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Abstract. This paper describes the main problems, connected with
realization of the Fast Fourier Transform (FFT) algorithm on a radix_
2 parallel architecture, suitabre for implementation oi rieu programmable
gate arrays (FPGA) and based on the perlect shuffle inteiconnection
pattern. Peiormance estimation and resource utilization analisis arepresented. The main advantages and possibte applications of theproposed architecture are ouilined.

1. Introduction
The discovery of the Fast Fourier Transform (FFi) algorithm

by cooley and Tukey [1] in I  g65 is a key point in the develop-
ment of digital algori thms and paral lel calculat ions. FFT plays
significant role in several important scientific and technical areas
as solving of partial differential equations, spectral analysis,
digital signal processing, communication, etc.

As we kn'w, parailerism is an intrinsic feature of FFf.
Parallel realizations of FFI algorithm have been implemented on
almost all high-performance parallel computer architectures -
vector computers, systolic arrays, transputer systems, process0r
meshes with different organization, etc. The main approach of
these real izat ions is the optimal mapping of the algori thm on the
concrete architecture. Leading factors in this process are effi_
ciency, performance and scalability [7]. switching and routing of
data between many process'rs (processor erements - pE), ,,
well as memory conflicts, are the basic problems connected with
the FFT parallel realization.

since the paper of coorey and Tukey [1] a rarge number
of FFI algorithms were developed. Among them itre raox-2, radix-
4, split-radix and FHT (Fast Hartley Transform) are the mostly
used algori thms for practical appl icat ions. Nowadays, modern
investigations in paraller Fff algorithms and architectures are
concentrated over the solution of two main problems:

. Fast Poisson solvers.

. Fast FFT processors for real-time digital applications.
Fast Poisson sorvers, based on FFT, are considered to be

among the fastest techniks for solution of the poisson equation
on unidorm grids.

2. Fast FFT Processors
conventional FFI hardware architectures include trade_offs

among complexity, power consumption, die size, and other such
parameters. However, these architectures do not have the
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scalability to meet the high speed demands of the FFT process-
or for the emerging high data rate wireless technologies in
communication (0FDM - based technologies l ike ADSL, VDSL
etc.),  high-speed, FFI--based 2D image processing, etc.,  0e_
manding higher speed FFT processors.

Advance in technologies enables development of archi-
tectures, optimal for a given class of algori thms, including FFT
Recently there have been dedicated considerable efforts for
FPGA-based parallel realizations of algorithms of this crass.
FPGA provide highly improved performance and capacity, a
number of integrated special ized functions (embedded mult ipl i-
ers, distr ibuted and block RAMs, special ized DSp sl ices, etc.),
as well  as f lexibi l i ty, shorter design cycles and lower develop-
ment costs. The design process is shortened and faci l i tated
also by the usage of high-level languages for hardware descrio-
t ion as Veri log, VHDL, etc.

VHDL p'ssesses some advantages, important for the
design, simulat ion and test ing of complex systems. l t  is a
universal tool for descript ion, covering almost al l  development
stages - programming, simulat ion, veri f icat ion, synthesis and
documentation. l t  permits the design and simulat ion of single-
layer and multilayer structures, providing the possibility for
arbitrary level of detailing, as well as the parameterization of
any type of characteristics.

Generally, there are three main ways of improving the FFT
speed, all of which based on the Transpose algorithm:

1' Increasing the order of the radix. This approach im-
proves both latency and throughput, but is cosily in terms of
computational resource required for each processing element.

2. cascading (piperining) the pr.cess'rs. Different pro-
cessors operate over different stages, cascading improves
throughput, but not latency. Interstage memory is necessary.

3. Paral lel l ing the process0rs, so that a single rarge FFT
is divided into N smaller FFfs. Both latency and throughput are
rmproved with this arrangement, Drawback is the data transfer
between stages.

A dif ferent approach is appl ied by Zhenyu Liu et. al.  [11],proposing an Array processing architecture for parallel FFI-
implernentation. Main advantage of this architecture is the
elimination of inter stage data transfer, so both the system
throughput and latency are improved.

It  is known that the indirect binary hypercube [4, B]
architecture seams to be one of the most appropriat, arihitrc-
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tures for FFT parallel implementation.
In 1995 Macceo et. al. [B] mapped the butterfly diagram

on an indirect binary hypercube. In the proposed algorithm how-
ever, the workload was unevenly distributed among the different
processing units, which lead to decrease in efficiency.

