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Bi-level  Optimization  for  Portfolio
Modelling
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Abstract. The optimal resource allocation of sets of securities,
available in the financial market can be done by solving a multi-
criterion optimization task, aimed at maximization of portfolio
return and minimization of portfolio risk. Here is proposed the
utilization of hierarchical coordination for solving the bi-level
optimization problem, which formalizes the investment process.
A two-level hierarchical approach for solving the portfolio opti-
mization problem is applied where the optimal Sharp ratio of risk
versus return is solved at the upper level and as a result is
determined by the investor’s preferences for taking risk on the
basis of objective considerations. The optimal portfolio is evalu-
ated at the lower level.

Introduction

The problem of portfolio optimization targets the op-
timal resource allocation in the investment process [12]. The
resource allocation is made by investing capital in financial
assets (or goods), which give return to the investor after a
period of time. For the investment process the target is to
maximize the return while the investment risk has to be
minimal [2,6,7,8,10,11]. The risk is equivalent to uncertainty.
The term “risk” reflects the undetermined and non-predict-
able future. The minimization of financial risk is with high
priority during the investment and that is why the statistics
and probability modelling are interested in it. The financial
risk is always related with the portfolio management [20].
The difficulties of predicting the financial risk are related to
the market behaviour, based on continuous dynamical
changes. The investment models are based on mathematical
analytical tools, which formalize both the behavior of the
market players and future events in financial markets. In
order to formalize the investment process, financial resource
allocation has to be done. This requires a market analysis,
which usually uses predefined assumptions. Usually, such
assumptions concern uncertainty in ideal mathematical
behaviour, constant and not changing environment influ-
ences.

In portfolio theory the decision maker makes deci-
sions taking into account the risk of the investment. The
portfolio optimization models are based mainly on probabil-
ity theory. However, the probabilistic approach is not able
to formalize the real market behaviour. Another uncertainty
modeling approach of the financial market is the fuzzy set
theory [4].

An essential contribution for the finance modelling
and especially for risk assessment is the work of Markowitz
[9] which concerns the individual investor. This theory is

based on both optimization and probability theory. The
investor’s goal is to maximize the return and to minimize the
risk of the investment decisions. The investor’s return is
formalized as the mean value of a random behaved function
of the portfolio securities returns. The risk is formalized as
a variance of these portfolio securities. The portfolio mod-
elling is formalized by the above mathematical representa-
tions of return and risk which define the portfolio optimi-
zation problem.  The portfolio solution depends on the level
of risk which investor can bear in comparison with the level
of portfolio return. Thus, for the practical utilization of the
portfolio theory, the relation between return and risk is the
main parameter for the investor. The portfolio risk is mini-
mized according to two types of arguments: the portfolio
content and the parameter of the investor’s risk preference.
The market risk, which results in different values of the
variances of the average return, is under consideration in
the paper. The market risk is defined as a risk to the finan-
cial portfolio, related to the dynamic changes of the market
prices of equity, foreign exchange rates, interest rates,
commodity prices [3]. The financial firms generally take a
market risk to receive profits. Particularly, they try to   take
a risk they intend to have and they actively manage the
market risk.

Usually, the investment decision-making process is
done by investors’ subjective assumptions about the the
relationship between portfolio risk andreturn. In this paper
decreasing the subjective influence in the investment pro-
cess is proposed. This is achieved by calculating the un-
known investor’s coefficient for undertaking risk based on
the optimization problem. A bi-level optimization problem
based on a hierarchical system’s modelling formalizes the
portfolio investment. The parameter of the investor’s risk
preference is evaluated at the upper level. After that, this
parameter is used for optimal resource allocation of the
portfolio optimization problem by minimizing risk and maxi-
mizing return. In that manner, the process of portfolio re-
source allocation is performed without subjective influence.

