
An Approach to Provide Network Gapabilities'
based Added Value

Key Words: 0SA interfaces; XML-based languages; NGN service
creation.

Abstract. A new mark-up approach to next generation service creation
is proposed. The approach can be summarized as development of a
scripting language SLPL that exploits 0SA (0pen Service Access)
seruice capability features like mobility, callcontrol, data session control,
messaging, user interaction etc. Language constructions for data
types and method definitions, flow control, time measuring and
supervision, database access are provided. Examples of SLPL
descriptions are presented.

l . lntroduction

Next Genera t ion Ne twork (NGN) sha l l p rov ide the
capabi-lities (infrastructure, protocols, etc.) to make creation,
deploy-ment and management of all kinds of services (known
or not yet known) possible. This comprises a wide variety of
seruices including voice, video, audio and visual data, via ses-
sion and interactive based services in unicast, multicast and
broadcast modes, Wireline and wireless technologies can be
used inter-changeably for delivery of services. Furthermore, within
the NGN there is an increased emphasis on seruice customization
by service providers whereby some of them will offer their cus-
tomers the possibility to customize their own services. NGN
should be comprised of service related APls (Application
Prog-ramming Inter-faces) in order to supporl the creation,
provision-ing and management of seruices.

The most promising umbrella technology for seruice deliv-
ery in NGN is Parlay/0pen Service Access (0SA). 0SA covers
existing technologies as service capabilities and provides for
them features and seruices. The way 0SA is defined, it can easily
take onboard new technologies.

One of the ways of implementing 0SA is by the use of
eXtensible Mark-up Language (XML). The beauty of XML is that
it is both human and machine-readable. lt is easy to write a
parsing program to recognize XML tags, to find them in an XML
message and then to extract the information contained in the
tagged f ields.

ln fact, the use of XML has become prevalent in general
and there exist a number of XMl-based languages that support
NGN service creation.

XML-based languages l ike CPL, VoiceXML, SCML [1,2]
possess restricted expressive power related to call control and
call-related user interactions. These languages are mainly used
to model and execute initiation, manipulation, termination and

l. Atanasov. E. Pencheva

clearing of communication sessions.
, Some of existing XML-based languages for NGN seruice
creation are platform dependent meaning their orienktion toward
SlP, Java virtual machine and others, while none of them takes
into account the 0SA technology [3,4]. 0SA APls provide much
more network capabilities than call and data session control.
Using functional abstraction provided by 0SA APls the service
developer can benefit added value from network capabilities
such as mobility, charging, presence and availability, user inter-
action and others. 0SA APls hide underlying network and protocol
complexity from service developers and make easier seruice
creation for wider paft of lT community.

The ongoing research concentrates on a new mark-up
approach to service creation. lt is oriented towards 0SA APls in
order to exploit service capability features like mobility, call
control, data session control, messaging, user interaction etc.
To approve the approach applicability we define XML-based lan-
guage constructions that supporl the whole variety of 0SA APls
and allow description of service logic in terms of flow control,
t ime measuring and superuision and database access.

ln this paper we present in brief the methodology of de-
riving language constructions that correspond to application
domain. To illustrate the idea of language synthesis we present
language constructions for data type definition and give ex-
amples,

l l . Methodology of Approach to Service
Greation

The methodology of the approach for the NGN seruice
creation might be depicted as development of a language that
contains domain specific constructions. The language has to
reflect the objects and their relationships in the application
domain under given constraints. The constraints are determined
by support of access to network functions through 0SA APls. 0SA
APls provide programmability of network resources in terms of
objects and methods, data types and parameters that operate on
those objects. Consequently, the approach has to provide lan-
guage constructions for invocation of the 0SA API methods and
processing the results returned in the context of service logic.
To allow time-dependent processing and service customization,
constructions fortime handling and database access are needed,
The methodology for deriving added value from network func-
tions by tagging is shown in figure 1.