Ihe Array processing architecture, mentioned above, owes
its notable characteristics to the fact that it contains in a hidden
form an indirect binary hypercube. This hidden form however
hampers significantly the formulation of general rules, concern-
ing memory addressing and operation, as well as organization
and addressing of the tables containing the twiddle factors. These
rules are necessary for the formulation of a general algorithm for
implementation of FFT on this architecture.

This paper represents continuation of the research, done
in [1a] and [15]. There, on the basis of detai led analysis of the
FFI flow of data performed with the herp of multistage intercon-
nection networks (MlN, Omega network) is proposed a parallel
architecture for 1-D, radix-z FFI- with indirect hypercube topology
and suitable for FPGA implementation. Formulated are also
general rules concerning memory addressing and operation, as
well as organization and addressing of the tables containinq the
twiddle factors (CLUT).

3. The Architecture
3 .1 .  Genera l
Fil (lFfD are algorithms, implementing the direct and

inverse discrete Fourier transforms (DFI, lDFl-) which are defined
as follows [2]:

N - l

(1) fG) - Ia(n)w'",
n=0

r  N- l
A(n)=* I  f (k)y7-kn

" k=0
where W is the main N-th root of the one, N=2',
Let N = 2n, [  = f l ,  + nr, 1 < n1 < n _ 1.
ln this paper, we examine the FpGA implementation of this

architecture with the following features [15]:
. A set (2'1) of processor elements (pE) is connected to

a set of dual-port memories (DM) with direct access for reading
and/or writing, perlorming N-point FFI-,

o Everv PE is connected to one DM for reading through the
two ports, thus forming a processor block (pB), and with two DMs
(from the same or another pB), for writing through one of the DM
ports.

. PBs are connected in perfect shuffle manner, thus form-
ing an indirect hypercube topology.

. Interconnection between pBs - perfect shuffle intercon-
nection pattern - is based on coincidence of pB input and output
identifiers.

. PB input identifier (a binary number) includes the input
number (0 or 1) as most signif icant digit ,  fol lowed by the pB
number.

' PB output identifier (a binary number) incrudes the pB

number as most significant part, followed by the output number
(0 or 1) as least signif icant digit .

o EverV PE contains a look-up table memory (CLUT) for
the necessary coefficients (twiddle factors), the necessary reg-
ister structures and arithmetic and control units.

o Addressing patterns of DMs and CLUTs are derived
from the scalar case (1 PE), and are based on the left cyclic
rotation of the local indentifier [15].

. Tightly coupled system, operating synchronously, con_
trolled by a main control unit (MCU).

. Uniform control for the different PE/DM - realization of
SIMD paradigm.

0n figure 7 is presented the block diagram of architecture,
consist ing of four PBs,

3.2. Prel iminary Notes
Different types of organization can be considered for this

architecture (in fact class of architectures). possible are 1-
phase, 2-phase and 3-phase architectures.

The 1-phase architecture performs the 3 phases (data
input, data transform and data output) sequentially. The 2-pnase
architecture performs the transform phase simultaneously with
one of the other phases (data input or data output). The 3-phase
architecture, fufther refened as streaming architecture, provides
simultaneous execution of the three mentioned phases.

The most popular strategies for treating the overflow prob-
lem are:

. Ful l-precision unscaled ari thmetic.

. Scaled fixed-point, where the user provides the scaling
schedule.

. Block floating-point.
Full-precision unscaled arithmetic is applicable for small

number of points (N) because the size of output and interme-
diate busses grows very rapidly with the growth of N. The width
of the output will be the input width + number of stages + 1 [1 6].

Scaled fixed point has the two following disadvantages:
. Analysis of input data for prescaling before each stage

(or couple of stages).
. Possibility for occurrence of overflow or loss of accu-

racy, when prescaling is not relevant.
Block floating point provides automatic scaling every stage,

but sometimes, for parallel structures, is very arduous for imple-
mentation.

For the architecture under discussion, the block f loating
point alternative is possible and not so difficult for implemen-
tation, so it is chosed to be the strategy to deal with the overflow
problem.