Portfolio Optimization Problem

The portfolio theory is developed to support decision
making for investment allocation of financial assets selling
(securities, bounds) at the stock exchange [1]. This alloca-
tion is known as “investment” decision making. The inves-
tor considers the asset as a matter of future income. The
better combination of financial assets (securities) of the
portfolio leads to better return for the investor. The port-
folio contains a set of securities. The problem of portfolio
optimization targets the optimal resource allocation in in-
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vestment process of trading financial assets [12]. The re-
source allocation means investing capital in financial assets
(or goods), which gives return to the investor after a period
of time. For the investment process the target is to maximize
the return while the investment risk has to be minimal [11].
Harry Markowitz suggested a powerful approach for quan-
tifying the risk in 1952. The analytical relations among the
portfolio risk Vp, portfolio return Ep and the values of the
investment per type of assets xi , according to the portfolio
theory,  are [12]
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Ei  – is the average value of the return of asset i;
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T EEE ),...,( 1= – is a vector with dimension 1 x n;
cov(i,j) – is the co-variation coefficient between the

assets i and j.
The component Vp = xT cov(.) x formalizes the quanti-

tative assessment of the portfolio risk. The component

xEE T
p =  is the quantitative evaluation of the portfolio

return. The portfolio problem solutions xi, i = 1,n  determine
the relative amounts of the investment per security i.

The co-variation is calculated from previously avail-
able statistical data for the returns of assets i and j and it
represents a symmetrical matrix
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profit of assets   i and j   for discrete  time moments  (1),
(2),…, (N). The co-variation coefficient between assets i
and j is calculated like
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are the average profits of assets i and j for the period
],....,2,1[ NT = . The portfolio theory defines the so called

“standard” optimization problem  [12] by:
(1) min [    xT cov(.) x – σETx],

   xT.1 = 1 ,
where

cov(.) – a symmetric positively defined square
matrix n x n,

E – (n x 1) vector of the average profits of the assets
for the period of time  T = [1,2, .... , N];

1 = |1 ... |T – unity vector, n × 1;
σ – is a parameter of the investor’s preferences to

undertake risk in the investment process.
The constraint is equivalent to the equation

x1 + x2 + ... + xn = 1, which formalizes the fact that the
investment is not partly implemented or the full amount of
the resources are devoted to the investments. If the right
side of the constraint is less than 1, this means that all
amounts of the investments are not effectively used. The
investment per different assets has to be performed for the
total amount of the available investment resources, numeri-
cally presented as relative value of 1. The solutions
xi , i=1,n give the relative values of the investment, which
are allocated for the assets  i,  i=1,n.

The component of the goal function Vp = xT cov(.) x  is
the quantitative assessment of the portfolio risk. The com-
ponent Ep = ET x is the quantitative value of the portfolio
return. The goal function of problem (1) targets the minimi-
zation of the portfolio risk Vp and maximization of its return
Ep. The parameter  σ  belongs to the range   [0, + ∞] and
formalizes the investor’s tendency to undertake risk. For
σ = 0 the investor is very cautious (even cowardly) and his
general task is to decrease the risk of the investment,
min[xT cov(.)x]. For σ = + ∞  the investor is far-away from

the risk in the investments. His target is to obtain a maxi-
mum return from the investment. For that case the relative
weight of the return in the goal function is most weighted,
and then the optimization problem has an analytical form:
min[–σET x] ≡ max[ET x] .

Thus, in the portfolio problem the unknown parameter
σ is presented, which assesses the investor’s preferences
for undertaking risk in decision making. This parameter
influences the portfolio problem, making it a parametric one.
Respectively, for a new value of σ, the portfolio problem (1)
has to be solved again. In the trivial case when σ is not
properly estimated, the optimization problem has to be solved
for a set of σ.  The values σ introduce strong subjective
influence to the solutions of the portfolio problem. Addi-
tionally, for practical reasons, the portfolio problem has to
be solved multiple times with a set of values for the coef-
ficient of the investor’s preferences σ to undertake risk. The
complexity of solution of (1) and estimation of σ is an
obstacle for real-time investment applications.

The numerical assessment of σ is a task of the finan-
cial analyzer and it has subjective meaning. This coefficient
strongly influences the definition and respectively the so-
lutions of the portfolio problem. Respectively, σ changes
the final investment decision as well.
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The assessment of the portfolio characteristics is found
as combinations of admissible assets in the space risk-
return Vp=Vp(Ep). The investor has to choose the optimal
portfolio from the upper set of admissible solutions named
“efficiency frontier”. The “efficiency frontier” is found with
difficulty and slowly. Each point from this curve is found
after solving the portfolio optimization problem with differ-
ent values of σ.  The “efficient frontier” is evaluated point
after point according to iterative numerical procedure:

1. Choice of initial value of σ for the investor’s pref-
erences. A good starting point is σ = 0. It corresponds to
the case of investor who is not keen in risky decisions;

2. The portfolio problem is solved with the chosen σ

 ]
2
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x
+

xT×1 = 1
and the optimal solution  x(σ) is found.

