
2 2013 29information technologies
and control

Investigation of the Indirect Hypercube
as Natural Architecture for Parallel
Algorithms of a Transpose Type for FFT
and other Fourier-Related Transforms
Key Words: Parallel FFT; parallel FHT; parallel real-valued FFT;
parallel FCT; indirect hypercube; high-performance computer archi-
tectures.

Abstract. The natural architectures are architectures, derived from
the signal graph of the corresponding algorithm. That is why they
are considered to be the most appropriate architectures for par-
allel realization of this algorithm. For Fast Fourier Transform
algorithm (FFT) two types of natural architectures are known –
the direct and the indirect hypercube. The direct hypercube has
been investigated and analyzed a long time ago. The development
of the concept of Indirect Hypercube, although quite old, is too
difficult, controversal and still unfinished. Fast Hartley transform
(FHT)/Real-valued Fast Fourier transform (RFFT) algorithms are
important Fourier-related transforms, because they lower twice the
operational and memory requirements when the input data is real-
valued. These types of algorithms, however, have an irregular
computational structure, which makes their parallel implementa-
tion a very difficult task. The aim of this paper is, based on the
results achieved so far, to present further development of the
concept Indirect Hypercube. A method of parametric synthesis of
an indirect hypercube is described as a model of parallel FFT
algorithms of a transpose type with different granularity/radix.
This method is generalized for relevant RFFT/FHT and FCT
algorithms. Two types of SIMD array architectures are described
(radix-2 and radix-4), based on the indirect hypercube concept.
These architectures are implemented as fast FFT/RFFT/FHT pro-
cessors for real time applications. The performance estimation, as
well as the estimation of resource utilization is carried out.

Introduction

Fast Fourier transform (FFT) is an efficient algorithm
to compute the discrete Fourier transform (DFT) and its
inverse. The discovery of this algorithm by Cooley and
Tukey [Cooley-1] in 1965 is a key point in the development
of digital algorithms and parallel calculations. FFT plays a
significant role in several important scientific and technical
areas, such as solving partial differential equations, spec-
tral analysis, digital signal processing, image processing,
etc. Hence, its impact over the development of high-perfor-
mance architectures and digital algorithms is large.

In many cases, from a performance viewpoint, parallel
implementation of these algorithms is necessary.

It is known that parallelism is an inherent feature of
FFT. The development of parallel FFT algorithms and their
implementation on different computing platforms began in
the early 70-ies of the XX-th century.

Parallel implementations of FFT have been made on
almost all high-performance parallel computer architectures
– vector computers, systolic arrays, transputer systems,
superscalar and VLIW processor architectures, processor
networks with different organization, etc. Considerable ef-
forts have been made in studies for the realization of FFT
on massive parallel architectures of processors, starting
with synchronous SIMD approaches, which later evolved
to MIMD asynchronous approaches.

Leading factors in this process are efficiency, perfor-
mance, latency and scalability.

Nowadays, the modern research in the field of parallel
FFT algorithms and architectures is concentrated in two
main trends.

The first trend, that can be conditionally called a
network trend, is developed for the goals and tasks of
computational mathematics, e.g. Fast Poisson Solvers, based
on FFT are considered to be among the fastest techniques
for solving the Poisson equation on uniform grids (grids).
This trend is associated with the development of the so
called massive parallelism and modern MIMD computer
architectures. It is based on multiple processors working in
network (clusters), distributing data between processors in
accordance with some parallel algorithm (e.g. 2D Trans-
pose algorithm), and exchanging data in a standard way
(e.g. MPI-message passing interface, active packets, etc.).
Essential for this trend is the efficiency of the pair algo-
rithm-architecture when the problem size and the number
of processors increase significantly.

The second trend, which can be conditionally called
single-chip trend, includes efforts to develop single-chip
fast FFT processors operating in real time which are nec-
essary for the needs of many applications in communica-
tions (high speed OFDM-based communication technolo-
gies, such as ADSL, VDSL, DVB, FFT-based 2D image
processing, etc., requiring high-speed FFT processors
operating in real time.

In many applications the input data for the DFT are
real-valued and the outputs exhibit conjugational symme-
try, or the inputs exhibit conjugational symmetry and in
this case the outputs are real values.

The discrete Hartley transform (DHT) [Bracewell-1] is
a Fourier-related transform of discrete, periodic data, simi-
lar to DFT with analogous applications in signal process-
ing and related fields. Its main distinction from DFT is that

Print ISSN:1312 – 2622; Online ISSN: 2367-5357
DOI:10.2478/itc-2013-0010

Ph. Philipov, V. Lazarov

2 201330 information technologies
and control

it transforms real data, thus being an alternative for the
real-valued DFT algorithms.

Specialized real-valued FFT algorithms (RFFT)
[Sorensen-1] and fast Hartley transform (FHT) [Bracewell-
2] have been designed for this situation in order to remove
the redundant operations, lowering twice the memory and
operational requirements.

FHT/RFFT algorithms are important, because with their
help other Fourier-related transforms can be obtained, e.g.
discrete cosine transforms (DCT), discrete sine transforms
(DST), etc.

Parallel implementations of FHT/RFFT have been made
for some types of parallel architectures. Nevertheless, these
algorithms have an irregular computational structure which
makes their efficient parallelization a very difficult task.

For nearly 50-years period a huge amount of literature
has been written on FFT. There are authors who consider
this subject exhausted (especially for the complex FFT).
Still, there are some problems that are not yet sufficiently
studied and deserve exploring. Such a problem is the
problem connected with the natural architectures of these
algorithms.

Natural architectures for a given algorithm are such
architectures, which are derived directly from the data flow,
(signal graph) of this algorithm. For this reason, they are
considered to be the most appropriate architectures for
parallel realization of this algorithm. For FFT, two types of
natural architectures are known – the direct and indirect
hypercube.

The Direct Hypercube has been studied in details and
there is hardly anything else to add on the subject.

Stone [Stone-1] and Pease [Pease-1] were the first to
highlight the potential of the Indirect Hypercube.

In 1995 Macceo et al. [Macceo-1], on the base of the
butterfly diagram, map the algorithm on an architecture of
an indirect binary Hypercube type. It is a conveyor type
architecture and the workload of the first stage of proces-
sors is significantly higher than that of the other stages.
This circumstance leads to decrease of the efficiency.

Gradually over time the characteristics of the indirect
Hypercube seem to pass on to direct Hypercube. Since
then one can see in the references a strange mixture of both
types of the Hypercube. Gradually, the prevailing opinion
is that the direct Hypercube is the only natural architecture
for FFT algorithms.

In 2005 an enigmatic array architecture has appeared
[Zhenyu Liu-1]. This architecture offers the following ad-
vantages:

• Eliminating the transfer of data between stages,
resulting in both improved latency and system performance.

• Elimination of the conflicts in memory.
• System performance increases linearly with increas-

ing the number of processors.
Although the authors do not use indirect hypercube

for characterization of this architecture, its internal features
coincide with the respective features of the indirect
hypercube. That is why we consider this architecture to be
a hidden version of the indirect hypercube.

The purpose of this paper is the further development
and reviewing of the potential of the concept Indirect
Hypercube, including:

• Giving a clear form and outlining the intrinsic prop-
erties of this architecture.

• Generalization of the concept with respect to granu-
larity/radices.

• Generalization of the concept with respect to other
Fourier-related transforms (real-valued FFT, FHT, FCT).

• Some applications.

FFT Analysis
DFT

Discrete Fourier Transform (direct and inverse) is
defined as:

(1.a) ∑
−

=

−=
1N

0n

knW(n)(k) XF

(1.b)

W = ei2π/N = cos(2π/N) + isin(2π/N).

FFT Description
Radix-2 Fast Fourier Transform (Cooley-Tukey) is an

algorithm, realizing DFT. The algorithm is very suitable for
N = 2n. It is based on the so called Danielson-Lanczos
lemma – formation of two N-point sequences (Xf(k) and
Xf(N/2+k)) on the base of two (even and odd) N/2-point se-
quences (Xf0(k) and Xf1(k)). There are two basic versions
(schemes) of this algorithm – DIT and DIF. The formation
of the N-point sequences is in accordance with the follow-
ing relations (simplified butterflies) [Singleton-1]:

DIT
 Xf(k) = Xf0(k) + e-i(2π/N)k.Xf1(k)

(2.a)
 Xf(N/2+k) = Xf0(k)– e-i(2π/N)k.Xf1(k), 0 ≤ k ≤ N/2 – 1.

DIF
 Xf(k) = Xf0(k) + Xf1(k)

(2.b)
 Xf(N/2+k) = (Xf0(k)– Xf1(k)) e-i(2π/N)k, 0 ≤ k ≤ N/2 – 1.

Let N = 2n.
The essence of both schemes consists in the con-

secutive calculation of n groups of intermediate weighted
sums (butterflies) in accordance with (2.a)/(2.b).

If we analyze the input and output indices (as binary
numbers) of these sums, we see that:

1)The input indices in a given sum differ in their most
significant digit (all other digits are equal).