3.3. General Structure and Topology.
The generated architecture includes the following units:
1. Processor blocks,
2.Ffl  control unit  (FFICU).
3, Data flow control unit (DFCU).
4. Input/output btock (t0B).
5. Block exponent control unit  (BECU).

The basic building block of this architecture is the proces-
sor block (PB). PB for the 1-phase architecture includes one
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processor element (PE) operating as butterfly unit and two DMs.
For a given stage of the FFT transform one of these two DMs is
used by PE as source of 'data for the current butterfly operations
and the other DM is used for storing the results of the current
b0ttedly operations of other PBs (two), which are connected with
the given PB, DMs alternatively change their role on stage basis.
For the multi-phase architectures, every new phase requires one
DM more per PB. 0n figure 2is presented the PB block diagram
for 1 -phase architecture.

PE is realized as a 7-stage linear pipeline. lt computes
radix-2 butterflies and yields a result every cycle. Input data, as
well as intermediate results are presented in fixed point, 2's
complement format. Twiddle factors (unique for different pEs)
are held in CLUTs. From coefficients viewpoint, the stages are
divided into two classes: low stages and high stages. Low
stages are the first n, stages. High stages are the remaining n,
stages. For the low stages every PE needs one coefficient pair
(e.9. srnx and cox) per stage. For the high stages every pE
needs totally 2n11 coefficient pairs. The set of coefficients for the
high stages of given PE includes all the coefficients, whose
arguments have, as most significant digits of their binary pre-
sentation, the bit reversed number of PB.

Two variants of complex multiplication are possible -
standard (4 multiplications/2 additions) and nonstandard (3
multiplications/5 additions), DIT (decimation-in-time) or DIF (deci-
mation-in-frequency) methods can be used for FFT computation
(fonruard and inverse).

Very suitable for DMs are the dual-port block memories,
provided by Xilinx in their FPGA.

The Input/Output block (l0B) performs l/0 functions - the
input and output of frames of points. Input is in natural order.
0utput can be in natural or bit-reversed order.

FFI control unit provides the necessary control information
for PBs - synchronization of the arithmetic pipelines, addresses
for DMs and CLUTs, etc.

DM addressing is in accordance with the perfect shuffle
method. Generated are four address sequences for DMs - two
read address and two write address sequences. The algorithms
for generation of these address sequences are simirar to the
respective algorithms in the scalar case (one pB) -left/right
cyclic rotation of store address sequences for the case of natu-
rallbit reversed input ordering of initial data. The addresses of
the low pafts of cLUTs follow the stage number. The argorithm
for generation of the address sequence for the high parts of
cLUTs is similar to the respective algorithm in the scalar case.

. FFT control is performed on SIMD paradigm - the control
information (PE pipeline control, DM addresses and CLUT ad-
dresses) is the same for all pBs.

DFCU controls and synchronizes the data flows for the
different phases - data input, transform and data output.

4. System Generation
4.1.  General
The main parameters, specifying the system generation

and operational characteristics of pE, DM and CLUT are:
o n - exponent, specifying the maximum number of points

in one dimension (N = 2'). This parameter specifies the total

memory capacity of DMs.
. fl, exponent, specifying the number of PBs (NPB = 2'1).
. Data width/twiddle factors width - typically 16+24 fixed

point, 2's complement format;
. Output - natural/bit reversed order.
.  Number of phases - 1, 2 or 3-phase architecture,
VHDL possesses excellent features for parameterized

generation -the generb option, by means of which parameters
can be specified and passed to lower layers of the architecture,
as well as the generate operator, which enables parametric
generation of structures.

Figure 1. A 4PB architecture

The generafe operator is used for generation of the nec-
essary number of PB (NPB). Data busses of two types are also
generated - PEBUS and PBBUS. PEBUSes are the internal
busses for PBs. PBBUSes are used for interconnection between
PBs. There exist totally 2.NPB PBBUSes. Every pB uses 4 pBBUSes
- 2tor data input and 2 for data output. Assignment of pBBUSes
to PBs and interconnection between PBs according to the perfect
shuffle rule is accomplished as follows:

1. To the input ports (0 and 1)' of pB(i) are attached
PBBUS(i) and PBBUS(| + NPB).

2. To the output ports (0 and 1) of pB(i) are attached
PBBUS(2* i )  and PBBUS(2* i  +1) .

Generation of unique private CLUTs is accomplished with
the.help of the PB identifier, which is passed as parameter by
means of the generic function. All constants, data types and
functions, necessary for the system generation are incruded in
a special VHDL package, thus improving the transparency and
readability of the program.