3. Evaluation of  portfolio risk and portfolio return:
 Vp - x

T (σ)cov(.)xT(σ), Ep  = ETx(σ).
These values give a point into the space Vp = Vp(Ep),

which belongs to the efficient frontier;
4.  New value  σnew=σold+Δ  is chosen, where   Δ  is

determined by considerations for completeness in moving
into the set   s = [0,+∞]. Jump to point 2.

Hence, for each solution of the portfolio optimization
problem one point of space  Vp = Vp(Ep), belonging to the
curve of the efficient frontier is found, figure 1. Problem (1)
is solved with number of values of σ. A set of solutions x(σ)
is found while the best value of σ* for that investor is
empirically estimated and the optimal portfolio solution  x(σ*)
is determined.

Such an approach, however, causes a contradiction
between the manner of quantitative definition of problem (1)
and the final decision for the investment. According to the
portfolio theory the value of σ* has to be determined before
solution of the problem. However, σ* is estimated after

evaluation of number of portfolio problems (1) with different
values of σ, determined by the investor. In other words,
evaluation of σ* is by subjective manner.

The model, developed here, ignores the subjective
influence during evaluation and assessment of the param-
eter of investor’s preference to risk σ. The decision making
process is formalized by two hierarchically interconnected
optimization problems, figure 2. σ is determined by solution
of optimization problem at the upper hierarchical level. This
problem is defined without subjective considerations. For
example, this optimization problem can aim evaluating of σ,
which leads to a good ratio between the portfolio risk and

return.
At the lower hierarchical level the standard portfolio

optimization problem is solved using σ, estimated from the
optimization problem at the upper level.

Hierarchical Bi-level Optimization
Problem

Typical for the bi-level optimization problems is that
the solution to an optimization problem at the upper influ-
ence the lower level optimization problems. The lower level
solutions define on their turn a set of parameters for the
upper level problem. Because of the interrelation between
the upper and lower level optimization problems by their
solutions, the exact form of the optimization problems can-
not be defined.  This complexity of the related bi-level
optimization problems is solved by numerical iterative cal-
culations of both problems (at the lower and upper hierar-
chical levels) until reaching the optimal solutions.

The general bi-level hierarchical optimization problem
is based on the formulation of the Stackelberg game [16].
The Stackelberg problem can be interpreted as a game
between two players, each of them making decisions
[13,14,15]. The decisions of the leader (upper level problem)
answer the questions: which is the best strategy for the
leader, if he knows the goal function and the constraints of
the follower (lower level problem) and how the leader has
to choose his next decisions? When the leader evaluates
his decisions, the follower chooses his own strategy for
decision making for minimization of his goal function. Re-
spectively, the follower solves the appropriate optimization
problem. Usually, both problems are nonlinear optimization
problems from mathematical programming. Due to method-
ological difficulties for the solution of hierarchically inter-
connected optimization problems, today the classical appli-
cation of the portfolio theory lacks in solving bi-level op-
timization problems. Currently, the portfolio problem is
solved by quantitative assessment of σ* in advance, with-
out applying interconnected hierarchical optimization. The
value of σ* is estimated intuitively or empirically by an
expert. Here, for the solution of the bi-level portfolio prob-
lem we apply a methodology, derived as non-iterative co-
ordination [17,19].  The methodology for non-iterative co-
ordination in hierarchical systems defines analytical ap-

Vp 

Efficient frontier Ep 

Figure 1. Efficient frontier of the portfolio optimization

Figure 2. Bi-level portfolio optimization problem

Problem for σ
determination

Standard portfolio
optimization problem

σ x(σ)
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proximations of the inexplicit function, used by the upper
and lower optimization problems.  In that manner, analytical
relations between the investor’s preferences for the risk σ
and the solutions xi are derived [18]. Such relations support
fast solution of the bi-level problem and respectively allow
real time decision making.  The upper level problem is de-
fined with a goal function, which minimizes the Sharp ratio:
portfolio risk versus portfolio return. The argument of this
optimization problem is the investor’s preferences for taking
risk σ. Applying the non-iterative methodology [17,19], ana-
lytical relations between the portfolio problem’s parameters
Ep, Vp , the portfolio solutions xi and the parameter of the
investor’s preference σ are derived. These relations allow
speeding up the decision making process and the invest-
ment decisions can be done in real time.