2) The output indices can be obtained through left
cyclic rotation of the respective input indices; 3) The in-
dices of the final sums are obtained in a bit reversed order.

Items 1) and 2) specify the so called perfect shuffle
(PS) method of mixing an array. That is why if we want to
present the flow of data in this algorithm, the best way is
to use any PS model.

∑
−

=

=
1N

0k

nW(k)
N
1(n) kFX

2 2013 31information technologies
and control

Perfect Shuffle
Mixing of an array N (N = 2k) according to the perfect

shuffle method mathematically is described as follows:
PS(n) = 2 * n for n < N/2

(3)
PS(n) = 2 * n – N + 1 for n ≥ N/2

If the indices are presented as binary numbers, it is
not difficult to see that:

• The objects of shuffling form pairs.
• The indices of the input pairs differ in their most

significant digit (all other digits are equal).
• The output indices (after shuffling) can be obtained

by means of left cyclic rotation of the respective input
indices.

Perfect Shuffle Models
Omega network and Butterfly network are intercon-

nection networks which are used in multiprocessor com-
puter architectures. They are multistage interconnection
networks [Bhuyan-1] whose basic property is the perfect
shuffling of the input signals. They contain switching el-
ements (crossbar switches) which are arranged in columns
(stages).

Though Omega network and Butterfly network are
topologically equivalent (the difference between them is in
the manner of arrangement of the switches), they underlie
two basic approaches for machine realization of PS method.

Conceptually, two approaches are possible to per-
form a perfect shuffle on an array.

First approach. In shuffling each element retains its
position (the memory address where it is stored) and
changes its index. An illustration of this approach is the
well-known butterfly diagram (constructed on the base of
the butterfly network), so we can conditionally call it the
Butterfly approach.

Second approach. In shuffling each element changes
its position in correspondence with its new index. An illus-
tration of this approach is the Omega network, so that we
can conditionally call it the Omega approach.

Generally the Butterfly approach does not require
data buffering while Omega approach requires buffering of
data. Perhaps for this reason, conventional (uniprocessor,
sequential) FFT implementations are usually based on this
approach, and the butterfly diagram has established itself
as an essential tool for presenting FFT flow of data (pri-
marily for conventional serial algorithms, subsequently for
parallel algorithms).

When speaking about parallel multiprocessor imple-
mentation, we observe two levels of perfect shuffling:

• Low level (intra-processor level) concerning opera-
tions (perfect shuffling) inside given processor.

• High level (inter-processor level) concerning inter-
processor communications.

Depending on the high-level PS approach implemen-
tation there exist generally two types of parallel algorithms:

• Data exchange type algorithms (butterfly approach)
(e.g. binary exchange algorithm). These algorithms have
the direct binary hypercube as natural architecture (directly
map on).

• Transpose type algorithms (Omega approach) (e.g.
2D transpose algorithm). These algorithms have as natural
architecture (directly map on) different types of an indirect
binary hypercube.

Omega Network
The main characteristics of an Omega network are:
• It has 2n = N inputs and so many outputs.
• It is composed of log2N stages, each stage includ-

ing N/2 switching elements (crossbar switches).
• Every crossbar switch has two inputs (0 and 1) and

two outputs (0 and 1).
Technically, the interconnection between the switch-

ing elements of successive stages is accomplished in cor-
respondence with the following procedure:

• Every switch receives a number (binary) within a
given stage.

• A personal identifier is associated with every in-
put/output of a given switch.

• The input identifiers include the input number
(0 or 1) as the most significant digit, followed by the switch
number.

• The output identifiers include the switch number as
the most significant part, followed by the output number
(0 or 1).

• The output identifiers of a given switch can be
obtained by means of left cyclic rotation of the respective
input identifiers.

• The interconnection between consecutive stages is
accomplished on the basis of the coincidence of input and
output identifiers.

FFT Flow of Data
Omega network is a very suitable model for viewing

the flow of data of radix-2 DIT (or DIF) FFT. Each stage of
this network is associated with the generation of a given
group of sums. Every switch of a given stage obtains two
partial sums from the previous stage and sends two sums
to the next stage. When the input data is in a natural order,
the final results are in a bit-reversed order. And vice versa
– when the input data is in a bit-reversed order, the final
results are in a natural order. Figure 1 shows well the FFT
parallel intrinsic features – the parallel threads, as well as
the homogeneity of the flow of data from a stage to a
stage. This homogeneity makes possible the operation of
all stages of the FFT algorithm to be performed by one
physical stage. This is accomplished when the outputs of
one stage of the Omega network are fed to the inputs of
the same stage in accordance with the presented manner of
interconnection (figure 2). The structure, presented in
figure 2 is known as one-stage indirect binary hypercube,
and it can be regarded as the maximum parallel structure of
8-point FFT of this type (8-point FFT on 4 processors).

2 201332 information technologies
and control

Parametrical Synthesis of the Indirect
Hypercube

It is clear that the maximum parallel structure is not
the best solution, and that it is preferable (recommendable)
that we could use efficiently the structure from figure 2
(including 4 PE and very well suited for 8-point FFT) for
FFT of greater number of points – 16, 32, etc. In other
words, it is necessary to have a method for parametrical
synthesis of such structures, where the parameters are the
number of points and the number of processors.

Let N = 2n, n = n1 + n2, 0 < n1 < n. We intend to
construct an analogous parallel structure for N-point FFT
on the basis of 2n1 generalized crossbar switches.

The generalized crossbar switch (GCS) of 2´2 dimen-
sion (two inputs and two outputs) is an integrated unified
object, including a set of ordinary 2´2 crossbar switches
whose n1 least significant binary digits of their numbers
coincide (GCS number). GCS is considered as a complex
structure which includes one simple 2´2 crossbar switch,
performing the functions of a processor element, and one
dual-port memory (DM) which serves for reading of the
input data for PE and storing the intermediate or final
results.

Two types of identifiers are extracted from the global
identifier (consisting of n binary digits) – a Group identi-
fier and a Local identifier.

The Group Identifier (GI) includes the n1 + 1 least
significant digits of the global identifier.

• GI identifies the groups of signals entering/exiting
a given GCS input/output and is of two types – an input
GI and an output GI.

• The input GI includes the GCS input number as the
most significant digit (0 or 1), followed by the GCS number.

• The output GI includes the GCS number as the
most significant part, followed by the GCS output number
(0 or 1).

• The output GI of a given output is obtained through
left cyclic rotation of the corresponding input GI.

 00 0 0

1 1

01 0 0

1 1

10 0 0

1 1

11 0 0

1 1

00 0 0

1 1

01 0 0

1 1

10 0 0

1 1

11 0 0

1 1

00 0 0

1 1

01 0 0

1 1

10 0 0

1 1

11 0 0

1 1

000

100

001

101

010

110

011

111

000

100

010

110

001

101

011

111

10 0

1

0

1

11 0

1

0

1

00 0

1

0

1

01 0

1

0

1

• GCS interconnection is based on coincidence of
the input and output GI.

The Local Identifier (LI) includes the n2 most signifi-
cant digits of the global identifier.

• LI identifies the signals inside GCS.
• The most significant digit of LI indicates the PE

input number.
• The least significant digit of LI indicates the GCS

input number.
Basic property of LI – left cyclic rotation at transi-

tions from a stage to a stage.

Generalization of the Concept
for an Indirect Hypercube
with Respect to Granularity
Transpose type Algorithms

If we try to define the algorithm described in the
previous item, we can classify it as an algorithm of trans-
pose type with the finest granularity (two). In general, this
type of algorithms can be described in the following way.

Consider a q-dimensional transpose algorithm on
P = 2p processors. In this case N = Gq, where G (G = 2g)
is granularity. This algorithm must contain q operational
phases and between each phase transposition of the
q-dimensional array is performed. During the operational
phase each processor performs FFT in a particular direc-
tion (current rows of the array). Every transposition repre-
sents a left g-digit cyclic rotation of the indices. The num-
ber of processors, k, to which a given processor commu-
nicates, is determined by the expression k = min (P, G).
The set of processors with which a given processor com-
municates does not change at different transposition
phases.

Perfect Shuffle Sequences
It was already shown that the main feature, on which

Figure 1. 8x8 Omega network hypercube Figure 2. 8x8 1-stage indirect

2 2013 33information technologies
and control

the use of the Omega network is based, is the ability to
perform (and to be a suitable model) of a perfect shuffle.
Constructing such a model for transpose algorithms with
higher granularity presupposes presentation as a single act
(in one stage) the sequence of shuffles (e.g. a sequence of
2 PS in the case of an algorithm with granularity four).

Let N = 2n = Gq, G = 2g, g q = n, where G is granularity.
In the general case the sequence of g shuffles of an

array can be viewed as a single act with the following
properties:

• The source array is divided into G equal parts.
• The objects subjected to shuffling form groups,

each group containing G objects (one object from one
initial group) and indices which differ in their g most sig-
nificant digits (all the other digits are equal).

• The output indices (after shuffling) can be obtained
by means of left g-digit cyclic rotation of the respective
input indices.

In this connection it is convenient to use the term
perfect shuffle rank, which is equal, by definition, to the
equivalent number of standard perfect shuffles
(PS of rank 1).