Based on the domain analysis it can be stated that lan-
guage constructions should provide means for the fol lowing:

. Description of data types, supported by 0SA inteffaces and
definition of variables of supported data types (statements for data

E--

3 ?007irrf grrnatio4 technologies
and control

Domain analvsis Domain
description

Error analysis
Language

consffuction
synthesis

BNF rules

Java code

Figure 1. Methodology of the markup approach t0
service creation

types and variable def inition s),
o Description 0f 0SA interface and application methods

with parameters, type of result returned and exceptions that might
arise (statements for interface and method definitions).

o Invocation 0f 0SA interface methodsto access network
functions (' invoke-statement').

o Capturing exceptions to define exception processing
(' rais es-statement').

r Method synchronization to provide synchronous
commu-n ications ('wait-statement').

. Flow control to provide decision making, multiple
choice, action reiteration etc. ('if-statement', while-statement','case-statement').

o Elementary arithmetic operations to allow applying of
simple algorithms (addition, subtraction, multiplication, division).

. Tools fortime measuring and superuision to allowtime-
based decision making (timers, operationto extracttimeand date).

r Database access to allow retrieve, update, insert and
delete data in external databases (methods fordata retrieve, update
and conversion).

We call the language SLPL - Service logic processing
language. SLPL is an XML- based language and proposes declara-
tive wayfor seruice logic description.

The synthesis of language constructions comes to define
the syntactic rules and to clarify the semantics of the rules. At
this phase it should produce the language rules in form of
alphabet, sets of keywords, separators, operators, literals, gram-
mar productions and code mapping. The textual form is con-
vefted into more precise formal definition - Backus-Naur forms
(BNF). In case of ambiguity or inconsistency the error analysis
is initiated.

Using the previously defined code mappings and the syn-
tactic rules translation into Java code is performed in order to
assist the further building of language translator/interpreter. An
error report is generated on having syntactic inconsistency or
incorrect format of BNFs.

Two reasons determine the choice of Java as the imple-
mentation language. The first one is a that Java is a platform
independent language. Java programs are not compiled directly
to machine code, as in case with C++ and most other program-
ming languages, but are translated to an intermediary byte code
for a viftual machine.

Another reason for the choice of Java is that the applica-
bility of the SLPL and the suggested mark-up approach for
service creation is verified by a Java based Parlay/0SA simu-
lator [7]. The Ericsson Network Resource Gateway SDK (version
R5A02) simulates Parlay/OSA interfaces and its interface method
calls are Java-based,

The BNF translator can be considered as a 'translator-

generator'. lf we pass new BNF rules at the entrance of this
translator-generator it will generate Java code that 'understands'

these grammar rules.
The BNF translator can find some syntactic or semantic

error like incompleteness or ambiguity in the BNF rules, defining
SLPL formal grammar. Ranking the severity of the errors re-
pofted it might be necessary to reconsider the domain descrip-
tion, running again a new iteration of domain analysis. This
might be due to lack of certain rules i.e. semantic inconsistency.
0n the other hand, the language analysis might need a rerun in
order to reformulate the BNF rules found as erroneous.

The approach is assuming that the service logic execution
environment is the 'natural container'forthe execution phase of
the service logic script in its life-cycle.

The interpretation of the logic is separated into two pro-
cessing phases - front one and back one. Figure 2shows the
interpretational approach of the SLPL service execution.

The front processing phase is in charge of loading the
service script i.e. making an instance of the logic script.

The 0SA interfaces are specified in Interface Description
Language (lDL)which is programming language independent. An
IDL specification describes an object interface in terms of the
methods it supports. Each method has a type (the result type),
a list of parameters and a list of exceptions that it can generate.
A huge amount of data types on which methods operate are
included in IDL specification. To reduce efforts needed for data
types and method definition in SLPL an 'import' construction is
provided which al lows including SLPL descript ions of methods
and data types in the definition parl of the service logic script.
After merging some 'ready-to-use' parts of script, which might
be located in the script repository, accessed in shared library
manner, and thus doing the preprocessing over the original
instance, the SLPL preprocessor produces a merged, extended
instance.

The main task of the SLPL lexical analyzer is to recognize
the lexical units of the language like identifiers, terminal sym-
bols, literals and s0 0n. The extended instance of the service
script is lexically converted into a sequence of tokens and then
the sequence is passed as an input to the parser.