Portfolio Bi-level Problem’s Solution

The initial problem (1) has solutions xi , which have
to be described as analytical functions of σ parameter. For
that case the initial problem (1) is rewritten in the form

(2) 
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x
+

Ax = C,
where the correspondence between (1) and  (2)  is:

Q=cov(.),  R=-σE, A=1, C=1.
If σ is known, problem (1) has a solution, denoted like

x(σ). For the case when  varies, the solution of the portfolio
problem x is an inexplicit analytical function of σ, or  x=x(σ).

Respectively, the portfolio risk
Vp(σ) = xT(σ)cov(.)x(σ)
and the portfolio return
Ep(σ) = ETx(σ)
are also inexplicit functions of σ.
Problem (2) can be solved, applying the method of the

non-iterative coordination, which gives possibility to be
derived approximations of the inexplicit analytical relations
of the portfolio parameters Vp(σ), Ep(σ), x(σ) towards the
argument σ. Using results from [19], the analytical solution
of problem (2) is

(3)   )]()([ 1111 CRAQAAQARQx TTopt +−−= −−−− .

Using this relation, the analytical descriptions of the
portfolio risk and return become
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After several transformations it follows
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The analytical relation of the portfolio return is ob-
tained as a linear relation towards xopt  or
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Finally, it holds

(4)   [ ] CAAQCRQAAAQARQRV TTTTT
p

111111 )()( −−−−−− +−=
(5) Ep = – RTQ-1[R – AT(AQ-1AT)-1AQ-1R]+
          + RTQ-1AT(AQ-1AT)-1C.
Relations (4) and (5) can be expressed in terms of the

initial portfolio problem (1). Thus, explicit analytical rela-
tions for the portfolio risk Vp, portfolio return Ep and the
optimal solution of the portfolio problem  xopt are derived
towards the coefficient of the investor’s risk preference σ.
For the current problem (1), taking into account the corre-
spondence between problems (1) and (2), it follows
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The following notations are used to simplify the ex-

pressions
(9)   [ ]EAQAAQAEQE TTT 1111 )( −−−− −=α
      CAAQC TT 11 )( −−=β
      CAAQAQE TTT 111 )( −−−=γ ,

where the parameters  α,  β  and γ   are scalars. Respec-
tively, relations (7) and (8) become

    Vp(σ) = ασ2 + β,
(10)  Ep(σ) = ασ + γ.
The derived relations (6), (7), (8) and (9) describe in

analytically explicit form the functional relations between
the portfolio parameters for risk, return and optimal solution
towards the coefficient of the investor’s preferences to risk
σ. Hence, the solution of the portfolio problem (1) is calcu-
lated using relations (6)-(8) without implementation of op-
timization algorithms for the solution of the low level opti-
mization problem. This considerably speeds up the problem
solution of (1). Hence, the portfolio optimization problem
can be solved in real time, with lack of iterative calculations,
which benefits the decision making in fast dynamical envi-
ronment of stock exchange.

On the upper optimization level it is necessary to be
evaluated σ – the parameter of investor’s preferences, un-
der which the better (minimal) value of the relation Risk/
Return for the optimal portfolio is achieved. This relation is
known as Sharp ratio. The problem for the evaluation of σ
in formal way is stated like
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According to relation (10) the analytical form of the
problem is
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This problem evaluates the parameter of the investor’s
preferences σ  according to objective considerations. Thus,
the portfolio optimization problem is stated like a bi-level
optimization procedure, figure 2. The advantage for the
evaluation of  σ  comes from the fact that the estimation of
σ is done overcoming the subjective influences of the in-
vestor, and it is found from a real optimization problem.

