi-
cal parameters are proposed for both author’s and student’s
performances. These parameters can be useful for compari-

son of the classifications of different authors, controlling
the step execution of the student’s plan, setting up the goal
of a lecture course, generation of a more realistic individual
plan and its correction during execution.

TOECC has a well-organized, structurally correct and
compact homogeneous knowledge base, task base includ-
ing generated subtasks for the student’s misconceptions
remedial. The precise and sensible evaluation of the
student’s performance relatively to the author’s one is pre-
cise and sensible, and takes into account a set of param-
eters. The instructor is involved not only in exercise moni-
toring, but in setting the input parameters, and analyzing
the results of the student’s task and exercise performance.

The tool prototype is subject-independent and re-
quires elementary computer competency from the author.
The classifications storage in a text file separated from
other knowledge units allows their coauthoring, reusing as
well as and integration in a web-based environment for
lecturing.
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