The SLPL parser performs syntax analysis of the input
sequence of tokens in orderto determine its grammatical struc-
ture with respect to SLPL formal grammar. The SLPL parser is
to decide whether the sequence is acceptable in the terms of
the syntactic rules of the language, lf it is to be rejected, then
error log is open which is omitted from the figure for the sake

2E 3 ?007 irrforrnation technolocries
andcoritrol

t-

of simplicity. Parsing transforms input sequence of tokens into
a data structure (a tree), which is suitable for later processing
and which captures the implied hierarchy of the input.

, Figure 2. Interpretational approach

'
The parsed tree of service logic is the internal format

which is then the input for the interpretation. The interpreter is
doing the mapping of tokens' semantics onto the Java code
which has to be invoked. However, if any kind of run-time
exceptional situation arises, it is firstly logged and just then
caught for further consumption.

To demonstrate the language synthesis we provide markup
constructions for data type definition in the next section.

l l l . Data Type Definition in SLPL

The structure of a SLPL seruice script is modular and
encompasses definition part and executive part. The definition
part involves type definitions, variable definitions and definition
of the methods supported by the application-side interlaces. The
executive part is bui l t mainly of invocations of methods
sup-ported by the server-side interfaces.

Here we put the stress on the definition parl where the
local types, variables and methods are defined. The section
considers SLPL constructions for data type definitions according
to data types defined for 0SA APls.

General data type definitions are specified in 3GPP TS
29.198-2 Recommendation and specific APls data type defini-

tions are given in the corresponding 3GPP TS 29.198-xx Rec-
ommendations.

The types defined are simple or complex types. Simple
types encompass the following: lnteger, Long, String, Float, Double
and Boolean. Complex types are specified as Enumerated types,
Sequences of data elements, Numbered sets of data elements
and Tagged choices of data elements. The formal SLPL gram-
mar for 0SA APls data types in Backus-Naur Form (BNF) is
shown in Figure 3. The Language terminal symbols are pre-
sented in bold.

The SLPL definition of an enumerated type is denoted by
the terminal symbol 'structure' and consists of a structure name
and an enumerated type body. The terminal symbol 'o' (like
'only_one_of') is used to enumerate the elements in the enu-
merated type body. This definition encompasses the productions
4, 5 and 6.

The SLPL definition of a sequence of data elements is also
denoted by the terminal symbol 'structure' but consists of a
structure name, structure type and structure elements. This
definition encompasses the productions 7, B and 9.

The SLPL definition of a numbered set of data elements is
denoted by the terminal symbol 'sequence' and consists of a
sequence name and sequence type (productions 10 and 11).

The SLPL definition of a tagged choice of data elements
is presented with productions from 12to 21. lt is denoted by the
terminal symbol 'union' and consists of a union name, a switch
node and a case list. The switch node (denoted by 'switch')

defines the tag element type used for the choice, while the case
list enumerates the possible data elements based on the tagged
choice. The terminal symbols 'on val' are used to denote each
of the choices. The definition encompasses the default choice
also.

The rest productions from 22 to 33 in the figure 3 are
more general and support the enlisted non-terminal symbols

The declaration of variables of data types defined follows
the similar approach. For example the productions 34, 35, 36,
37 and 38 in figure 3 present rules for SLPL declaration of a
variable of numbered set of data element type. The terminal
symbol 'item' denotes a data element, while the terminal symbol
'index' points the consecutive number of that data element.

To give an example let us consider the SLPL definition of
a tagged choice. According to Recommendations TpAoC0rder is
a tagged choice of data elements that specifies the charge plan
for the cal l . The tag element type used for the choice is
TpCallAoC0rderCategory. When the tag element has value
P_CHARGE_ADVICE_INF0, then the union has an element of name
ChargeAdvicelnfo which is of type Tp0hargeAdvicelnfo. When the
tag element has value P_CHARGE_PER_TIME, then the union has
an e lement o f name ChargePerT ime wh ich i s o f t ype
TpChargePerTime. When the tag element has value P_CHA-
RGE_NETWORK, then the union has an element of name
NetworkCharge which is of type TpString.

Figure 4 shows an example of a SLPL description of a
tagged choice.

