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Abstract. ln this paper we discuss an algorithm for logical function
minimization and its ap.plicltion to the problem of concept"teirning rrom
examples. The algorithm is based on complementing'of the a|vaitable
ne,7alive examples. The goal is to find a more clmpact representation
of classification function and use it for further prediction'of int<nown
ca!?s..Thi9 is qccomprished by an innovatory strategy for rogicar function
minimization. The nethod can be applied in evefii domain where oo_
servations might be described by attributes with nominal values (valued
iy a finite set). Here we extend this approach to handle numeric'al data(valued in a linear interuat) as well.

1. Introduction

concept learning from examples aims at building a model
that represents the examples in a more compact way as the
purpose is to effectively determine whether new ,nseen cases
belong to the learned concept or not. This problem is very similar
to the problem of logicalfunction minimization, where again the
output for some of the input combinations is known and a shorter
representation consistent with them is looked for.

Logical minimization is one of the oldest problems in
computer science. lt is proved to be Np-complete, but its numer_
ous and varied applications stimulate the research for effective
solution til l nowadays. The exact minimization algorithms con_
sist of two main phases: generation of function prime implicants
and choosing the irredundant ones (more popular as covering
problem). Exact minimization algorithms are computationally
expensive either in time and space, because the number of
implicants increases exponentially with the number of inputs.
The most successive representatives of this group as scherzo
[3] and Rondo [14] use the so cai led Binary oecision Diagrams
to facilitate the simultaneous operating with large number of
objects,

Another direction in logical function minimization tries to
handle the intractability drawback of the exact algorithms for
large problems by using the heuristics. such argoriihms, rather
than first generating ail prime impricants and after that engaging
in the covering probrem, direcfly take up the covering probrem
and then only the necessary prime impricants are jenerated.
combining these two steps resurts in powerfur heuristic basedpractical tools as ESPRESS0 [7] and i ts modif icat ions [13,16],B00M [B], FC-Min [6] which armost arways produce nelr-mini-
mum solut ion.
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In this paper we discuss an algorithm for logical function
minimization which combines the advantages of both upper
types, namely the exact solution and the optimization by cover-
age directed search. This is achieved by finding only these
prime implicants of the compliment of the function 0FF-set that
cover its 0N-set. Here this algorithm is adapted for multi-valued
logic and applied for concept learning task.

The concept rearning from exampres aims at finding a
classifier that describes the examples in a more compact wav
as the purpose is to effectivery classify new previously unknown
cases. The most learning algorithms use a representation of the
available obseruations by a set of characteristics that best de-
scribes an instance from the domain of interest. For every
particular example each of these attributes (characteristics)
takes a concrete value. ln most real-world problems an attribute
might be nominal - when it is valued in a finite set, 0r linear -
when it is valued in an interuar. some of the learning algorithms
handle only nominal attributes, some handle only numerical
attributes and others handre both of them. As is to be expected,
it is always better to support both of the possible attribute types
especially for learning on datasets including both types - these
datasets are called mixed or hybrid.

we have developed an argorithm for rearning from ex-
amples based on logicalfunction minimization. lt results in a set
of prime implicants that represent a more general concept
describing the learned crass. The highlight of this minimization
algorithm inspired by two-varued logic is the extensive use of the
complement of a value. Finding the complement of a value in
two-valued logic is simple - when the value is 1, its complement
is 0 and vice versa. This principal easily can be applied to
nominal data when an attribute takes one of predefined set of
values. The complement of a particular value from such a set
is its complement - a subset consisting of all remaining pos-
sible values for this attribute. Our goal here is to extend this
algorithm to handle not only nominal type of attributes but also
numerical attributes (numerical data) as the main question is
interpreting the concept of a numerical value complement .

The paper is organized as foilows: section 2 discusses
handling nominal attributes in the algorithm for learning from
examples based on function minimizaiion; section 3 reprisents
a way to apply this algorithm for numerical data; section 4
mentions s'me experimental results from apprying the new
extended approach. The conclusion follows and future tasks are
discussed at the end.
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2. Learning from Examples by Minimization

ln this paper the goal is to extend the algorithm for learning
from examples by minimization introduced in [a]. Shortly it
works as follows: all training examples are separated in two

groups of the positive examples - Er = { .i , t;,... r* }and

negative examples - E = { E; , n r,.,. E- I; these groups are

used to build two logical functions in sum-of-minterms form -

one that corresponds to positive examples (F') and other that
corresponds to negative examples (Fj:

(1)  F,  = EI  u u;u. . . \ r  Et  = 3 u!  ,
P  i = l  

t

n
( 2 )  &  = u i  r  r r u . ' u u ; =  . U , u ,  t

l = L

Each example is described by a set of attributes

A= { Ol ,  O2,. . . ,Ak} and an attr ibute A- 1;  e ( f ,  t ) )

takes one of a predefined set of m, values Vi= { rj ,

)  m .
,l ,..., , 

, 
, \. This way an exampl , u j is represented by such

an expression:

prime implicants.

