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Abstract. This paper deals with the challenging task of acquiring the
three coordinates for the point of interest in the field observed by a
camera. This problem is known as scene depth recovery. The present
work discusses image analysis techniques relying on depth cues for
determining the distance to objects in a scene. Two fundamentally
different depth estimation methods, grounded on measuring the
degree of image blur and depth map recovery are examined. Both of
them are real aperture imaging methods and are based on a limited
depth of field of the camera optics. The objective of the present
research investigation and conducted experiments is to verify the
effectiveness of the evaluation methods in providing reliable depth
estimation of real scenes from digital still camera images. For the
purposes of the comparative method of analysis, application software
and procedure for determining the geometric parameters of the
experimental camera, needed in the calculations ,are designed and
developed.

1.  Introduction

The problem of recovering the three-dimensional informa-
tion of a scene observed by a camera plays an important role
in many fields such as entertainment, security systems, indus-
trial automation, medical imaging and biometrics, information
extraction,  etc., and forms the basis for the development of
various applications like structure recovery, image enhance-
ment, object recognition, classification and tracking, rendering
of novel images, navigation, etc.

This paper deals with the challenging task of acquiring the
three coordinates for the point of interest in the field observed
by a camera. This problem is known as scene depth recovery.
The primary consideration in depth estimation from images has
been mostly on the utilization of various cues - geometric and/
or photometric in order to infer the depth. In depth estimation by
geometric cues it is the geometric relationship among various
objects in the scene that encode the depth [3]. In stereo based
vision two images of a scene are taken from two different
viewpoints and measuring the relative disparity between the
locations of the objects in the images, the depth in the scene
can be recovered. Structure from motion follows a similar prin-
ciple where a moving object is captured and the relative move-
ment offers an estimate of depth in the scene. While geometry
offers a strong cue, it is possible to obtain depth by considering
photometric cues as well.

In depth estimation by photometric cues one uses the
depth based variations in shading, texture and focus. In shape

from shading, given an image of a scene with a known light
source and given a reflectance model one uses the variation of
shading to estimate the shape in the scene. In shape from
texture, instead of assuming that the reflectance of the scene is
known or constant, one assumes that the deformation of indi-
vidual texture elements in the scene is due to projective defor-
mation caused by the variation in orientation and shape in the
scene and this is used to recover the depth in the scene. These
photometric cues due to the assumptions are fairly limiting in
nature. Photometric cues that do not impose limiting assump-
tions on the scene are those generated by the camera lens and
affected by the camera parameters - focus/defocus depth cues.
In the area of depth recovery from focus/defocus there have been
two main approaches: depth from focus (DFF) [7] and depth from
defocus (DFD) [5,6,10,12], which rely on the real aperture imaging
model, discussed in [1].

The objective of this paper is to explore the use of defocus
cue in depth estimation and to investigate the practical applica-
bility of two defocus-based depth recovery methods using real
scenes, captured by a single digital still camera. Experimental
results demonstrate the effectiveness of the methods in provid-
ing a reliable estimation of the depth of a scene, and also outline
their advantages and drawbacks.

2.  Real Aperture Methods for Depth
Recovery Using Defocus Cue

Depth form defocus methods rely on the fact that a real
lens blurs the observed scene before the camera captures it.
The amount of blurring depends on the actual lens (the quality
of the optical camera system; the current settings of the camera
focus and aperture size), but also on the distance of the ob-
served object to the lens. The basic problem addressed in the
DFD methodology is the measurement of the relative defocus
between the observations. The relative change in blur is as-
sessed on the base of analysis of a few (usually 2-3) images,
produced with different camera settings: focus or aperture size
(f-stop). Such analysis aims at determining characteristic quan-
tities of the degrees of defocus blur of the objects presented in
the scene that can be used to estimate distance. The sensitivity
of this approach depends on the relative change of the defocus
blur with distance. The term focal gradient has been introduced
in [8] to describe this value. Further it has been shown that the
focal gradient is inversely proportional to the squared distance
to the object and this fact explains the general loss of accuracy
at farther distances.
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Despite of their variety, the DFD methods can be informally
grouped in two groups, depending on the nature of the scenes:
(i) methods applicable to scenes with sharp edges; (ii) methods
applicable to arbitrary scenes.The first group of methods relies
on analysis of scenes, composed primarily of sharp-edge ob-
jects. The blur is measured using a simple metric based on the
width of the edge [8]. The second group includes methods that
try approximating the point spread function (PSF) of the camera,
which describes the image intensity caused by a single point
light source. The size of the camera PSF is a measure of the
amount of the defocus. The techniques involved here might be
(non-strictly) assigned to the following classes: Methods based
on Fourier analysis in the frequency domain, Stochastic methods
with Markov random fields to model the parameters of defocus
blur [9], Coded aperture methods based on synthetic lens aper-
ture shape usually achieved by using a customized diaphragm
[13], Methods, operating in the spatial domain and based on
direct raster operations on the image pixel luminance values
[12,14].