As an example of a SLPL variable declaration let us
con sid er the meth od periodic Locatio n Reportin gStartReq 0 of Mo-
bility 0SA APl. The method is used to request periodic reports
of the location for several users. Before the method invocation

Front processing

Back processing

irrfgrrnation tectrnologries
andcontrol 3 ?007 z'.)

l . t y p e _ s p e c : : =
2 . s i m p l e _ t y p e : : =
3 . c o m p l e x _ t y p e : : =
4 . e n u m e r a t e d _ t y p e : : =
5 . e n u m _ b o d y ' , =
6 . e n u m _ e l e m e n t s : : =
7 . s t r u c t u r e d _ t y p e : : =
8 . s t r u c t _ t y p e : : =
9 . s t r u c t _ e l e m e n t s : : =
1 0 . s e q L l e n c e _ t y p e : : =
l l . s e q _ t y p e : : =
1 2 . u n i o n _ t y p e : : =
I 3 . s w i t c h _ b y i i =
1 4 . s w i t c h _ t y p e : : =
I 5 . c a s e _ l i s t : : =
I 6 . a _ c a s e : : =
1 7 . c a s e _ h e a d : : =
I 8 . c a s e _ l a b e l : : =
1 9 . c a s e _ t a i l : : =
2 0 . c a s e _ e n d : : =
2 1 . d e f a u l t _ c a s e : : =
22 . cons tan t_e lemen t_spec
2 3 . e l e m e n t _ s p e c
24 . e lemen t_con s t_va lue
2 5 . c o n s t a n t _ i n t e g e r _ l i t e r a l
2 6 . c o m p l e x _ t y p e _ i d e n t i f i e r
2 7 . t _ n a m e
2 8 . a _ n a m e
2 9 . a _ t y p e
3 0 . o p t i o n
3 1 . q u o t e
3 2 . s l a s h
3 3 . i s
3 4 . a n y _ v a l u e : : =
3 5 . c o m p l e x _ v a l u e : : =
3 6 . s e q u e n c e _ v a l u e : : =
3 7 . s e q _ i t e m s : : =
3 8 . s e q _ i t e m : : =

s i m p l e _ t y p e I c o m p l e x _ t y p e
i n t e g e r I l o n g I f l o a t I d o u b t e I b o o l e a n I s t r i n g
e n u m e r a t e d _ t y p e I s t r u c t u r e d _ t y p e I s e q u e n c e _ t y p e I u n i o n _ t y p e
s t r u c t u r e t _ n a m e e n u m _ b o d y s l a s h s t r u c t u r e
o p t i o n e n u m _ e l e m e n t s s l a s h o p t i o n
c on s tan t_e le m e n t_s pec +
s t r u c t u r e t _ n a m e { s l a s h I s r r u c t _ r y p e }
s t r u c t _ e l e m e n t s s l a s l r s t r u c t u r e
e l e m e n t _ s p e c +
s e q u e n c e t _ n a m e { s l a s h I s e q _ t y p e }
a _ t y p e s l a s h s e q u e n c e
u n i o n t _ n a n t e s w i t c h _ b y c a s e _ l i s t s l a s h u n i o n
s w i t c h i s q u o t e s w i t c h _ t y p e q u o t e
i n t e g e r I l o n g I b o o l e a n I e n u m e r a t e d _ t y p e
a_case+ [de fa L r l t _case]
c a s e _ h e a d e l e m e n t _ s p e c c a s e _ t a i l
c a s e _ l a b e l +
o n v a l i s q u o t e s t r i n g q u o t e
c a s e _ e n d +
s l a s h o n
d e f a u l t e l e m e n t _ s p e c s l a s h d e f a u l t

I

: : =
t = '

any_ l i t e ra l I con i p l ex_va lue
e n u m _ v a l u e I s t r u c t _ v a l u e I s e q _ v a l u e I u n i o n _ v a l u e
sequence { s l ash I seq_ i t em s s l ash sequence }
seq_ i t em +
i t em i ndex i s quo te i n tege r_ l i t e ra l quo te any_va lue s l as l r i t em

e l e m e n t _ s p e c e l e m e n t _ c o n s t _ v a l u e
e l e m e n t a _ n a m e a _ t y p e
m i n v a l u e i s c o n s t a n t - i n t e g e r - l i t e r a l m a _ x v a l u e i s c o n s t a n t _ i n t e g e r _ l i t e r a l
q u o t e i n t e g e r _ l i t e r a l q u o t e
i d e n t i f i e r
n a m e i s q l r o t e c o m p l e x _ t y p e _ i d e n t i f i e r q r . r o t e
n a m e i s q u o t e s t r i n g q u o t e
t y p e i s q u o t e { s i m p l e _ t y p e I c o m p l e x _ t y p e _ i d e n t i f i e r } q u o r e

: , ,

Figure 3. Formal grammar definition 0f SLPL data types

its parameters have to be set. According to 3GPP specifications
the parameters of the method are given as shown in figure S.