Let us consider thecomplement of Fo :

(7) Fo:
I , o t ' . r ;

ln the last expression v, , represents a set of all possible
L ;  J

values forthe attribute j excluding the value ui,;- the value for

the j{h attribute in the i{h positive example El. Our goal is to

optimize (7). Here the complication comes from three points:
o n - number of negative examples;
o k - number of attributes;
. I o,. ;l 

- power of sets ;i,r.
"Since 

the first two parameters if diminished, would affect
in general the classifier correspondence to the training data,
only the third parameter remains as a possible way for optimi-
zation.

According to the definition 0f 4, it corresponds to all

positive examples but no one of negatives ones. Also ru at-

taches all unknown cases positive classification, because it
includes all but the negatives. Still this is not much, but if the

4o prime implicants are known we can choose from them for

classification only those that correspond to positive examples.
Even more, we can control how restrictive the classifier need
be by increasing the number of positive examples that are
required to be corresponded by a prime implicant in order to be
used for classification. This way the classifier is build only by
those prime implicants'that correspond at least to the specified
number of positive examples.

Having in mind these conditions the minimization of ro

aimed at getting its prime implicants might be optimized. ro

is processed as the goal is to reduce its set of prime implicants
only to the ones that correspond to a positive example. For this

reason, rs is coupled separately with each positive example to

get prime implicants corresponding exactly to this example. An
example is corresponded by a concept only when all of the
values in a concept are the same as in the example 0r are more
general. Thus a prime implicant is required to have the same
or more general value than the currently considered positive. lt
can not have a value for an attribute that differs from the one
in the positive example or is not more general. This means that

(4) F, = 
[ t i ., E, u...., u, ) 

= ui ^ o1 a...n r, i

( 3 )  u  
j = u j , , ^ '  j , 2

where v . , is the value which takes the attribute h for the
t . n

example j.
In a learning process the purpose is to find a good approxi-

mation of the target classification function that generalizes avail-
able training examples in order to successfully predict unknown
cases. The two functions that we have are approximations of the
target function, but they correspond only to known training in-
stances - they do not generalize any. Also, each of them inter-

prets all unknown cases respectively as belonging to class (F', )

or not (F0 ) Because of these restrictions they would not give

reliable results if used for classification of unknown examples.
But they can be used to build a better classifier combining the
advantages of both.

As we know in concept learning the aim is to find shorter
concept describing the class. In our case - working with logical
functions - the most suitable representation would be prime
implicants, because they have equal meaning with the function
and at the same time are fairly shorter. That is why we work with

t x k

N U
: t . i :

(5)

(6)

k
n  n  l r , , =  n ' ; i ,

J ' K  i = l  J , t
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when 4, is processed toward a positive example i all attribute

values in the representing expression {r,i different than corre-
sponding values in the positive example are not necessary, they

can be removed from the expression. Thereby each set Or, 
i 

,,
replaced by a single varue. This leads to a significant reduction
and a great optimization is achieved because this way the most
complicated computations of a function minimization are sim-
plified. This is especiaily useful when the number of examples
or the number of attributes is bigger and the standard minimi_
zation would involve far more memory and computational power.
The presented approach decreases the amorniof needed com-
putational resources.

ln generalthe expression of 16 consists of complements
of values for attributes (6). when the attribute type is nominal
there is a set of predefined values v, that this attribute i can
take. According to the set theory the complement of a value from
a set is its complement or a subset contdining all remaining
values. In the presented approach, when forming Fo,, only
these values, that do not exclude the value in the positive ex-
ample, can remain in the expression. lf a negative example n
and a positive example p have the same value for a given
attribute this means that both examples can not be differentiated
by this attribute. The corresponding rs,, expression part for the
considered attribute will consist of a set of all other possible
values and when compared with the value in the poritiuu ,r-
ample for the current attribute this set will not contain the same
value as the positive example. Therefore, for this couple of
exampfes it is not useful and must not remain in the expression
because will lead to prime implicants that correspond to both
positive and negative sample. However this is noi th, goal - it
is to get implicants that correspond to positives and do not t0
negatives, so would be used to separate the examples. For this
reason when the expression in ro does not contain the value
from positive example it is removed. ln the other case when the
values in the positive and negative example differ, then in 4 tne
complement will be a set containing the value from the positive
example. Here in 4,,, the value remains, because the two
examples can be separated by this attribute value so the got
implicants will correspond to this positive instance and will not
to the negative ones.