In the focus of the presented study is the assessment of
the practical applicability of two representative DFD estimation
methods in the spatial domain for arbitrary scenes: S-transform
and Iterative Optimization.

2.1. S-transform Method for Depth Estimation
The S-transform approach for depth estimation is based on

the concept for determining the depth from defocus by measuring
the amount of blur in a small region of an image. The solution
for the depth of the object is approached by means of finding out
the blur circle radius as a function of the relation between
variably blurred (observed) images. For this purpose, it is pro-
posed, the optical camera system to be modeled by a convolu-
tion operation as shown in figure 1a.  The S-transform is defined
as a spatial-domain convolution/deconvolution operation [11].
For the special case of image defocus analysis, the two-dimen-
sional camera image is represented as a composition of planar
regions and approximated by a cubic polynomial. Based on this
model the following deconvolution formula is derived

(1)  ),(
4

),(),( 2
2

yxiyxiyxs p ∇−=
σ

where ),( yxi is the blurred image of the scene, pσ - the

spread parameter of the camera (the blur parameter), and 2∇
is the Laplacian operator.

Modelled in terms of the paraxial optics the blur parameter
σρ  is a function of the camera parameters (focal length of the
lens, f; distance between the lens and the image detector, s; and
aperture diameter D) at which the analysed images are captured
and the distance to the object, u, and can be expressed as:
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The sign of σρ  depends of the direction of defocusing
observed on the image detector. With s0 is denoted a pivotal
value of s, used for normalizing the images towards magnifica-
tion.

In the general case σρ  and the object function s(x, y) are
unknown. Hence, in order to obtain the value of the blur param-
eter, two blurred images i1(x, y) and i2(x, y)  of the same scene
are required. The images are acquired with different camera
parameter settings (m1, c1) and (m2, c2) corresponding to blur
parameters σ1 and σ2. After certain transformations using Eq.(1)
and Eq.(2), it can be shown that in case only the aperture size
is altered between image acquisitions, the spread parameter σ2
of the second image can be calculated using the equation
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The ),(2 yxi∇ is the mean value of the Laplacians of both

images i1(x, y) and i2(x, y).
In order to enable the method of the S-transformation to

be applied in practice to determining the distances to the objects
in the scene, it is necessary to have the parameters of the
camera at wich the analysed images are acquired. Most fre-
quently they are not known in advance or only some of them are
known (e.g., focal length, aperture), but they can be obtained
experimentally through a calibration procedure).

2.2. Iterative Optimization Method for Depth
Estimation

The method of iterative optimization (I-DFD) is based on
measuring the relative defocus between two images i1(x, y) and
i2(x, y) acquired under differing focal gradients, and using this
measure to imply a particular depth.  The goal of the iterative
optimization procedure is to find the optimal value of the relative
defocus without solving the inverse convolution as opposed to
the S-transform method [4].

The basic principle of I-DFD is illustrated in figure 1b. It
is grounded on the idea of how much more the sharp image
would have to be defocused in order to be as blurry as the blurry
image. This is equivalent to blurring image i1(x, y)  with a new
defocus PSF, h3(x, y) as shown in figure 1b. The purpose of the
relative defocus kernel generator is to generate a unique relative
defocus PSF (h3) for any particular distance u(t). The image
comparator has to determine how well matched image i2n(x, y)
and image i2(x, y) are, where image i2n is derived from image
i1 after convolution with the generated kernel h23. The
result of this comparison, in the form of error estimate, is
submitted to the decision block. The task of this block is to
select the next combination (u (t), h3)  to try and to produce the
new value of the distance u (t + 1), needed for the next iteration.
This process is repeated until the comparator determines that

, .
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the two images are a good match. The relative defocus PSF
used to obtain this match is associated with a unique depth. After
that the decision block terminates the search and announces the
current value of the distance u (t) as the final value u0. The
accuracy of the whole system depends of how well the relative
defocus h3, matches the camera PSFs and correlates to the
desired depth. The camera PSFs h1 (x, y) and h2 (x,y ) may be
described by one of the models of defocus upheld in literature
-  geometric (pillbox) or Gaussian parametric models [4, 8, 12].
Depending on this choice, further specific variants of I-DFD
method, named I-DFD-R (for regularized shaping) and I-DFD-G
(for Gaussian shaping) are distinguished to model the relative
defocus and determine the kernel h3 respectively.