, The first parameter 'appl' of lpAppUserlocationRef type is
the reference indication of the seruice logic instance subscribed
to lpUserlocation interface. The requested reporting intervar is
presented by 'replnterual' that is of TpDuration. The 'users'

parameter is of TpAddressSet type, that is a numbered set 0f
users. The abstraction of the user is limited to his 0r her
address presented by a structure of TpAddress type. The spe-
cific infor-mation requested by service logic concerning roca-
tion of the users is contained in the 'request' parameter 0f
TpLocationRe-quest type. The TplocationRequest type is a struc-
ture of the following elements: requested accuracy ('requested-
Accuracy'); response t ime ('requestedResponseTime'); re-
quested altitude ('requestedAltitude'); type of location ('type')
that might be current, current 0r last, or initial; and requested
location method ('requestedLocationMethod').

The description of the other data types can be found in
lel

Figure 6 illustrates the sLPL definition of the arguments
of the meth0d periodicLocationReporlingstartReq following the
Mobility 0SA APl.

In SLPL predefined types 'Date', 'Time', 'DateTime'
and'Duration'

based 0n the type float are introduced to handle with

<union name="TpAoCOrder"
swi tch="TpCall AoCOrderCategory">

<on VaI="P_CHARGE_ADVICE_INFO">
<element name="ChargeAdvicelnfo"

type=" TpChargeAdv i celn fb"/>
</on>
<on vaI="P_CHARGE_PER_TIME">

<element name="ChargePerTi me"
ty pe="TpChargeperTi me"/>

</on>
<on val="P_CHARGE_NETWORK">

<element name="NetworkCharge"
type="string"/>

</on>
</union>

Figure 4. SLPL description of the TpAoC0rder type

diclocation Reportin gStartReq(appl : i n IpAppUser-
ocationRef, users: in TpAddressSet, request : in
plocationRequest, replnterval: in TpDuration) :
pAssignmentlD

Figure 5. IDL definit ion of periodiclocationReportingStartReq
method

periodic
Loca
TpL<
ToAr

3 0 3 ?007 irrf orrnation t echnolocrie s
andcoritrol

a notion of 'real' time. Two operations 'CurrentDate' and'CurrentTime' are used to acquire the value of the current time,
Also, the concept of timers is adopted as a predefined type.
When a timer is set using operations 'SetTime' or 'SetDate', a'Time' 0r 'Date' value is associated with the timer respectively.
When a timer is reset by 'Reset' operation, the associated value
is lost. In many applications the decisions are made on the
base of day of week so the enumerated type 'Day' is defined
and is used to denote the days of week.

In 0SA data types related to time and date are based on
TpString. Time related data types in SLPL consider the fact that
service logic often makes decisions on date, time and day of
week. 0perations on float type are more flexible than those on
string type. The SLPL interpreter is responsible for type conver-
sion.

Figure Z shows time-related data types in SLPL.

lV. A SLPL Example of Service Logic Based
on 0SA APls

To illustrate the suggested approach to service logic
description we consider an application that exploits 0SA inter-
faces for user interaction and call control. lmagine ,,Happy birlh
day" company that receives requests by clients and sends
greetings by phone (e.9. musical or voice greetings 0n re-
quested dates with the appropriate content for the occasion).

0n receiving a request a record is created in a database.
The service logic looks up daily in the database and retrieves
the set of records corresponding to the current date. lf there are
some records the service logic creates a call to the particular
number and plays the greeting.

The simplified service logic script in SLPL is shown in
figure B. Local types, variables and methods are defined in the
definition part of the script. The database record type is defined
as a structure of 3 elements: the date of greeting of type Date,
the phone number to be dialed of type Tplnt 32 and the greeting
lD to be played of type TpString. A type of set of database
records is defined as a numbered set of data elements. The
database query result consists of number of records in the
query result and the set of database records. Variables of the
defined types are declared. A variable of type Duration repre-
sents the database look up interval and this interval is super-
vised by the use of variable of type Timer. The methods defined
are local and include ,,DB_retrieve" and ,,DB_c0nversi0n", and
also methods ,,routeRes" and ,,callEnded"suppofted by lpApp0all
interface and method ,,sendlnfoRes" of lpAppUlCall interface.