Omega-similar Network
In the case of a perfect shuffle of rank g, the data

flow can be represented using a multistage interconnection
network, similar to Omega network (Omega-similar
network), with the following properties.

• The network has Gq = N inputs and so many
outputs;

• Between them there are logGN = q number of stages,
each stage containing N/G switching elements (crossbar
switches of G´G dimension);

• Every crossbar switch has G inputs (0 to G-1) and
so many outputs;

• Each stage of the network performs a perfect shuffle
of rank g;

• The interconnection between the consecutive
stages is accomplished on the basis of coincidence of the
input and output identifiers. The input identifiers include
the input number as the most significant part, followed by
the switch number. The output identifiers include the switch
number as the most significant part, followed by the output
number;

• The output identifiers of a given switch can be
obtained by means of left, g-digit cyclic rotation of the
respective input identifiers.

For identification of such an Omega-similar network
we can use the term Omega-similar network class, accept-
ing by definition the class of this network to be equal to
the rank of the perfect shuffle which is performed by the
network.

Classes of Indirect Hypercubes
Horizontal reduction is obtained by using one stage

to perform the functions of all the stages. This is achieved
by taking one stage of the network and connecting the
outputs of this stage to the inputs of the same stage in

accordance with the presented manner of interconnection.
The resulting structure can be called single-stage indirect
Hypercube of a class equal to the class of the Omega-
similar network, from which it is obtained (in this
case – class g).

The next step is parametric vertical reduction with
respect to the processors P of the last structure.

Let P = 2p, P ≤ N/G.
The generalized crossbar switch (GCS) of G´G dimen-

sion (G inputs and G outputs) is an integrated unified
object, including a set of ordinary G´G crossbar switches
whose p least significant binary digits of their numbers
coincide (GCS number). GCS is considered as a complex
structure which includes one simple G´G crossbar switch,
performing the functions of a processor element (perform-
ing a P-point FFT), and one G-port memory which serves
for reading of input data for PE and storing of intermediate
or final results.

Each crossbar switch (processor) is assigned a num-
ber which represents a p-digit binary number. With each
processor indexes are associated, whose least significant
digits coincide with the number of the processor.

From the global identifier (index) two fields are
extracted – a group and a local identifier.

The Group identifier (GI) includes the least significant
p + g binary digits of the global identifier.

• The Group Identifiers are of two types – input and
output.

• The input GI include the input number, as the most
significant part, followed by the switch number.

• The output GI include the switch number as the
most significant part, followed by the number of the out-
put.

• The output GI of a given output is obtained by left,
g-digit cyclic rotation of the respective input GI.

• The Group Identifiers identify the groups of signals
that enter/exit the switch, and are used to connect the
switches on the base of coincidence of the input and
output GI.

The Local Identifier (LI) includes the most significant
n - p digits of the global identifier.

• LI identifies the signals inside the switch.
• LI most significant g digits indicate the PE input

number.
• LI least significant g digits, which coincide with the

most significant g digits of the input group identifier, in-
dicate the GCS input number.

• The main property of the local identifier is a left g-
digit cyclic rotation on transitions from a stage to a stage.

• In any switch (processor unit) FFT is performed on
G points. Depending on the perfect shuffle presentation
inside the switch, the operations can be based on radix-2
(composition of rank 1 shuffles) or a higher radix, the
maximum radix being G (one perfect shuffle of rank g).

• The scheme can be regarded as a scheme of para-
metric realization of transpose algorithm with granularity G
with a corresponding radix.

As an example we shall review the data flow analysis

2 201334 information technologies
and control

of a transpose algorithm with granularity four.

Model of Omega-like Network and Indirect
Hypercube of Class Two

For this case we have N = 2n = 4n/2 , P = 2p ≤ N/4.
The interconnection network that represents the flow

of data contains log4N stages, each stage contains N/4
switching elements, each with dimensions 4´4. The num-
bers of inputs/ outputs are represented by two-digit binary
numbers. The output identifiers are obtained by 2-digit left
cyclic rotation of the respective input identifiers. Figure 3
presents the interconnection network (Omega-similar net-
work of class 2) that shows the flow of data for a transpose
algorithm with granularity four performing 16 pt. FFT, and

00
00 00

10 01

01 10

11 11

01
00 00

10 01

01 10

11 11

10
00 00

10 01

01 10

11 11

11
00 00

10 01

01 10

11 11

00
00 00

10 01

01 10

11 11

01
00 00

10 01

01 10

11 11

10
00 00

10 01

01 10

11 11

11
00 00

10 01

01 10

11 11

00
00 00

10 01

01 10

11 11

01
00 00

10 01

01 10

11 11

10
00 00

10 01

01 10

11 11

11
00 00

10 01

01 10

11 11

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

1000

0100

1100

0001

1001

0101

1101

0010

1010

0110

1110

0011

1011

0111

1111

figure 4 - the respective indirect hypercube of class 2.
The vertical contraction with respect to P is achieved

with the help of the previously described procedure by
replacing G by 4 and g by 2 respectively.

The model considered so far can be used to
implement a transpose type algorithm with granularity four.
The options in terms of the basis are radix-2 and radix-4.
Option radix-2 implies the presentation of shuffling in the
switches (which is of rank 2) as a composition of two
standard shuffles (rank one). Radix-4 variant implies a
shuffle of rank two.

Radix-4 FFT
Usually radix-4 operations are called dragonflies, and

Figure 3. 16 pt Omega-similar class 2 network Figure 4. Indirect class 2 hypercube

Figure 5. Dragonfly operation model

00

10

01

11

00

01

10

11

0X
BU

0

1

0

1

1X
BU

0

1

0

1

X0
BU

0

1

0

1

X1
BU

0

1

0

1

DU X

I10x

I01x

I11x

I00x Ox00

Ox01

Ox10

Ox11

2 2013 35information technologies
and control

DIT DIF
BU 0X

P = I00x + W2arg I10x
Q = I00x − W2arg.I10x

BU X0

Ox00 = P + Warg R
Ox01 = P − Warg.R

BU 0X

P = I00x + I10x
Q = (I00x − I10x) W2arg

BU X0

Ox00 = P + R
Ox01 = (P − R) Warg

BU 1X

R = I01x + W2arg I11x

S = I01x − W2arg I11x

BU X1

Ox10 = Q + Warg ejπ/2 S
Ox11 = Q − Warg.ejπ/2 S

BU 1X

R = I01x + I11x
S = (I01x − I11x) W2arg

BU X1

Ox10 = Q + S
Ox11 = (Q − S).Warg.ejπ/2

Table 1

they implement the operations of four radix-2 butterflies.
Figure 5 shows a model of dragonfly operation based on
butterfly units (BU). Specified BU numbers are the num-
bers that they would have in a Omega network.

Table 1 indicates the radix-2 DIT/DIF butterfly
operations.

Realized in this way (as a combination of four butter-
fly operations), one dragonfly operation requires four com-
plex multiplications and eight complex additions.

After processing the expressions from table 1, DIT/
DIF versions of radix-4 dragonfly operations are obtained
as follows:

DIT
Ox00 = I00x + W2arg I10x + Warg I01x + W3arg I11x

(4.a) Ox01 = I00x + W2arg I10x – (Warg I01x + W3arg I11x)
Ox10 = I00x – W2arg I10x + ejπ/2(Warg I01x – W3arg I11x)
Ox11 = I00x – W2arg I10x – ejπ/2(Warg I01x – W3arg I11x)

DIF
Ox00 = I00x + I10x + I01x + I11x

(4.b) Ox01 = (I00x + I10x - I01x - I11x) W
arg

Ox10 = (I00x - I10x + I01x - I11x)W
2arg

Ox11 = (I00x - I10x - I01x + I11x) e
jπ/2 W3arg

Systems (4.a),(4.b) require three complex multiplica-
tions and eight complex additions, thus saving one com-
plex multiplication. This is the reason to use higher radices.

Generalization of the Concept
for an Indirect Hypercube
with Respect to Real-valued FFT/FHT

Real-valued FFT
When the initial sequence X(n) in (1.a) is real-valued,

then:
a) For k = 0, F(0) and F(N/2) are real numbers and

 F(0)imag = 0

(5.a)

 F(N/2)imag = 0

b) For 0 < k < N/2, F(N-k) =F(k)* (conjugated complex
numbers), and

(5.b)

When the initial sequence X(n) is complex conju-
gated, then:

a) The inputs X(0) and X(N/2) are real numbers.
b) For 0 < k < N/2, the inputs X(N-k) =X(k)* (conju-

gated complex numbers).
c) The outputs are real numbers.
From (5.a) and (5.b) it is very well seen how the

information in this case is doubled.
As above mentioned, efficient FFT algorithms have

been designed for this situation. One approach consists in
taking an ordinary FFT algorithm (e.g. Cooley-Tukey) and
removing the redundant parts of the computation, saving
roughly a factor of two in time and memory [Bergland-1].
Alternatively, it is possible to express an even-length real-
input DFT as a complex DFT of half the length (whose real
and imaginary parts are the even/odd elements of the origi-
nal real data), followed by O(N) post-processing opera-
tions. The two mentioned approaches can be combined.