3.  Implementation of the Assessed
Depth Recovery Methods

The process of depth recovery using defocus techniques
described above has been implemented in three primary stages
realized by program modules.

3.1. Image Pre-processing Module
The purpose of the image pre-processing module is to

align the original digital images obtained directly from the ex-
perimental camera, in a form suitable for their analysis by the
camera calibration and/or distance determination procedures.
The functional block diagram of the module is presented in
figure 2, where I*1, ... , I*n denote the input images. The main
features of the module and the algorithms involved in it are as
follows: (i) Noise reduction: Wienner filter (W), Adaptive Median
filter (M) or Gaussian filter; (ii) Scaling: an optional operation for
resizing the image dimensions if needed; (iii) Feature detection
and Tracking: Kanade-Lucas-Tomasi (KLT) Feature Tracker [2]
used for precise alignment of the images necessary to compen-
sate for camera movements or vibrations during acquisition of
the image series. (iv) Sorting: an optional functionality that
performs sorting of the images according to their relative defocus
level.

3.2. Digital Camera Calibration Module
The camera calibration module is used to indirectly deter-

mine the geometric parameters of the experimental camera
which are significant and/or represent the input data for the
algorithms for determining distance. These parameters are rep-
resented by their equivalent coefficients m and c in the relation
shown with Eq. 2. A pair of m and c can be assigned to each
fixed set of camera settings (focus, aperture, zoom). The tabu-
lated values of m and c (for the range of settings) form the
calibration characteristic for a given camera. The functional
block diagram of the camera calibration module is illustrated in
figure 3. The operation of the module is based on the analysis
of series of images, I*1, ... , I*n  of a calibration pattern (step
edge), located at different, apriori known distances from the
camera, in order to produce the camera calibration character-
istics. The camera settings at which a given calibration image
is captured are stored using a data serialization format accord-
ing to certain syntactic rules.

The calibration process passes through the following two
basic steps:

• Step 1. Calculation of the line spread function (LSF)
from the linear transient characteristic (edge spread function) of
the camera. Two LSF models are considered: pillbox and
Gaussian. The calculation process requires pre-selecting rect-
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 Figure 1. (a) Convolution model of an optical system and (b) The mechanism of I-DFD method
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angular image regions, so that the reference edge is located approxi-
mately in the middle part of the region. The size of the region
in a direction perpendicular to the direction of the edge should
be large enough (it is considered to be 5:2 in favor of the size,
perpendicular to the edge direction) to fully cover the transition
zone. Moreover, an inaccuracy of the order of 1o in determination
of the orientation of the edge leads to an error of approx. 1%.

• Step 2. Determination of the parameters of the general
camera model (Eq. 2) applying the model of regression on the
values of the defocus blur parameter σρ and the function

(3)  ceum ++ −1)(
where e is a parameter introduced for tracking the systematic
error due to the unknown position of the first (front) focal plane
of the camera lens.

3.3. Region Selection and Distance
Determination Module

The module for selection of regions of interest (ROI) of the
scene and determining the distance allows choosing of suitable
image sectors for use in the distance determination algorithms.
The selected regions should contain planar sections of the scene.
The size of the regions should be larger than the largest possible
relative defocus kernel. The functioning of the module relies on
the usage of the camera calibration curves obtained from the
calibration module and offers two types of region selection modes:
(i) Manual region selection, where any number of image regions
(rectangular and corresponding to planar zone of the scene) can
be entered and removed, resized and moved by the user. (ii)

Automatic region selection. The automatic determination of re-
gions is based on a preset size, number and minimum distance
between central points of two adjacent regions. The region se-
lection is performed on the base of the differences in the level
of defocusing of a certain region of the scene in an image pair
captured under different camera settings. As a measure of a
given image region is considered the dispersion of a measure
of the defocus level. The obtained values are sorted in descend-
ing order and the first N are taken. The size of the automatically
selected (square) regions their number N and the minimum
distance between the central points of the neighboring regions
can be adjusted by the user.