The solution  σopt of such a problem is found accord-
ing to the relations
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For the particular case when C is a digital number
(C=1 for relative assessment of the investment), it holds
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This relation gives analytical way of calculation of the
optimal parameter for risk preferences of the investor. For
that reason the solution of the upper level optimization
problem is reduced to analytical relation (13), applied for the
calculation of σopt.

Bi-level Optimization Example

An illustration of the solution of a set of bi-level
optimization problems is given below. A set of optimization
problems is defined with a maximal amount of 21 securities,
traded at the Bulgarian stock exchange, n=21 for 12 months
(2011). The portfolio optimization problem has been defined
and solved with 21 securities by two manners: using
MATLAB – function QP and by non-iterative coordination.
The matrices for the portfolio problem  2121| xQ  and  121| xE  are
defined according to the Bulgarian stock’s exchange data
as follows:

Q21=[0.0540    0.0205    0.0988    0.0970    0.1136    0.0065    0.0734    0.0906    0.1440    0.1224     
   0.1196   -0.3193    0.3684    0.1213    0.1943    0.1576    0.1296    0.0705    0.0463    0.0371    0.2702; 

   0.0205    0.1116    0.0983    0.0454    0.0886    0.0056    0.0505   0.1002    0.0558    0.1306 
   0.1207   -0.1589    0.0702    0.0231    0.0209    0.1435    0.1211    0.8968    0.0200    0.0111    0.0906; 

  0.0988    0.0983    0.3913    0.2086    0.2722    0.0150    0.1706   0.2424    0.3216    0.3213 
   0.2084   -0.8076    0.8072    0.2308    0.3890    0.3982    0.3248    0.7874    0.1028    0.0802    0.5857; 

   0.0970    0.0454    0.2086    0.2407    0.2465    0.0141    0.1643    0.2019    0.3105    0.2679 
   0.2724   -0.6105    0.8744    0.2304    0.4407    0.3469    0.2816   -0.0198    0.1033    0.0861    0.5885; 

   0.1136    0.0886    0.2722    0.2465    0.3209    0.0184    0.1968    0.2550    0.3662    0.3450 
   0.3322   -0.8360    0.8724    0.3035    0.4750    0.4347    0.3622    0.6320    0.1181    0.0918    0.6871; 

   0.0065    0.0056    0.0150    0.0141    0.0184    0.0112    0.0117    0.0149    0.0203    0.0204 
   0.0208   -0.0465    0.0479    0.0167    0.0269    0.0257    0.0218    0.0609    0.0066    0.0051    0.0393; 

   0.0734    0.0505    0.1706    0.1643    0.1968    0.0117    0.1374    0.1598    0.2315    0.2180     
   0.2162   -0.5025    0.5998    0.1952    0.3087    0.2773    0.2304    0.3660    0.0758    0.0603    0.4417; 

   0.0906    0.1002    0.2424    0.2019    0.2550    0.0149    0.1598    0.2429    0.3029    0.2974     
   0.2908   -0.7189    0.7113    0.1681    0.3790    0.3669    0.2983    0.5178    0.0984    0.0780    0.5420; 

  0.1440    0.0558    0.3216    0.3105    0.3662    0.0203    0.2315    0.3029    0.5194    0.3875     
   0.3746   -1.2041    1.1911    0.3475    0.6786    0.4987    0.4008   -0.3238    0.1601    0.1286    0.9098;  

  0.1224    0.1306    0.3213    0.2679    0.3450    0.0204    0.2180    0.2974    0.3875    0.4116     
   0.3896   -0.9008    0.9527    0.3177    0.4763    0.4973    0.4125    1.0202    0.1262    0.0970    0.7210; 

  0.1196    0.1207    0.2084    0.2724    0.3322    0.0208    0.2162   0.2908    0.3746    0.3896     
   0.5162   -0.8601    1.0153    0.2728    0.4710    0.4859    0.4003    1.0033    0.1243    0.1000    0.7031; 