Generally, for the case of real-valued FFT (direct and
inverse) the radix-2 DIT FFT as more suitable is used as a
base, and for the case of conjugation symmetrical FFT
(direct and inverse), the radix-2 DIF FFT is used as a base.

Combining symmetrical butterflies, removing redun-
dances and making some substitutions, three types of
butterflies are obtained for each of the systems (2.a) and
(2.b) (table 2).

F(0)real = ∑ X(n)
n=0

N-1

F(N/2)real = ∑ (-1)n X(n)
n=0

N-1

∑
−

=

=−
1N

0n
)2((n).k)(kn

N
CosXrealNF π ∑

−

=

−=−
1N

0n
)2((n).k)(kn

N
SinXimagNF π

∑
−

=

=
1N

0n
)2((n).(k) kn

N
CosXrealF π

∑
−

=

=
1N

0n
)2((n).(k) kn

N
SinXimagF π

FHT
DHT is defined according to the following formula:

(6))]2()2([
1

0
nk

N
sinnk

N
cosH

N

n
nk x ππ += ∑

−

=
, k = 0,…, N-1

Usually cos(z) + sin(z) is denoted by cas(z).

2 201336 information technologies
and control

DIT
Stages 0 to n

DIF
Stages 0 to n

Type A (stage 0, k = 0)
Xf(0) = Xf0(0) + Xf1(0)
Xf(N/2) = Xf0(0) - Xf1(0)
Xf(N/4) = Xf0(N/4) + Xf1(N/4)
Xf(3N/4) = Xf0(N/4) - Xf1(N/4)

Type C (stage n, k = 0)
Xf(0) = Xf0(0) + Xf0(N/4)
Xf(N/2) = Xf0(0) - Xf0(N/4)
Xf(N/4) = Xf1(0) + Xf1(N/4)
Xf(3N/4) = Xf1(0) - Xf1(N/4)

Type B.0 (stage >0, k = 0)
Xf(0) = Xf0(0) + Xf1(0)
Xf(N/2) = Xf0(0) - Xf1(0)
Xf(N/4) = Xf1(N/4)
Xf(3N/4) = Xf0(N/4)

Type D.0 (stage < n, k = 0)
Xf(0) = Xf0(0) + Xf0(N/4)
Xf(N/2) = Xf0(0) - Xf0(N/4)
Xf(N/4) = 2.Xf1(N/4)
Xf(3N/4) = 2.Xf1(0)

Type B.1 (stage >0, k > 0)
Xf(k) = Xf0(k) + cos((2π/N)k).Xf1(k) +

sin((2π/2N)k).Xf1(N/2-k)
Xf(N-k) = Xf0(N/2-k) + cos((2π/N)k).Xf1(N/2-k) -

sin((2π/N)k).Xf1(k)
Xf(N/2+k) = Xf0(k) - cos((2π/N)k).Xf1(k) -

sin((2π/N)k).Xf1(N/2-k)
Xf(N/2-k) = Xf0(N/2-k) - cos((2π/N)k).Xf1(N/2-k) +

sin((2π/N)k).Xf1(k)

Type D.1 (stage < n, k > 0)
 Xf(k) = Xf0(k) + Xf1(k)
 Xf(N-k) = Xf0(N/2-k) + Xf1(N/2-k)
 Xf(N/2+k) = (Xf0(k) - Xf1(k)).cos((2π/N)k) +
(Xf0(N/2-k) - Xf1(N/2-k)).sin((2π/N)k)
 Xf(N/2-k) = (Xf0(N/2-k) - Xf1(N/2-k)).cos((2π/N)k)
–
(Xf0(k) - Xf1(k)).sin((2π/N)k)

Table 2

Generally, FHT is based on the already mentioned
Danielson-Lanczos lemma [Danielson-1] – the base of the
Cooley-Tukey radix-2 FFT algorithm.

FHT splits the N-point sequence X(n) into two smaller
(N/2)-point sequences X0(n) (even) and X1(n) (odd). The
two swquences are Hartley transformed into Xh0(k) and
Xh1(k) and combined into Xh(k) in accordance with the next
relations:

Xh0(k)+cos((2π/N)k)Xh1(k)+sin((2π/N)k)Xh1(N/2-k), for 0≤k≤N/2-1
(7) Xh(k)=Xh0(k-N/2))–cos((2π/N)(k-N/2) Xh1(k-N/2)) –

 sin((2π/N)(k-N/2) Xh1(N-k) for N/2 ≤ k ≤ N -1.

Equations (7) result in the so called double FHT
butterfly (DFHTB)[Ulman-1] which are of two types and are
similar to the RFFT butterflies shown in Table 1. For
example, a DIT version of DFHTB can be obtained by
replacement of type B.0 butterfly with type A butterfly in
DIT column of table 2. Alternatively, a DIF version of
DFHTB can be obtained by replacement of type D.0 but-
terfly with type C butterfly and changing the direction of
rotation in type D.1 butterfly in the DIF column of table 2.

RFFT/FHT Parallel Implementation
Analyzing the butterflies from table 2 it is not diffi-

cult to see that:
• The inputs (respectively outputs) form pairs which

come from (respectively go to) one and the same
butterfly. For example, the input pairs are (Xf0(0), Xf0(N/4)),
(Xf0(k), Xf0(N/2-k)), etc,, the output pairs are
(Xf(0), Xf(N/2)), (Xf(k), Xf(N-k)), etc.

• Butterflies of type B.1 (respectively D.1) are equiva-
lent to the respective FFT butterflies and butterflies of
other types are near to the respective FFT butterflies.

This is the reason why one of the most popular
approaches in the creation of RFFT/FHT algorithms is the
imitation of the respective FFT algorithm. This approach
includes:

• Presenting the N-point real-valued RFFT/FHT array
as an N/2-point complex array (each position in the array
contains two components – real and imaginary).
Such a complex pair contains either two real values
(e.g. (Xf(0), Xf(N/2))), or the real and imaginary parts of two
complex-conjugated values of the original FFT algorithm.

• Replacing the original FFT butterflies by the butter-
flies presented in table 2 and control adjustment.

Although this approach seems very attractive, when
applied to the implementation of parallel algorithms, it raises
certain problems. Parallel algorithms require regularity in
the structure of their signal graph (flow of data).

Each RFFT butterfy incorporates two FFT butterflies
with conjugated transform parameters
(e.g. (k, N/2-k), (0, N/4), etc.). For each RFFT butterfly we
have to choose one of two conjugated (complementary)
values and on this base to identify the respective complex
pair. Choosing 0≤k<N/4 does not ensure the necessary
structural regularity.

For N-point FFT (N=2n) identifiers there are n-bit
binary numbers. Presenting the N-point real-valued array
as a N/2-point complex array makes the identifiers n-1 bi-
nary numbers.

So, creating a parallel RFFT/FHT algorithm requires

2 2013 37information technologies
and control

the solution of the next two problems:
• Identification of the complex pairs.
• Reduction of the n-bit identifiers into n-1 bit iden-

tifiers.
Parallel implementations of FHT/RFFT have been made

for systolic arrays [Marchesi-1] [Chang-1], hypercuboid
multicomputers [Zapata-1], as well as VLSI implementa-
tions [Zapata-2], [Liu-1]. The proposed solutions to the
problems indicated are suitable mainly for the realization of
algorithms of data-exchange type.

FFT Identifier Analysis
It was already shown that the structural regularity

(inherent parallelism) in Cooley-Tukey FFT algorithm is
due to the perfect shuffle method, and the identifiers
(indices) have certain properties that support this method.

It was also shown that radix-2 DIT/DIF FFT, is based
on the already mentioned Danielson-Lanczos lemma –
formaton of two N-point sequences (Xf(k) and Xf(N/2+k)) on
the base of two (even and odd) N/2-point sequences
(Xf0(k) and Xf1(k)).

Let N = 2n.
The signal identifier is a n-bit binary number and

contains two fields – S field and K field. S field is the
sequence number, while K field identifies the parameter k
(the transform parameter).

The sequence numbers are formed in the following
manner (DIT). From a N-point sequence two (N/2)-point
sequences are formed – an even (0) and an odd one (1).
From the even (N/2)-point sequence two (N/4)-point se-
quences are formed – an even (00) and an odd one (10).
From the odd (N/2)-point sequence also two (N/4)-point
sequences are formed – an even (01) and an odd one (11).
This procedure continues up to the enumeration of all the
points. This type of sequence enumeration provides two
important consequences:

1. In FFT butterflies enter some signals, whose S fields
are equal with the exception of their most significant digit.

2. The output signals of a given FFT butterfly have
for a sequence number the common, least significant part
of the sequence number of the input sequences.

The signal identifiers are organized according to the
following rules:

1. S field is the most significant part of the signal
identifier.

2. K field is the least significant part of the signal
identifier, and it is the bit-reversed value of k parameter.

With every stage K field increases with one digit and
S field decreases with one digit. So, the initial identifiers
contain only S field (the point index), while the final
identifiers contain only K field (the final results in a
bit-reversed form).