4. Experimental Evaluation, Results and
Discussions

Experimental tests conducted in the context of the dis-
cussed methods can be conditionally divided into two groups: (i)
experiments to establish the parameters of the digital camera
(camera calibration); (ii) experiments to test the practical use-
fulness of the methods for depth recovery based on defocus
analysis.

Experiments are conducted using conventional digital still
camera Olympus E-P2 with lens “Olympus OM-System Zuiko”,
50 mm, f-stop 1:1.4. This lens has a very high sharpness,
especially for higher aperture values. Initially, experiments for
determining the parameters of the experimental camera were
conducted under the following conditions: (i) a calibration pat-
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tern of step edge was placed in the front of the camera such that
the edge was located near to the center of camera’s field of view;
(ii) the camera was focused to 3.6 m and to infinity and 2x96
images of the pattern were acquired for distances from 3.6 m
to 0.30 m by step of 30 cm; (iii) for each distance the aperture’s
size of the camera was changed from 1.4 to 16 and 8 images
were acquired. The image data were processed by the calibra-
tion module and as result the calibration curves of the experi-
mental camera were received.

During the second group of experiments, several simple
and more complex test scenes are composed to assess the
accuracy of the investigated DFD methods. The real distances to
selected objects from the scenes were previously measured by
laser distance meter Leica DistoTMD3 with measurement preci-
sion ± 1 mm, in order to be used as ground truth data to
determine the evaluation accuracy of the investigated DFD meth-
ods. Both methods (STM and I-DFD with its variations I-DFD-R
and I-DFD-G) are compared, and the results obtained for three

different scenes (figure 6) are summarized and plotted in
figure 7 in the form of relative distance estimation. In figure 8
are presented the reconstructed depth maps for Scene 1 with
each of the three approaches. As it can be seen from the plots,
the resultant depth measures obtained were however not very
accurate and the uncertainly in distance determination is higher,
especially for complex scenes - under- or overestimation of the
distance (figure 7).The methods are more accurate for nearby
objects than for distant objects, because the blur varies linearly
with inverse distance. The S-transform method is restricted to
isolated objects; presence of other objects nearby (within a
distance of about twice the spread parameter of the object)
affects depth estimation (figure 6 b and figure 7 b) increasing
significantly the measurement error. Also, the effective range of
this method depends on the constants m and c in Eq. (2) and
the image quality in terms of spatial and gray level
resolution.Nevertheless, the STM is more accurate as opposed
to I-DFD and its two modifications.

   
(a) Experimental Scene 1 (b) Experimental Scene 2 (c) Experimental Scene 3 

 Figure 6. Selected test scenes acquired with camera Olympus E-P2

   
(a) Scene 1 (b) Scene 2 (c) Scene 3 

 Figure 7. Relative error of distance estimation for STM, I-DFD-R and I-DFD-G methods

(a) STM  I-DFD-R I-DFD G 

 
Figure 8. Recovered depth maps of experimental scene 1
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5. Conclusions

In this paper, two fundamentally different methods of de-
termining the distance to objects in a given scene depth map
recovery are examined. Both methods are grounded on measur-
ing the degree of image blur and rely on a limited depth of field
of the optical system of the camera.

The methods are implemented in software developed by
the authors. Also, a procedure for determining the geometric
parameters of the experimental camera, needed in the calcula-
tions, is implemented. Various experiments with capturing and
analysis of real scene images are carried out with the help of
the developed software suite to verify the practical applicability
of the investigated methods.

With a view to the results obtained for simple and complex
scenes, it can be concluded that the investigated methods char-
acterize with low accuracy when applied to real scene images
with many and overlapping objects. However, given some of their
advantages, the methods based on the degree of defocus can
serve as an initial step in various hybrid approaches (for ex-
ample, in combination with stereo approaches). Theoretic mod-
els and experimental results acknowledge that the discussed
methods are effective only in the steep area of the focal gradient
of the optical system. This practically means that they are not
suitable for determining distance to remote objects (except when
telephoto lenses are used). Therefore, optical systems designs
with greater depth of field are not responding well to these
methods.
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