The executive part of the seryice logic script is organized
as an endless loop. First the current date is yielded. Then a SQL
statement which retrieves all database records with date of
greeting equal to the current date is created and the method
,,DB_retrieve" is invoked. The result returned is used as an
argument of method ,,DB_conversion" invocation. The number
of retrieved records and the set of these records are stored in
the variable ,,a_DB_res" as a result of conversion. For each of
the retrieved records the following is done: a cail is created and
routed to the phone number in the record and a user interaction
is started that plays the greetings; afterthe end of the call, it

<id name="users" type="TpAddressSet">
<sequence>

<i tem index="0">
<structure>

<element name="plan" value = "p_ADDRESS_PLAN_IP"/>
<element name="addrstring" value = " 164.23.7 .3" 1>
<element name="name" value = "" />
<element name-"presentation" value = " 1"/>
<element name="screening" value = "I"/>
<element name="subaddrstrins" valLle = ""/>

</structure>
</item>
<item inclex=" 1">

<structure>
<element nnple=" pkln " val ue= " p_ADDRESS_PLAN_E 164" l>
<element name="addrstr ing" value = "+359888010 l0 l " />
<glement nzlmg="name" vall le = ""/>
<element nxmg="prgsentation" value = "2"/>
<element nalne="screening" value = "2"/>
<element name="subaddrstring" vahle = ""/>

</structure>
</item>

</sequence>
</id>
<id name="request" type="TpLocationRequest">

<structure>

<e lement n ame= " req uestedacc u racy " val Lle= " 2.0" I >
<element name="requestedresponseti me">

<structure>
<element name="responsetime" value="0"/>
<element name="timefvalue" value="2695 l "/>

</structure>
</element>
<element name="altituderequested" val ue= "f'alse "/>
<element name="type" value="0"/>
<element narng=" priority" value="0"/>
<element name=" fequestedlocation method" val ue=" "/>

</structure>
</id>
<id name="reportinginterval" type="integer" value="250"/>

Figure 6. SLPL description of variables for starting
periodic location repofiing

<al ias name="Date" type="Float"/>
<alias name="Time" type="Float"/>
<alias name="DateAndTime" type="Float"/>
<al ias name="Duration" type="Float"/>
<type name="DaY">

<o>
<element name="MO" minvalue=" 1" maxvalue=" l" />
<element name="TIJ" minvalue="2" maxvalu e="2" l>
<element name="WE" min val ue="3" maxvalu e=" 3" l>
<element name="TH" minvalue="4" maxvalue=" 4" l>
<element name="FR" minvalue="5" maxvalue="5"/>

, <element na me="S A" mi nval ue="6" maxval u e=" 6" l>
<element name="SU" minvalue="7" maxvalue="J" l>

</o>
</tvpe>

Figure 7. Time related data types in SLpL

is deassigned. When all of the retrieved records are browsed
a timer is set with value equal to the database look up period.

irrf grrnatiogr tectrnologrie s
andcontrol 3 ?007 3l

< log ic>
<de f ine>

<types>
<structure odl l l€="DB_record"> <!--a record in query resul t - ->

<element name='The_date" type="Date"/> <!-- the date in query resul t - ->
<e lement name="Phone_num" t ype="Tp ln t3z " /> < ! - - phone num in query resu l t - ->
<element name- "9reet ingID" type="TpStr ing" / > < ! - - ID of greet ing-- >

</structure >
< seq u ence n o fi e = "D B_record s" item_type = " DB _record" f >
<s t ruc tu re name="DB_resu l t "> < ! - - DB query resu l t - ->

<element name="SetOfRecords" type="DB_records"/> <!-- records in query resul t - ->
<e lement name="numRec" t ype="Tp ln t32" /> < ! - - reco rds number i n query resu l t - ->