The following two properties of the signal identifiers
are very important (perfect shuffle identification):

1. In a given butterfly two signals enter, whose iden-
tifiers are equal with the exception of their most significant
digit.

2. The identifiers of the output signals of a given

butterfly can be obtained by means of left cyclic rotation
of the identifiers of the respective input signals.

RFFT Butterfly Identifier Analysis
Let N = 2n. Presenting the real-valued array as a com-

plex array we obtain an N/2-point complex array. Every
signal is a RI pair (contains two parts – R (Real) and I
(Imaginary)). The R part contains the value of the real
component of the respective conjugated FFT complex pairs
and the I part – the respective imaginary component. The
signal identifier must consist of n-1 binary digits. We can
assume the same structure of the signal identifier consist-
ing of two parts - S field and K field. S field is again the
most significant part of the identifier, and K field is the
least significant part. K field is the bit-reversed code of the
transform parameter k. S field is the same as in FFT case.
Problems arise with K field identification (we already dis-
cussed these problems). It is not clear beforehand which
value of the two possible values to choose, and how to
code this value in a field which has been subjected to an
1-bit reduction. As already mentioned, choosing
0 ≤ k < N/4 does not ensure the necessary structural
regularity.

Analysis of k-values in RI pairs shows that k-values
in a given RI pair always belong to two different classes.
The first class, D (direct) class, is generated by ‘0’-value
of the parameter k. The second class, C (complementary)
class, is generated by ‘1’-value of the parameter k. In a
given RI pair, when the R part is a D-value, the I part is a
C-value and vice versa – when the R part is a C-value, the
I part is a D-value. D-values generate always D-values and
C-values generate always C-values. This allows the iden-
tification to be made on the base of D-values.

The characterization of D and C classes is as follows:
 k∈ D : {k = 0 or k = (4p+3)2q, for some p, q ≥ 0},
(8)
 k∈ C : {k ≠ 0 and k = (4p+1)2q, for some p, q ≥ 0}.
One-bit reduction of K-field is performed by removing

the least significant ‘1’ in the binary presentation of the
given D-value when it is not zero, or by remoing one binary
zero when it is zero. Arithmetically it is expressed as fol-
lows:

 k-value = (4p+3)2q, for some p, q ≥ 0,
(9)
 k-code = (2p+1)2q, for some p, q ≥ 0.
The fact that this type of identification exhibits the

two mentioned properties which idenyify perfect shuffle is
very important:

1. In a given butterfly two signals enter, whose iden-
tifiers are equal with the exception of their most significant
digit.

2. The identifiers of the output signals of a given
butterfly can be obtained by means of left cyclic rotation
of the identifiers of the respective input signals.

This type of identification leads to a variant of the
described Omega network, let us say DC Omega network.
The difference is that DC Omega network (figure 6) pos-
sesses one stage more than the standard Omega network.

2 201338 information technologies
and control

This is due to the presence of one preliminary (post) stage
in the FHT/RFFT algorithms. In any case, both types of
networks (Omega-like networks and DC Omega-like net-
works) result in one and the same type of indirect
hypercubes, including the parametrical synthesis of indi-
rect hypercubes of different clases.T

he DC Omega network shown in figure 6 presents the
flow of data of a 16-point parallel (4 processors) radix-2
RFFT/FHT DIT (for RFFT, the inputs are real values) trans-
pose algorithm with granularity two (the finest granularity).
Considering the flow of data from right to left, the DIF is
regarded (for RFFT, the inputs are conjugated complex
numbers).

The basic features of this algorithm are as follows:
• The signals are identified by their D-value part

which is the R component of the imitated complex signal.
• R components contain the real (even) components

and I components contain the imaginary (odd) components
of the conjugated complex FFT values.

• The initial RI pairs (DIT) are formed on even/odd
basis – e.g. (0, 1), (2, 3), etc.

• When the initial RI pairs (DIT) are in a natural
order, the final pairs are in a bit-reversed order of the coded
D-values.

• When the initial RI pairs (DIT) are in a bit-reversed
order, the final pairs are in a natural order of the coded
D-values.

DCT
Discrete Cosine Transform (DCT) and Discrete Sine

Transform (DST) are Fourier-related transforms similar to
the discrete Fourier transform (DFT), but using only real

 D
C
00

D
C

0

1 1

0 0,0
0,1

1,0
1,1

0
1

8
9

D
C
00

D
C

0

1 1

0 0,0
0,2

0,3
0,1

0,0
0,1

4,0
4,1

D
C
00

D
C

0

1 1

0 0,0
0,4

0,6
0,2

0,0
0,2

2,0
2,2

D
C
00

D
C

0

1 1

0 0
8

12
4

0,0
0,4

1,0
1,4

D
C
01

D
C

0

1 1

0 2,0
2,1

3,0
3,1

2
3

10
11

D
C
01

D
C

0

1 1

0 1,0
1,2

1,3
1,1

1,0
1,1

5,0
5,1

D
C
01

D
C

0

1 1

0 0,3
0,5

0,7
0,1

0,3
0,1

2,3
2,1

D
C
01

D
C

0

1 1

0 6
10

14
2

0,6
0.2

1,6
1,2

D
C
10

D
C

0

1 1

0 4,0
4,1

5,0
5,1

4
5

12
13

D
C
10

D
C

0

1 1

0 2,0
2,2

2,3
2,1

2,0
2,1

6,0
6,1

D
C
10

D
C

0

1 1

0 1,0
1,4

1,6
1,2

1,0
1,2

3,0
3,2

D
C
10

D
C

0

1 1

0 3
13

11
5

0,3
0,5

1,3
1,5

D
C
11

D
C

0

1 1

0 6,0
6,1

7,0
7,1

6
7

14
15

D
C
11

D
C

0

1 1

0 3,0
3,2

3,3
3,1

3,0
3,1

7,0
7,1

D
C
11

D
C

0

1 1

0 1,3
1,5

1,7
1,1

1,3
1,1

3,3
3,1

D
C
11

D
C

0

1 1

0 7
9

15
1

0,7
0,1

1,7
1,1

Figure 6. 16 pt. DC Omega network

numbers. DCTs and DSTs are equivalent to DFTs of roughly
twice the length, operating on real data, with even symme-
try (DCT) or odd symmetry (DST), where in some variants
the input and/or output data are shifted by half a sample.

DCTs and DSTs are widely employed in solving partial
differential equations (PDE) by spectral methods, where
the different variants of the DCT/DST correspond to slightly
different even/odd boundary conditions at the two ends of
the array.

The most common variant of the discrete cosine trans-
form is the type-II DCT [Ahmed-1], which is often called
simply the DCT; its inverse, the type-III DCT, is corre-
spondingly often called simply the inverse DCT or the
IDCT.

The DCT, and in particular the DCT-II, is often used
in signal and image processing, especially for lossy data
compression, because it has a strong “energy compaction”
property [Ahmed-1], [Rao-1]: most of the signal informa-
tion tends to be concentrated in a few low-frequency
components of the DCT, approaching the Karhunen-Loève
transform (which is optimal in the decorrelation sense) for
signals based on certain limits of Markov processes.

Although the direct computation of DCT would re-
quire O(N2) operations, it is possible to compute it with
O(N log N) complexity similarly to the fast Fourier trans-
form (FFT). These algorithms, with O(N log N) complexity,
are known as fast cosine transform (FCT) algorithms.

DCTs can be computed also via FFTs combined with
O(N) pre- and post-processing steps.

Specialized FCT algorithms have been designed for
this purpose – e.g. by taking an FFT (e.g. Cooley-Tukey
FFT) and eliminating the redundant operations.

There are applications that require parallel implemen-
tation of DCT.

2 2013 39information technologies
and control

Specialized FCT algorithms, however, have an irregu-
lar computational structure, which makes their efficient
parallelization a very difficult task. Thus, in practice, it is
often easier to obtain high performance for DCT with FFT-
based algorithms.

DFT, RDFT and DCT
DCT-II
Consider the following transform:

(10.a)]
2

sin[.)(]
2

cos[.)(
N
kimagkF

N
krealkFkC ππ += , where

 ∑
−

=

−=+=
1N

0

kW)(
m

nnXiF(k)imagF(k)realF(k)

as a DFT of the real valued input sequence X(n) in accor-
dance with (1.a), (5.a) and (5.b).

After some transformations (10.a) is converted as
follows:

]
2

)14(cos[(n)]
2

sin[].2sin[(n)]
2

cos[].2cos[(n)
1N

0n

1N

0n

1N

0n
∑∑∑

−

=

−

=

−

=

+=−=
N
nkX

N
k

N
knX

N
k

N
knXkC πππππ

After some transformations (10.a) is converted as
follows:

(10.b) ∑
−

=

+=
1

0

])12(
2

cos[
N

n
km

NY mkC π
, where

 m = 2n for n = 0,…, N/2-1;
(10.c) m = 2(N-n)-1 for n = N/2,…, N-1.

 Ym = Xn.
(10.b) is the definition for DCT II.

DCT-III
Let X0 ,…, XN-1 be a sequence of real numbers , and

let Y be a complex-conjugated input sequence of the fol-
lowing form:

Y0 = X0 is a real number.