, All phases of implementation (synthesis, simulation, map-
ping, placing, routing and programming) have been realized with
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Figure 2.

the help of the free product of Xilinx Corporation - Webpack ISE-
- 9 . 1 i

5. lmplementation Results
All three types (1, 2 and 3-phase) of architectures have

been implemented on Xilinx FPGA (Spartan3, Vir-tex 2,4 and 5)
for different input parameters.

5.1.  Per formance
System latency (L) and throughput (T) are as follows:

L = f l .  (Znz-t + p,). t . ,n ;
T = N . L - l  , w h e r e
P, is the pipeline length - 7 cycles, t.,* is the system

clock.
For optimal util ization of the proposed hardware, s0me

relations between l/0 speed and transform speed should be
regarded. Let T, To and T, be the input, output and transform
time in cycles. Assuming that T = To = N,t. ,n, we see that, for
the 3-phase architecture, we have no gain if we make Tt <<
N.t,*.  This results in the fol lowing relat ion:

Pmax = nlZ, where
Pmax is the maximum number of pEs, for which we have

Tt > Ti.
0ne way to avoid this restriction is to provide multichannel

input/output [16]
When necessary, for large one-dimensional or mult idi-

mensional FFTs, such systems can be cascaded, thus increas-
ing the throughput, respectively performance of the whole sys-
tem.

All  implementations show operational frequencies, which
are typical for the 0ne-processor configuration, implemented on
the respective device.

5.2.  Resource Ut i l izat ion
Resource utilization is a linear function of all input param-

' . 1
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Processor block

eters. In detai ls, we have the fol lowing dependences:
1. FFTCU, DFCU and l0B resources in practice are very

slightly dependent from input parameters (with the exception of
bus width for l0B).

2. Total DM capacity is a linear function of N and the phase
type (1, 2 or 3-phase architecture), and does not depend on NpB.
Configuring DMs as quad-porl memories (0M) we can have
some gain in DMs (1 , 2 or 3 QMs per PB wil l  be necessary for
the 1-, 2- and 3-phase architecture respectively). Configurin! a
DM as a 0M is at the expense of lowering its operational fre-
quency twice, which results in lowering the operational fre-
quency of the whole system,

3. Total capacity of CLUTs in practice is also a linear
function of N and is very slighily dependent on Npts.

4. BECU res0urces are a l inear function of NpB.
5.Other recourses of PB - ari thmetic units, data busses,

etc. - are l inear functions of the bus width and do not depend
on NPB.

We can make the conclusion, that, in order to real ize an
optimal version of this architecture it is sufficient to get an
optimized version of 1-processor architecture (which is already
not a problem) and make it a multiprocess0r architecture.

6. Conclusions
The described system provides the following advantages:
r Parametric generation and utilization in a wide opera-

tional range of input parameters,
. The utilization of distributed shared dual-portmemories,

as well as their connection with the processor elements accord-
ing to the perfect shutfle rule, solves efficienily the two basic
problems - switching of intermediate data between processors,
and memory confl icts.

. The butterJlyiperfect shuffle methods and algorithms for
DM addressing and CLUT generation and addressing, which are
val id for the scalar case, are also val id and easiV implemented

Processor block
For 1-phase
architectureD M A

write
read

Processor element
7-stage p ipel ine

D M B
read
wri te
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in the general,  paral lel  case.
. Uniform control for the different PBs - realization of

SIMD architecture.
o Theoretically, the architecture allows unlimited scalability,

depending in practice only on the FPGA capabilities,
. System pedormance is a linear function (increasing) of

the number of PB.
. 0ptimal resource utilization which is a linear function of

all input parameters.
. 0ptimization of the parallel system, based on the opti-

mization of the scalar system.
. 0perating frequencies, typical for one-process0r con-

figurations.
. lmplementation of block{loating point provides efficient

strategy for treating the overflow problem.
. Cascading of systems is possible for FFTs (one-dimen-

sional or multidimensional) with large number of points.
. The system can be used as a separate application, or

can be embedded easily in more complex digital systems.
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