</structure>
</types>
<var iab les>

< id name="a_DB_res" t ype="DB_resu l t " /> < ! - - a da tabase query resu l t - ->
< i d n a m e = " d a i l y " t y p e = " D u r a t i o n " v a l = " t " / > < ! - - D B l o o k u p p e r i o d - - >
< id name="T_gree t ings " t ype="T imer " /> < l - - t imer fo r DB look up pe r iod - ->
< id name=" theSQlquery " t ype="TpSt r ing " /> < l - - SQL s ta temen t - ->
< id name=" theSQl resu l t " t ype="TpSt r ing " /> < l . - SeL resu l t - ->
<id name="DB_address" Lype='TpSrt ing"/> <!-- address of database server-->
< id name="aDate " t ype="Da te " / > < ! - - cu r ren t da te - ->

</va r iables>
< methods>

< ! - - Database Query Handler ' IpAppLogic: :DB_retr ieve'
-

Database Query Convert ion Handler ' IpAppLogic: : DB_conversion'
Cal l Control ' IpAppCal l : : routeRes' , User Interact ion ' IpAppUICal l : :sendlnfoRes'
Gener i c Ca l l Con t ro l ' I pAppCa l l : : ca l lEnded ' - ->

</methods>
</def ine>
<execute>

< ! - - FRAMEWORK AUTHENTICATION - ->
<wh i le tes t= " t rue "> /

<se t re f i d="aDate "> <va lue> <Cur ren tDa te /> < /va lue> < /se t>
< ! - - 1 .SET VALUE TO ' theSQlquery ' 2 .SET VALUE TO 'DB_address " - ->

< invoke>
< method name= "DB_retr ieve">

<a rgu ments > < a rg u ment na me = "SQl_statement" va I ref = "theSeLq uery,,/ >
<a rg u ment na me = "D B_U RL" va I ref = "D B_add ress"/ > </a rgu ments>

<returns> <set ref id="theSelresul t " f > </returns>
</method >

</ invoke> <wai t />
< invoke>

< method r tdme= "DB_conversion">
<arguments> <argument name="SQL_resul t " val ref="theSQlresul t " /></arguments>
<returns> <set ref id="a_DB_res"/ > </returns> </method>

< / invoke>
<i f> <condi t ion test="numRec EQ 0" /> <l - - no retr ieved records -->

< then><go to labe l= "sk ip _day" /> < / then> < / i f>
<whi le test="a-numRec GT 0"> <l- - whi le there are retr ieved records -->

<dec rease re f i d="a_numRec " by="1 " />
< ! - - 1 . SET PARAMETERS 2 . INVOKE Gener i c Ca l l Con t ro l ' I pCa l l : : c rea teCa l l '

3 . INVOKE Ca l l Con t ro l ' I pCa l l : : rou teReq '4 . WAIT Ca l l Con t ro l ' I pAppCa l l : : rou teRes '

5 . INVOKE UI ' I pU ICa l l : : send ln foReq '
6 . WAIT U I ' I pAppUICa l l : : send ln foRes '

7 . WAIT Ca l l Con t ro l ' I pAppCa l l : : ca l lEnded '

B . INVOKE Gener i c Ca l l Con t ro l ' I pCa l l : : de iass ignCa l l ' - ->
< /wh i le>
< label name= "ski p_day, , / >
< invoke>

< method name= "SetDate ' ,>
< a rg u ments > < a rg u ment na m e= "a_date,, va I ref=,,a D ate,, f >

<argument name= "a*dur" vaI ref= "dai ly" f >
< a rgu ment na me= "a_t i mer" va I ref = 'T_g reet i ngs"/ > </a rg u ments >

<returns/> </method>
< / invoke>
<wa i t />

< / w h i l e >
</execute>

< / log ic>

Figure 8. Simplif ied service logic script for greetings by phone

V. Conclusion

In this paper a new markup approach to seruice creation
is presented. Following this approach the service logic can

derive an added value from network functionalities accessible
through APls. The service logic is described by the use of an
XML-based language SLPL that is platform independent, light-
weight and suitable for 3'd party application development. As the

32 3 20Q7 irrf orrnation teclrnol ocries
andcoritrol

language is intended to be used with 0SA APls, seruices de-
scribed in SLPL can benefit from network functions hiding net-
work protocol complexity. 0n the contrary, to the other markup
languages SLPL allows control over call-unrelated events such
as change of position, user status, TCP/IP session, presence and
availability and so on. The SLPL follows closely the architecture
and APls definitions developed by the 0SA. Traditional value-
added seruices provided in intelligent networks can be imple-
mented by the SLPL and thus accessible also in lP-based net-
works. These language features get telecommunication seruice
development near to the lT community and shoften time to
market.