]

2
sin[]

2
cos[_ N

m
XN

m
X mY realm mN

ππ
−+=

(11.a)

]
2

cos[]
2

sin[_ N
m

XN
m

X mY imagm mN
ππ

−−=

Y realmN

m
XN

m
X mNY realmN m _]

2
)cos[]

2
sin[_ =+−=−

ππ

For the case of inverse DFT we obtain

(11.b)

After some transformations (11.b) is converted as
follows:

(11.c) ,

where

(11.d) q = 2k for k = 0,…, N/2-1;
 q = 2(N-n)-1 for k = N/2,…, N-1.

 Cq = Fk.
DCT III is defined by (11.c).

FCT

From the provided analysis we see the important role
which real-valued DFT plays for DCT. Once the problem
with real-valued DFT has been solved, it is clear that the
indirect hypercube concept can be applied for DCT.

Adequate FCT for DCT II can be achieved by:
• Reordering of the input data in accordance with

(10.c).
• Adding one additional module which can be com-

bined with the last RFFT stage – case of real-valued inputs
(DIT case) (table 2 and table 3 – 1st column).

Adequate FCT for DCT III can be achieved by:
• Adding one additional module which can be com-

bined with the first RFFT stage – case complex-conjugated
inputs (DIF case) (table 2 and table 3 – 2nd column).

• Reordering of the output data (results) in accor-
dance with (11.d).

The described approach permits implementation of
the indirect hypercube concept for DCT. So, the presented
on figure 6 “16 pt. DC Omega network” shows also (except
16 point RFFT/FHT) the flow of data of 16 point FCT II
(from left to right) and 16 point FCT III (from right to left).

On the basis of indirect hypercubes with low granu-
larity (two and four) fast FCT modules can be designed for
real time applications, and on the basis of indirect
hypercubes with high granularity parallel FCT transpose
algorithms can be designed for the needs of computational
mathematics.

Some Applications

The discussed models of indirect hypercubes can be
used for different type of concrete implementations of
parallel algorithms of transpose type with different granu-
larity/radix.

Fast FFT Processors
Conventional FFT hardware architectures include

trade-offs among complexity, power consumption, die size,
and other similar parameters. However, these architectures
do not have the scalability to meet the high speed de-
mands of the FFT processor for the new high data rate
wireless technologies in communication (OFDM-based tech-
nologies like ADSL, VDSL, etc.), high-speed FFT-based 2D
image processing and others, demanding high-speed FFT
processors.

The advance in technologies enables the develop-
ment of architectures, optimal for a given class of algo-
rithms, including FFT. Recently considerable efforts have
been dedicated for FPGA-based parallel realizations of al-

F(k) = X0 + 2 ∑ Xmcos[]
N-1

m
πm(4k +1)

2N

Y imagmN

m
XN

m
X mNY imagmN m _]

2
sin[]

2
cos[_ −=−−=−

ππ

Y NX NY realN 2/]

4
cos[2 2/_2/ == π

∑
−

=

++=
1N

1
0]

2
)12(cos[

2
1)(

m
m N

qm
XXqC π

2 201340 information technologies
and control

gorithms of this class. FPGA provide highly improved
performance and capacity, a number of integrated special-
ized functions (embedded multipliers, distributed and block
RAMs, specialized DSP slices, etc.), as well as flexibility,
shorter design cycles and lower development costs. The
design process is shortened and facilitated also by the
usage of high-level languages for hardware description,
such as Verilog, VHDL, etc.

VHDL possesses some advantages, important for the
design, simulation and testing of complex systems. It is a
universal tool for description, covering almost all develop-
ment stages - programming, simulation, verification, syn-
thesis and documentation. It permits the design and simu-
lation of single-layer and multilayer structures, providing
the possibility for an arbitrary level of detailing, as well as
the parameterization of any type of characteristics.

Modern fast FFT processors, based on FPGA tech-
nology, have the following features:

• Multiple processing elements performing the func-
tion of butterfly units (radix-2) or dragonfly units (radix-4),
internal linear pipeline structure, which allows them to give
a result on every cycle of the system clock, and working
in series (cascaded) or in parallel.

• Data format - fixed point 2’s complement.
• Scaling strategy to avoid overflow.
• Synchronous SIMD array architecture.
The analysis shows that the low class (e.g. class 1

and 2) indirect hypercube topology is very suitable for
realization of fast FFT/FHT/RFFT/FCT processors for real-
time applications. It enables optimization of the resource
utilization, ensures low latency and high efficiency – the
main requirements for such systems.

As an example we shall describe two SIMD array
architectures based on the indirect hypercube concept and
implementing FFT, respectively RFFT/FHT/FCT algorithms
of a transpose type with fine granularity (two and four).

Parallel SIMD Array Architecture for Radix-2
FFT/RFFT/FHT/FCT

This architecture implements the concept of class 1
indirect hypercube. It consists of Generalized Crossbar
Switches performing the function of processor blocks (PB).
PB are connected between each other in a perfect shuffle
interconnection manner based on matching the input and
output group identifiers. So, every PB is connected to two
PBs for sending data and to two PBs for receiving data.

The processor block (figure 7) includes a simple 2´2
crossbar switch, acting as a processing element (PE), per-
forming the functions of a butterfly unit, and two dual-port
memories (DM) for storing initial data, intermediate and
final results (the doubling of DM number is necessary
because of the pipeline structure of the PE unit). For a
given stage of the FFT transform one of these two DMs
is used by PE as a source of data for the current butterfly
operations and the other DM is used for storing the results
of the current butterfly operations of the other PBs (two),

DIT (real-valued inputs)
FCT II combined last stage

DIF (complex-conjugated inputs)
FCT III combined first stage

Type E.0 (k = 0)
C(0) = Xf0(0) + Xf1(0)
C(N/2) = (Xf0(0) - Xf1(0)). cos(π/4)
C(3N/4) = Xf0(N/4).cos(3π/8) + Xf1(N/4).sin(3π/8)
C(N/4) = Xf0(N/4).sin(3π/8) - Xf1(N/4).cos(3π/8)

Type F.0 (k = 0)
Xf0(0) = X(0) + 2X(N/2).cos(π/4)
Xf1(0) = X(0) - 2X(N/2).cos(π/4)
Xf0(N/4) = 2(X(3N/4).cos(3π/8) +

X(N/4).sin(3π/8))
Xf1(N/4) = 2(X(3N/4).sin(3π/8) -

X(N/4).cos(3π/8))
Type E.1 (k > 0)
C(k) = (Xf0(k) + cos(2πk/N).Xf1(k) +

sin(2πk/N).Xf1(N/2-k)).cos(πk/2N) + (Xf0(N/2-k) +
cos(2πk/N).Xf1(N/2-k) - sin(2πk/N).Xf1(k)).sin(πk/2N)

 C(N-k) = (Xf0(k) + cos(2πk/N).Xf1(k) +
sin(2πk/2N).Xf1(N/2-k)).sin(πk/2N) - (Xf0(N/2-k) +
cos(2πk/N).Xf1(N/2-k) - sin(2πk/N).Xf1(k)).cos(πk/2N)

C(N/2 +k) = (Xf0(k) - cos(2πk/N).Xf1(k) -
sin(2πk/N).Xf1(N/2-k)).cos(π/4 + π k/2N) + (Xf0(N/2-k)
- cos(2πk/N).Xf1(N/2-k) + sin(2πk/N).Xf1(k)).sin(π/4+π
k/2N)

 C(N/2 -k) = (Xf0(k) - cos(2πk/N).Xf1(k) -
sin(2πk/N).Xf1(N/2-k)).sin(π/4 + π k/2N) - (Xf0(N/2-k) -
cos(2πk/N).Xf1(N/2-k) + sin(2πk/N).Xf1(k)).cos(π/4 + π
k/2N)

Type F.1 (k > 0)
 Xf0(k) = Xf(k) + Xf(N/2 + k)
 Xf0(N/2 - k) = Xf(N - k) + Xf(N/2-k)
 Xf1(k) = (Xf(k) - Xf(N/2 + k)).cos(2πk/N) -
(Xf(N - k) - Xf(N/2-k)).sin(2π/N)
 Xf1(N/2-k) = (Xf(N - k) - Xf(N/2-k)).cos(2πk/N) +
(Xf(k) - Xf(N/2 + k)).sin(2π/N)

Xf(k) = X(k).cos(πk/2N) + X(N-k).sin(πk/2N)
Xf(N - k) = X(k).sin(πk/2N) - X(N-k).cos(πk/2N)
Xf(N/2 + k) = X(N/2+k).cos(π/4 + π k/2N) + X(N/2-

k).sin(π/4 + π k/2N)
Xf(N/2-k) = X(N/2+k).sin(π/4 + π k/2N) - X(N/2-

k).cos(π/4 + π k/2N)

Table 3. Additional FCT butterflies

Processor element
7/3 -stage pipeline

DM A
write/
read

DM B
read/
write

0

1

0

1

0

1

0

1

0

1

0

1

Figure 7. Radix-2 processor block

2 2013 41information technologies
and control

which are connected with the given PB. DMs alternatively
change their role on a stage basis.