 -0.3193   -0.1589   -0.8076   -0.6105   -0.8360   -0.0465   -0.5025  -0.7189   -1.2041   -0.9008   
 -0.8601    3.3829   -2.4404   -0.7374   -1.4687   -1.1375   -0.9112   -0.0726   -0.3619   -0.2811   -2.0580; 
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portfolio optimization problem with different values of the
parameter of the investor’s preferences to risk σ. After
drawing the efficient frontier, the optimal value of σ is
determined. In this paper following problem (11), it has been
calculated  σopt, as a solution of an upper level optimization
problem
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where x(σ) is an inexplicit function, defined by the solution
of the portfolio optimization problem (1) for different values
of σ, figure 7 and figure 8 . Problem (14) introduces an
objective criterion for the choice and estimation of the
coefficient of the investor’s preferences. While in the clas-
sical model of the portfolio optimization σ is chosen by the
financial analyzer, here sσ is determined by solving optimi-
zation problem (14).   The optimal value of σopt is calculated
using relation (13) and its numerical result here is 0.00016926.
It is seen on the graphics Risk-Return as a pink star – near
to 0, figure 7 and figure 8.

Figures 9 and 10 present the relation    for different
upper values of σ  - 30 and 90, respectively. These graphics
explicitly demonstrate the minimum towards σ of the ratio of
portfolio risk versus return. The corresponding value σopt is
found according to objective considerations, coming from
the upper level optimization problem for minimization of
Sharp ratio according to (15)

The target of the experiments is to evaluate the effi-
cient frontier for the optimization problem where sigma varies
from 0.001 to different upper levels (10, 30, 90) with incre-
ment of 0.1. Then, having the efficient frontier, the optimi-
zation procedure continues with finding that portfolio, which
has minimal Sharp ratio (risk versus return). For that case
the parameter of the investor’s preferences for risk σopt is
calculated, using relation (13).

The sequence of the solution of the portfolio problem
is the following:

1. Analytical definition of the portfolio problem (1)
with n=21;
2. Evaluation of the scalar values of the intermediate
parameters α(n), β(n), γ(n) from (9);
3. Starting the calculations of the efficient frontier with
initial value   σ*=0;
4. Evaluation of the portfolio parameters
Vp=Vp(σ*, α(n), β(n), γ(n), Ep=Ep(s*, α(n), β(n), γ(n)),
according to (10). Thus, one point from the efficient

frontier in the space risk/return  )( **
pp EV is found;

5. New value of the coefficient σ is chosen,
σ**=σ*+0.1. Jump to 4.
These steps are performed for different points of the

graphics  )( ppp EVV = depending on the upper bound of
σ. Relation Return – σ when σ varies with 0.1 from 0.001 to
30 and 90 is presented in figure 3 and figure 4, respectively.

Relation Risk – σ when σ varies with 0.1 from 0.001 to
30 and 90 is presented respectively in figure 5 and figure.6.

The efficient frontier Vp=Vp(Ep) in the classical case is
determined point after point after numerous solutions of the

 0.3684    0.0702    0.8072    0.8744    0.8724    0.0479    0.5998   0.7113    1.1911    0.9527     
  1.0153   -2.4404    3.7965    0.9576    1.6834    1.2574    0.9953   -0.9148    0.3931    0.3366    2.2460; 

 0.1213    0.0231    0.2308    0.2304    0.3035    0.0167    0.1952   0.1681    0.3475    0.3177     
 0.2728   -0.7374    0.9576    0.8309    0.3990    0.4141    0.3651    0.6550    0.1063    0.0654    0.7164; 

 0.1943    0.0209    0.3890    0.4407    0.4750    0.0269    0.3087   0.3790    0.6786    0.4763     
 0.4710   -1.4687    1.6834    0.3990    1.0035    0.6317    0.5072   -0.9903    0.2173    0.1832    1.2448; 

 0.1576    0.1435    0.3982    0.3469    0.4347    0.0257    0.2773   0.3669    0.4987    0.4973     
 0.4859   -1.1375    1.2574    0.4141    0.6317    0.6321    0.5159    1.1086    0.1625    0.1267    0.9361; 

 0.1296    0.1211    0.3248    0.2816    0.3622    0.0218    0.2304   0.2983    0.4008    0.4125     
 0.4003   -0.9112    0.9953    0.3651    0.5072    0.5159    0.4434    1.1399    0.1307    0.1003    0.7665; 

 0.0705    0.8968    0.7874   -0.0198    0.6320    0.0609    0.3660   0.5178   -0.3238    1.0202     
 1.0033   -0.0726   -0.9148    0.6550    -0.9903    1.1086    1.1399   20.3171   -0.0831   -0.1369   -0.0672; 