Let us consider a part 0f 4 that represents a comprement
of the negative exampte i:

( 7 ) t  = | . 0 . . , -  .  -  )' - i  
; i ' t " ' i ' 2 u " u " ' . 0 )

and the positive example m:

( 8 )  1 " , = r ,  . n  r ,  - n . . .  ̂  u' ' '  nt,r  
' ' rr .zn " '  ^ t 'n,. [

When comparing the values i,,h and ,*.h for the

ailribute h there are two cases:

. lt , 
i,, differs trom r,r,,r, then the examples iand m

mightbe differentiated by the attribute h, so , 
*, hremains in the

expression tor Fu,,,,, because in the currently targeted prime
implicants the attribute h should have this value or more general in
orderto correspond tothe positive example m.

. l t  v i , ,  is thesame utr* ,0  then the examples iand

m can not be differentiated by the attribute h, sothis is not
needed in the expression tor Fr,,n.

The expression for Fo,r,, which represents the part of the
negative example complement that corresponds to the positive

example E+ , is as follows:
m

where u,1, is a single value from the set v--. , 0r thel ,  J  
r v r Y  ! . ' v v  

* ,  j  
'

empty set O.

( v .  . + v  . )t ' J  m , J '
( v .  . - v  . )t, J tzt, J

Here v;,; is the value for the j{h attribute in the i{h positive

example and it is compared to the value u,,,y for the same j{h
attribute in the m{h negative example. In the first case (when the
two values differ), the particular value ',i.; rTlust remain in the
expression, because it is essential for distinguishing instances
belonging to the class from not belonging ones. lnine second
case (when the two values are the same), the particular value

"i,7 can not remain in the expression, because comparing the
two currently considered examples by this attribute has no use
for determining the class, so it is omitted.

S.Handling Numerical Data
ln case of numericar data the matter is how to form Fo,r,

for numerical attribute types. when considering the positive
example m and an expression for a negative example from F,
for a particular attribute the goal is to find an expression that will
be written for this pair in Fo,^ and the only requirement to this

(e) Fo,,u= A 5 v'!,,
i  =  |  j  =  |  

t '  J

f  , .  . ,
- . m  I  t , J

( 1 0 )  ' i , j = 1  g ,
I\
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t r k

, ! '  j ! ,"t,

expression is to help differentiate this two examples. This is

needed, because by definitiofl Fo.r, corresponds to the positive

example m and does not correspond to all negatives. So it must
consist of expressions that distinguish m from negatives. In
general, a complement of a value is its complement. For a

numerical attribute h which takes a value v,, from the interval

( ol,.a; )either finite or infinite, the complement is the whole

interval except this particular value- (b1,.,,,,)-(,,, .o;).Here ul,
denotes the left boundary for the possible values for the h{h

attribute and b;,denotes the right boundary for the possible val-

ues for the h{h attribute. But when forming Fo,r, not all of this

is required, we need only these pafts of the interual that it is
enough to distinguish the positive example m (8) from currently
considered negative example i (7). The maximal interval that
surely contains the value from the positive example m and
excludes the value from the negative example is the intervalfrom
the second value to the respective bound. There are two cases:

. lf ,r. t ) ,, ,,.r,then the maximally general intervalthat

contains the example m and does not contain the example i and
differentiates them by the attribute h, is the interval (r,1,,,,,,.,,) , so it

is used in the expression for F0,,, .

o lf ";. t, 1 ,, ,r,.r, then the maximally general interualthat

contains the example m and does not contain the example i and
d iff erentiates th em by the attri bute h, is the interval (,,,,.,, .r,;; ), so it

is used in the expression tor Fn,n, .

Exactly this is used when forming Fo,n, - the condition that

becomes a part of it is the value for this attribute need be in the
interual between the value from the negative example and this
bound that includes the value from the positive example. This

interval will be a part of ru.,, and together with other restrictions

to this particular attribute coming from other negative examples
forms restrictions to this attribute composing wanted prime
implicants. Usually, after applying this rule to all couples of the
positive example m and the negatives the interval for the con-
sidered numerical attribute shrinks round the value presented in
the positive example.

As in the case of nominal data when the value in the
positive example and the value in the negative example are the
same this attribute can not be used to distinguish the two ex-
amples so it is not presented in the respective expression in

Fo,u, '

ln the case of numerical data the expression for F,,,,,,,

which represents the part of the negative example complement

that corresponds to the positive exampleE+ , is as follows:
m

(9) Fo.,,:

where is an interval from the value ,,,,., to the

respective left ul,or right bf boundary, or it is the empty interual

a' 
[?L' 'o) '0' ' ' i  ' ' ' i ' i )

( 1 0 ) , ' ; ' , = l f , o , t 1 ) , 0 , , . i , , i , . j ,
I

I  
o'  h' i .  