PE is realized as a 7-stage linear pipeline. It computes
radix-2 butterflies and yields a result every cycle.

The input data, as well as the intermediate results are
presented in a fixed point, 2’s complement format. Twiddle
factors (unique for different PEs) are held in coefficient
look-up tables (CLUT). From coefficients viewpoint, the
stages are divided into two classes: low stages and high
stages. The low stages are the first n1 stages. The high
stages are the remaining n2 stages. For the low stages
every PE needs one coefficient pair (e.g. sinx and cosx) per
a stage. For the high stages every PE needs totally 2n2-1

coefficient pairs. The set of coefficients for the high stages
of a given PE includes all the coefficients, whose argu-
ments have, as most significant digits of their binary pre-
sentation, the bit reversed number of PB. For RFFT/FHT/
FCT only D-values are generated. Two variants of complex
multiplication are possible – standard (4 multiplications/2
additions) and nonstandard (3 multiplications/5 additions).
A block-floating point is implemented for dealing with arith-
metic overflows.

DM addressing is in accordance with the Omega
approach and is based on the main property of the local
identifier – left/right cyclic rotation on transitions from a
stage to a stage in case of a natural/bit-reversed order of
the initial data. Four address sequences are generated –
two read and two write address sequences. The write ad-
dress sequences are obtained through left/right cyclic ro-
tation of the respective read address sequences. The ad-
dresses of the low parts of CLUTs follow the stage num-
ber. The algorithm for generation of the address sequence
for the high parts of CLUTs is similar to the respective
algorithm in the scalar case (one-processor system). The
addresses of RFFT/FHT CLUTs are generated on the base
of the codes (9) of the respective D-values.

Parallel SIMD Array Architecture for Radix-4
FFT/RFFT/FHT

This architecture implements the concept of class 2
indirect hypercube. It consists also of Generalized Crossbar
Switches performing the function of processor blocks. PBs
are connected between each other in a perfect shuffle rank-
2 interconnection manner based on matching the input and
output group identifiers. So, every PB is connected to
min(P, 4) PBs for sending data and to min(P, 4) PBs for
receiving data, where P, P=2p, is the total number of PBs.

The main differences in the organization of processor
blocks for radix-4 systems, compared with the organization
of PB for radix-2 systems are in the following items:

• Organization of the data memory.
• Organization of PE.
It is known that one of the basic problems connected

with the realization of fast FFT processors are the memory
conflicts. In the case of radix-2 systems these problems are
solved with the help of dual-port memories. In the case of
radix-4 systems it is necessary to use quad-port memories

for solving these problems. The use of such memories in a
pure form poses additional problems and disadvantages of
technological nature. The problem here is solved by an
alternative approach – configuring one quad-port memory
using four dual-port memories.

A starting point for the configuration of QM is the
local identifier (LI). The two most significant digits of LI
point to the QM reading port and the two least significant
digits of LI show the QM writing port. During the read/
write phases from QM, read/written four data items are
read, whose local identifiers differ only in the numbers of
the read/write ports. This means that the four data items
that have been stored in QM during the write phase through
various ports afterwards are read from one and the same
port of QM during the next reading phase. This is the
essence of the problem “memory conflicts” which requires
the use of multi-port memories – quad-port memories in
radix-4 case.

These specific features of QM usage offer a possibil-
ity for configuring a QM by means of four DMs on the
base of the following rules (figure 8):

• Each DM receives a two-digit binary number (iden-
tifier).

• One of the digits of these identifiers (e.g. the most
significant) together with the DM write port number speci-
fies the QM write port number.

• The other digit (e.g. the least significant) together
with the DM read port number specifies the QM read port
number.

• DM selection for read/write operations, as well as
data multiplexing during a read phase is accomplished with
the help of the respective digits of the local identifier.

This approach can be applied for configuring a dual-
port memory on the base of four standard (one-port) memo-
ries.

The processor block (figure 9) includes a simple 4´4
crossbar switch acting as a processing element (PE), per-
forming the functions of a dragonfly unit, and two quad-
port memories (QM) for storing the initial data, intermediate
and final results. For a given stage of the FFT transform,
one of these two QMs is used by PE as a source of data
for the current dragonfly operations and the other QM is
used for storing the results of the current dragonfly opera-
tions of the other PBs, which are connected with the given
PB. QMs alternatively change their role on a stage basis.

PE is realized as a 8-stage linear pipeline.
Twiddle factors (unique for different PEs) are also

held in coefficient look-up tables. For each PE three sets
of tables are generated - for arguments arg, 2.arg and
3.arg (4.a/b). As in the case of radix-2, each table consists
of two parts, called lower and upper. The lower part con-
tains the coefficients needed for the lower stages, and the
upper – for the upper stages. For RFFT/FHT/FCT only D-
values are generated. The block-floating point is imple-
mented for dealing with arithmetic overflows.

QM addressing is in accordance with the Omega
approach and is based on the main property of the local

2 201342 information technologies
and control

DM
01

0 0

1 1

DM
10

0 0

1 1

DM
11

0 0

1 1

DM
00

0 0

1 1

00 00

01

01

10
10

11
11

identifier – left/right 2-digit cyclic rotation on transitions
from a stage to a stage in the case of a natural/bit-reversed
order of the initial data. Eight address sequences are gen-
erated – four read and four write address sequences. The
write address sequences are obtained through left/right
2-digit cyclic rotation of the respective read address se-
quences.

Implementations
Three types of implementation are possible. The 1-

phase architecture performs the 3 phases (data input, data
transform and data output) sequentially. The 2-phase
architecture performs the transform phase simultaneously
with one of the other phases (data input or data output).
The 3-phase architecture, called also a streaming architec-

Figure 8. Configuring of QM using four DMs

Processor element
8/4-stage pipeline

00 00

01 01

10 10

11 11 QM
B

read
write

00 00

01 01

10 10

11 11

QM
A

write
read

00 00

01 01

10 10

11 11

00
01

10
11

Figure 9. Radix-4 processor block

ture, provides simultaneous execution of the three mentioned
phases. (The processor blocks presented in figures 7-9 are
for the 1-phase radix-2/radix-4 architectures. 2-phase archi-
tectures require one more DM/QM per PB and 3-phase
architectures require two more DMs/QMs per PB).

Of these three types of architectures 1-and 3-phase
radix-2 and radix-4 architectures are implemented. The imple-
mentations are made on Xilinx FPGA (Spartan3, Virtex 5)
for different values of the input parameters. The physical
realization, as well as the testing in a real mode is per-
formed for radix-2, 4-processor architecture for FFT on 256
points, based on a development board containing a FPGA
Spartan 3E series of Xilinx company. For the purposes of
development ISE Webpack 9.1/10.1 products of the same
company are used.

2 2013 43information technologies
and control

The resource utilization is a linear function of all
input parameters.

The system latency (L) and throughput (T) are as
follows:

(12) L = logRN (N/(PR) + K - 1) tclk ,
T = N L-1 ,

where
P is number of processors,
K is the pipeline length – 7 cycles for radix-2 case and
8 cycles for radix-4 case;
R is the radix.
The described systems provide the following advan-

tages:
• Parametric generation and utilization in a wide op-

erational range of input parameters.
• Utilization of distributed shared dual-port memo-

ries, as well as their connection with the processor ele-
ments according to the perfect shuffle rule, solving effi-
ciently two basic problems - switching of the intermediate
data between processors, and memory conflicts.

• Uniform control for the different PBs – realization
of SIMD architecture.

• Theoretically, these architectures allow unlimited
scalability depending in practice only on the FPGA capa-
bilities.

• The system performance is a linear function of the
number of PB.

• The optimal resource utilization is a linear function
of all input parameters.

• The implementation of a block-floating point pro-
vides efficient strategy for treating the overflow problem.

The comparison between the two (complex FFT and
FHT/RFFT/FCT) architectures (with respect to performance
and efficiency, and resource utilization), shows that an N-
point FFT architecture in practice is equivalent to a 2N-
point FHT/RFFT/FCT architecture.

Summary

Natural architectures are such architectures, which
are derived from the signal graph (flow of data) of the
corresponding algorithm. That is why they are considered
to be the most appropriate architectures for parallel realiza-
tion of this algorithm. For the Fast Fourier Transform
algorithm (FFT) two types of natural architectures are known
– the direct and the indirect hypercube. The direct
hypercube has been investigated and analyzed a long time
ago. The development of the concept of “Indirect
Hypercube”, although quite old, is too difficult, controversal
and still unfinished.

The transpose type algorithms are important parallel
FFT algorithms which dominate in the two main trends of
parallel implementation of parallel FFT algorithms. The first
trend, developed for the goals and tasks of computational
mathematics, is associated with the development of modern
MIMD computer architectures with distributed memory.
The second trend is connected with the development of

embedded fast FFT processors necessary for fast real time
applications.

Fast Hartley transform (FHT)/Real-valued Fast Fou-
rier transform (RFFT) algorithms are important Fourier-re-
lated transforms, because they lower twice the operational
and memory requirements when input data is real-valued.
These types of algorithms, however, have irregular compu-
tational structure, which makes their parallel implementa-
tion a very difficult task.