Relerences

1. Bakker, J-1. , D.Tweedie and M. Umnehopa. Evolv ing Service
Creation; New Developments in Network lntell igence. Teletronikk,
2004.
2. Bakker, J., R. Jain. Next Generation Service Creation Using XML
Scripting Languages. www.arg reenhouse.com/papersjlbakker/bakker
icc2002.pdf .
3. Falcar in, P. , C.A. Licciardi . Analysis of NGN Service Creat ion
Technologies. IEC Annual Review of Communications, 2003.
4 . Lennox, J . and H. Schu lz r inne. Ca l l Process ing Language
Fra-mework and Requirement. 2000, http://wvwv.ietf .org/rfc2824.txt.
5. Pencheva, E., l. Atanasov. XML-based Languages for intell igent
Serv ice Creat ion . ICEST'2005, N ish , Serb ia and Monte Negro ,
Proceedings, 610-61 3.
6. Atanasov, l . lmplement ing Intel l igent Network Services wi th
t h e C a l l P r o c e s s i n g L a n g u a g e . l C E S T ' 2 0 0 5 , N i s h , S e r b i a a n d
Monte Negro, Proceedings, 606-609.
7. Atanasov, 1., E. Pencheva. Service Creation Using a New Mark
u p L a n g u a g e . T E L S I K S ' 2 0 0 5 , N i s h , S e r b i a a n d M o n t e N e g r o ,
Pro-ceedings, 575-578, http://ieeexplore.ieee.org lxplfiree-abs_all.jsp.
8, . Atanasov, 1. , E. Pencheva. A New Service Logic Processing
Language. ELECTR0NICS'2005, Sozopo l , Bu lgar ia , Proceed ings ,
book 1 ,1 50-1 55 .
9. 3GPP TS 29.198-2. Open Service Access (0AS) Appl icat ion
Programming Interface (APl) ; Part 2: Common Data Def in i t ions.
10. 3GPP TS 29.198-5. 0pen Service Access (0AS) Appl icat ion
Programming Interface (APl) ; Part 5: User Interact ion Service
Capability Feature (SCF).
11 . 3GPP TS 29. '198-6 . 0pen Serv ice Access (0AS) App l ica t ion
Programming Interface (APl); Part 6: Mobility Service Capability Feature

(scF)

Manuscr ipt received 0n 11.05.2006

lvaylo Atanasov received his M.S. degree in elec-
tronics from Technical Universrty of Sofia, Bulgaria.
He obtained his PhD degree in Telecommunication
netvvorks. His current position is Assistant Professor
at Faculty of Telecommunications, Technical Univer-
siU of Sofia. His academic experience is in teaching
courses on object-oriented programming, mobile
netvvorks and seruice creation technoloaies. The

main research focus is development of open seruice platforms for next
generation nelworks. He is an author of more than 30 scientific papers,
brt books and manuals.

Contacts-
Faculty of Communications, Technical University of Sofia,

B Kliment)hridsl<y Blvd, | 756 Sofia , Bulgaria,
e-mait iiaotu-sofia.bo

Evelina Pencheva received her M.S. degree in math-
ematics from University of Sofia, Bulgaria. She
obtained her PhD degree in Telecommunications
from Technical University af Sofid. Since 1996 she
is Associate Professor at Faculty of Telecommunica-
tions, Technical Universily of Sofia. Her academic
experience is in teaching clurses on telecommuni-
cation networks and seruice technologies. Her inter-

ests include next generation mobile applications and middleware plat-
forms. She is a member of Specialized Science Council in Radio Elec-
tronics and Communication Technologies.

)ontacts:
Faculty of Communications, Technical University of Sofia,

8 Kliment Ahridsky Blvd, 1756 Sofia , Bulgaria,
e-mail: enpofu -sofia.bg

3 ?007 33
irrfgrrnati on tectrnol o gries
andcontrol