1 
= t ' t t t , i  )

t

It is clear that the interval to distinguish a pair of positive
and negative example by a particular attribute can not be this
part lying between the value from the negative and the bound and
not containing the value from the positive example, because if
so it is not possible to corresponds to the positive example in
any way. We need such a part that generalizes the positive
example without correspondings to the negative. The idea is to
get exactly that sort of prime implicants that corresponds to this
positive example and excludes the negative one. That is why only

this part of the interval remains in the expression for Fu,,,, - it

is simply because there is n0 way the other parl to meet this
requirement; it does not correspond to the positive example.

In the literature this approach is called maximally dis-
criminant selector [12]. lt is the maximal range for a linear
attribute that includes the value from the positive example and
excludes the value from the a negative example. This selector
covers the positive example and discriminates the negative one.
It is used in the learning process as the goal is to get such a
generalization of the positive example that excludes negative
examples. This procedure is applied to all pairs attributes for all
couples of a positive and negative example. Because this selec-
tor has a value true or false depending whether the checked
value is in the interval 0r not, this approach can be used not only
for numerical datasets but for datasets with mixed type of at-
tributes too. Processing numerical data does not change the type
of the output. Again, the resulting classification function is a
Boolean function with two possible outputs - true, which means
,,belongs to the class" and false, which means ,,does not belong
to the class". Also as one can guess there is no matter whether
the type of values is integer or real. The type of value (integer
or real) involves only the type used in the program implemen-
tation of the algorithm; it is not related to the algorithm itself.

Thus the algorithm for learning from examples based in
logicalfunction minimization can be used successfully not only
for datasets with nominal attribute types but also for numerical
data and for mixed datasets.

4.Experimental Results

The presented algorithm for learning from examples is
used for experiments on the Haberman dataset from the UCI
machine learning repository [17]. The dataset contains cases
from a study on the survival of patients who has undergone
surgery for breast cancer at the University of Chicago's Billing
Hospital for the period between 1958 and 1970. The number of
examples in the dataset is 306 (255 positive and 51 negative
examples). They are characterized by 3 numerical attributes and
one class attributes:

. Age of patient attime of operation.
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o Patient's yearof operation.
o Numberof positive auxiliary nodes detected.
r Survival status (class attribute) -
1 = the patient survived 5 years or more
2 = the patient died within 5 years.

In order to perform the experiments data is randomry
separated in three pafts as this separation is balanced i.e. the
proportion positive examples count / negative examples count is
kept in the got parts. One half of the data (154 examples) is
used for training. The described process of minimization is
performed on it and the result is a set of prime implicants. After
this a process of validation is done 0n one fourth of data (76
examples) - the optimal value for the tuning parameter is deter-
mined at this stage. Tuning parameter is the required number
of prime implicants that must correspond to a tested example
in order to classify it positivery. This parameter is studied in
details in [5]. lt avoids overfitting and can decrease the eventual
effects of noisy data. After determining its optimal values the
tuned classifier can be applied on the remaining one fourth of
the data (76 examples) for testing. crassification accuracy is
determined on this paft as the percent of correctly predicted test
instances from the test set.

Experimental results for Haberman dataset
No Time for Total count Optimal vatues-TlassrRcation
_ minimization [s) of ?.1 for parameter accuracv (%)
1 7.03 449 m
2 7,W s14

432

means that for this dataset it can be said that there is no
overfitting problem for this learning argorithm. Even using the
resulting classifier in its clear mode (without tuning parameter,
which is equal to a value 1 for it) wourd give good prediction
accuracy.

S.Conclusions and Future Work

This paper continues investigating of a learning algorithm
based on logicalfunction minimization which results in a set of
prime implicants that represent an approximation of the target
boncept. The algorithm can be applied to datasets containing
nominal data. Here it is extended to handre numerical data too.
The procedure for manipulating numericar attributes is described
and grounded. In this way the algorithm might be used also for
learning on numerical and mixed datasets.

The presented approach is applied to an experimental
dataset. lt has shown good time performance and high classi-
fication accuracy.

Future work includes examining of the algorithm perfor-
mance for different datasets. Also a challenge to each learning
algorithm is applying to large datasets consisting of thousands
of records. Another direction of our study is handling missing
values, because in the most real world problems not all values
are known. Also we consider ways for incremental implementa-
tion of our algorithm which currently belongs to the group of
batch learning algorithms.
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