Based on the results achieved so far, this paper pre-
sents a further development of the concept Indirect
Hypercube as a natural architecture for FFT/RFFT/FHT/
FCT parallel transpose type algorithms.

A method for dataflow presentation and analysis of
a parallel radix-2 FFT algorithm is proposed, based on
multistage interconnection networks (Omega network). Two
types of identifiers (group and local) are derived from the
global identifier (index) and their properties are analyzed.
Based on the main properties of these two identifiers,
parametrical synthesis of an indirect binary hypercube is
performed.

The generalization with respect to granularity/radix of
the above mentioned method is performed. It is based on
multistage interconnection networks (Omega-similar net-
work) and allows dataflow presentation and analysis of the
transpose type algorithms with all possible values of granu-
larity/radix. The properties of the group and local identifi-
ers are generalized, as well as the parametrical synthesis of
the indirect hypercube on the basis of the corresponding
Omega-similar networks.

Generalization with respect to RFFT/FHT/FCT of the
above mentioned method is performed. Converting the
standard FFT transpose type algorithms allows creation,
dataflow presentation and analysis of the relevant RFFT/
FHT/FCT transpose type algorithms.

Two types of SIMD array FFT/RFFT/FHT architec-
tures are described (radix-2 and radix-4), based on the
corresponding indirect hypercube.

These two types of architectures are implemented as
fast FFT processors for real time applications. The perfor-
mance estimation is carried out, as well as estimation of the
resource utilization.

References

1. [Hartley-1] Hartley, R. V. L. A More Symmetrical Fourier
Analysis Applied to Transmission Problems. Proc. IRE 30, 1942,
144-150.
2. [Danielson-1] Danielson, G. C. and C. Lanczos. Some Improve-
ments in Practical Fourier Analysis and Their Application to X-ray
Scattering From Liquids. J. Franklin Inst., 233, April 1942, 365-380,
435-452.
3. [Cooley-1] Cooley, J. W., J. W. Tukey. “An Algorithm for the
Machine Calculation of Complexes Fourier Series. – Math. Comput.,
19, 1965, No. 90.
4. [Singleton-1] Singleton, C. A. Method for Computing the Fast
Fourier Transform with Auxiliary Memory and Limited High-Speed
Storage. – IEEE Transactions on Audio and Electroacoustics, AU-
15, June 1967, 91-98.

2 201344 information technologies
and control

5. [Bergland-1] Bergland, Glenn D. A Fast Fourier Transform
Algorithm for Real-valued Series. – Communications of the ACM,
11, Oct. 1968, 10, 703-710.
6. [Stone-1] Stone, H. S. Parallel Processing with the Perfect Shuffle.
– IEEE Trans. Computers, C-20, 1971, 153-161.
7. [Ahmed-1] Ahmed, N., T. Natarajan and K. R. Rao. Discrete
Cosine Transform. – IEEE Transactions on Computers, Jan. 1974,
90-93.
8. [Pease-1] Pease, M. C. The Indirect Binary n-cube Micropro-
cessor Array. – IEEE Trans. on Computers, May 1977.
9. [Bracewell-1] Bracewell, R. N. Discrete Hartley Transform. –
J. Opt. Soc. Am., 73, 1983, 12, 1832-1835.
10. [Bracewell-2] Bracewell, R. N. The Fast Hartley Transform. –
Proc. IEEE, 72, 1984, 8, 1010–1018.
11. [Ulman-1] Ulman, Ronald F. An Algorithm for Fast Hartley
Transform. Technical Report, Stanford University, 1984.
12. [Bhuyan-1] Bhuyan, L. Interconnection Networks for Parallel
and Distributed Processing. – Computer, June 1987, 9-12.
13. [Sorensen-1] Sorensen, H. V., D. L. Jones, M. T. Heideman,
C. S. Burrus. Real-valued Fast Fourier Transform Algorithms. –
IEEE Trans. Acoust. Speech Sig. Processing, 35, 1987, 849–863.
14. [Marchesi-1] Marchesi, M., G. Orlandi, F. Piazza. A Systolic
Circuit for Fast Hartley Transform. IEEE International Symposium
on Circuits and Systems, 7-9 June 1988, 2685-2688.
15. [Rao-1] Rao, K., P. Yip. Discrete Cosine Transform: Algo-
rithms, Advantages, Applications. Boston, Academic Press, ISBN 0-
12-580203-X, 1990.
16. [Zapata-1] Zapata, E. L., F. Arguello, F. F. Rivera, J. D. Bruguera.
Multidimensional Fast Hartley Transform onto SIMD Hypercubes.
– Microprocessing and Microprogramming, 29, September 1990,
2, 121-134.
17. [Chang-1] Chang, L.-W., S.-W. Lee. Systolic Arrays for the
Discrete Hartley Transform. – IEEE Transactions on Signal Pro-
cessing, 39, Nov. 1991, 11, 2411-2418.
18. [Zapata-2] Zapata, E. L., F. Arguello. A VLSI Constant Geom-

etry Architecture for the Fast Hartley and Fourier Transforms. –
IEEE Transactions on Parallel and Distributed Systems, 3, Jan.
1992, 1, 58-70.
19. [Liu-1] Liu, K. J. R., C.-T. Chiu. Unified Parallel Lattice Struc-
tures for Time-recursive Discrete Cosine/Sine/Hartley Transforms.
– IEEE Transactions on Signal Processing, Mar. 1993, 1357-1377.
20. [Arguello-1] Arguello, F., J. D. Bruguera, R. Doallo, E. L.
Zapata. Parallel Architecture for Fast Transforms with Trigonomet-
ric Kernel. – IEEE Transactions on Parallel and Distributed Sys-
tems, 5, Oct. 1994, 10, 1091–1099.
21. [Uniyal-1] Uniyal, P. R. Transforming Real-valued Sequences:
Fast Fourier Versus Fast Hartley Transform Algorithms. – IEEE
Transactions on Signal Processing, 42, Nov. 1994, 11, 3249-3254.
22. [Mazzeo-1] Mazzeo, A. and U. Villano. Parallel 1D-FFT Com-
putation on Constant-Valance Multicomputers. – Software – Prac-
tice and Experience, 25, June 1995, 6, 681-704.
23. [Zhenyu Liu-1] Zhenyu, Liu, Yang Song, Takeshi Ikenaga,
Satoshi Goto. A VLSI Array Processing Oriented Fast Fourier
Transform Algorithm and Hardware Implementation. GLSVLSI’05,
17–19 April 2005, Chicago, Illinois, USA.
24. [Jones-1] Jones, K. J. Design and Parallel Computation of
Regularised Fast Hartley Transform. – Vision, Image and Signal
Processing – IEEE Proceedings, 153, 9 Feb. 2006, 1, 70-78.
25. [Phil-1] Philipov, Ph., V. Lazarov, Z. Zlatev, M. Ivanova. A
Parallel Architecture for Radix-2 Fast Fourier Transform. IEEE John
Vincent Atanasoff 2006 International Symposium on Modern Com-
puting, Sofia, 2006, 229-234.
26. [Phil-2] Philipov, Philip, Ilian Costov, Vladimir. Lazarov, Zlaty
Zlatev, Milena Ivanova. Implementation of a Parallel Architecture
for Radix-2 Fast Fourier Transform. – Information Technologies
and Control, ISSN 1312–2622, 2008, No. 2, 12-16.
27. [Phil-3] Philipov, Ph. Investigation of the Indirect Hypercube
as a Natural Architecture for Realization of the Fast Fourier Trans-
form Algorithm. PhD Thesis, Sofia, 2010.

Manuscript received on 5.12.2013

Philip Philipov was born in 1952. He
graduated the Technical University – Sofia
as an engineer in electronics. Since 1993 he
is with the Institute for Information and
Communication Technologies (ICCT), Bul-
garian Academy of Sciences, as a research
associate. In 2010 he received PhD degree.
Since 2012 he is with EPU Pernik as an
assoc. professor in the field of Informatics
and computing technique. His main inter-

ests are computer architectures, parallel processing and analytical
modeling.

Contacts:
Institute of Information and Communication Technologies

Bulgarian Academy of Science, Sofia
 e-mail: filip@bas.bg

Vladimir Lazarov was born in 1942. He gradu-
ated the Technical University – Sofia as a com-
puter engineer in 1968 and received Ph.D. de-
gree at Sankt Petersburg Electrical Institute in
1974. From 1976 to 1990 he was chief con-
structor of many computers and devices in the
Central Institute for Computing Technique in
Sofia. Since 1993 he is with the Institute for
Information and Communication Technologies

(ICCT), Bulgarian Academy of Sciences – Sofia as a Principal
Scientific Officer. Since 1997 he is a guest professor at Technical
University – Plovdiv. Since 2011 he is Head of BA Program
“Informatics” and MA Program “High Performance Computer
Systems” at EPU, Pernik. His main interests are computer archi-
tectures, parallel processing, supercomputing and simulation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [581.102 822.047]
>> setpagedevice