 0.0463    0.0200    0.1028    0.1033    0.1181    0.0066    0.0758   0.0984    0.1601    0.1262     
 0.1243   -0.3619    0.3931    0.1063    0.2173    0.1625    0.1307   -0.0831    0.0612    0.0417    0.2896; 

 0.0371    0.0111    0.0802    0.0861    0.0918    0.0051    0.0603   0.0780    0.1286    0.0970     
 0.1000   -0.2811    0.3366    0.0654    0.1832    0.1267    0.1003   -0.1369    0.0417    0.0456    0.2333; 

 0.2702    0.0906    0.5857    0.5885    0.6871    0.0393    0.4417   0.5420    0.9098    0.7210    
 0.7031   -2.0580    2.2460    0.7164    1.2448    0.9361    0.7665   -0.0672    0.2896    0.2333    1.6988] 
 

 
 TE21  =[0.892;     6.2288;  3.2956;  1.2593;  3.8264;  1.3893;  1.2487;    2.6720;  2.6345;  2.7124; 

                  6.4636;  87.4296;  8.4614;  4.7423;  5.7003;  2.5624;  2.7413;  77.3678;  0.5254;  1.2075;   5.5153]; 
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Figure 5. Relation V(σ), σ = 0.001 – 30

Figure 3. Relation E(σ), σ=0.001 – 30

Figure 4. Relation E(σ), σ =0.001 – 90
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Figure 7. Relation Return-Risk σ=0.001 – 30

Figure 8. Relation Return-Risk σσσσσ=0.001 – 90

Figure 6. Relation V(σ), σ =0.001 – 90
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Thus, the argument σ is calculated as a solution of a
well-defined and consistent optimization problem. In com-
parison with the classical portfolio theory the value of σ  is
not assessed by subjective considerations of the financial
analyzer, which is an advantage of the bi-level portfolio
problem.

Following figures 9 and 10, it can be seen that σopt is
situated closed to the origin of the graphics and it has a
very small value. Hence, the graphical solution of the Sharp
problem (14) cannot be found. Thus, the analytical relation
(13), derived in the paper, provides advantages for the
optimal policy of investment and quantitative evaluation of

the portfolio arguments xi – investment shares per security
i and the coefficient of investor’s preferences σ. Hence, σ
is found as an argument of the portfolio problem instead of
a coefficient, which value is chosen subjectively by the
investor.

Conclusions

A bi-level optimization model of the portfolio problem
is presented in this paper. The classical solution of the
portfolio problem is by one level optimization. The portfolio
theory insists that the parameter for risk preference σ be
given in advance before solving the portfolio problem. The
parameter σ is chosen by the financial analyzer. The esti-
mation of σ is a source of subjective influence for the

Figure 9. Relation Risk- Return towards σ, σ = 0.001 – 10

Figure 10. Relation Risk- Return towards σ, σ = 0.001 – 90
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problem definition and optimal solution. Currently, the port-
folio problem is solved for a set of values of σ  as a means
to estimate the influence of σ for the problem solutions. In
this research the process of decision making is presented
as a two level optimization system. The upper level defines
the optimal value of the parameter of risk preferences of the
investor  σ by minimizing Sharp ratio (portfolio risk versus
portfolio return). The lower optimization level uses s and
solves the portfolio optimization problem. The bi-level for-
malism in a unique way defines the most appropriate value
of σ by optimizing the Sharp ratio. In that manner, the bi-
level formalism achieves two benefits: suppresses the sub-
jective assessment of the investor’s risk preferences and
calculates and applies the optimal value of σ by minimizing
the Sharp ratio. These two outcomes considerably improve
the bi-level definition of the portfolio problem in compari-
son with the classical one level optimization problem.

Additionally, this work develops and applies a special
method for solving the optimization problem, titled non-
iterative coordination.  It allows the explicit definition in an
analytical manner of the upper level optimization problem
for solving s and for eriving explicit analytical relations
between the portfolio problem solutions and σ, x(σ). These
relations speed up the optimal problem solution and the
definition of the efficient frontier of portfolios. Thus, the
decision making process can be performed in real time which
can respond to the fast and dynamic changes of the secu-
rity market while reducing the risk of investment.
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