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Optimal Feed Rate Strategy
of Biotechnological Process in L-lysine
Production Using Neuro-Dynamic Control
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Abstract. In this paper Neuro-dynamic programming (NDP) is pro-
posed as an alternative to alleviate the “curse of dimensionality” of the
Dynamic programming (DP) for optimal control of a fed-batch fer-
mentation process in the L-lysine production. The traditional approach
for solving the Bellman equation involves gridding of the state space,
solving the optimization for each grid point, as well as performing the
stagewise optimization until convergence is reached. The comprehen-
sive sampling of the state space can be avoided by identifying the
relevant regions of the state space through simulation under judi-
ciously chosen suboptimal policies, which is presented using NDP
methods. The most effective and cheapest method for the L-lysine
biosynthesis (in biological active form) is the microbiological method
via direct fermentation. In this paper an optimization method of the
L-lysine production from strain Brevibacterium flavum 22LD is used
and that is NDP. The results show that the quality of L-lysine enhances
at the end of the process. The proposed method is particularly simple
to implement and can be applied for on-line optimization.

1. Introduction

The Neuro-dynamic programming (NDP) is proposed as an
alternative to alleviate the “curse of dimensionality” of the Dy-

namic programming (DP). The term NDP expresses the reliance
of the methods, described in this article with respect to both the
DP and the neural network concepts [1]. The term reinforcement
learning is also used in the artificial intelligence community
where the methods originated from. Using common artificial
intelligence terms, the methods help the systems “learn how to

make good decisions by observing their own behavior and use

built-in mechanisms for improving their actions through a rein-

forcement mechanism”.
The key idea is to use a scoring function to select deci-

sions in complex dynamic systems, arising from a broad variety
of applications for engineering design, operations research,
resource allocation, finance, etc. This is much similar to a
computer chess, where positions are evaluated by means of a
scoring function and the move that leads to the position with the
best score is chosen. NDP provides a class of systematic methods
for computing the appropriate scoring functions using approxi-
mation schemes and simulation/evaluation of the system’s
performance [2].

Using common artificial intelligence terms, the methods
allow the systems to “learn how to make good decisions by

observing their own behavior and use built-in mechanisms for

improving their actions through a reinforcement mechanism”.  In
more mathematical meaning “observing their own behavior”
relates to simulation and “improving their actions through a

reinforcement mechanism” relates to the iterative schemes for
improving the quality of approximation of the optimal cost func-
tion, the Q-factors or the optimal policy. There has been a
gradual realization that the reinforcement learning techniques
can be fruitfully motivated and interpreted in terms of classical
DP concepts such as the value and policy iteration [3,4].

NDP is a relatively new class of the dynamic programming
methods for control and sequential decision making under un-
certainty. These methods have the potential of dealing with some
problems that were thought to be intractable for a long time due
to either a large state space or the lack of an accurate model.
They combine ideas from the fields of neural networks, artificial
intelligence, cognitive science, simulation, and approximation
theory.

In recent years the method has been applied successfully
for an optimal control of fermentation process (FP). The literature
sources show that the calculating time is significantly reduced,
while the desired products quantity is increased [5,6].

Amino acids are the basic bioelements of proteins, which
are the most important macromolecules for the functions of
humans and animals. Out of the 20 L-amino acids, which are
found worldwide in most of the living organisms, L-lysine is one
of the nine essential amino acids for human and animal
nutrition [7].

L-lysine is an essential amino acid, which means that it
is essential to human health, but cannot be produced by the
body. For this reason L-lysine must be obtained from food.
Amino acids are the building blocks of the protein. Lysine is
important for proper growth and it plays an essential role in the
production of carnitine, which is a nutrient responsible for con-
verting fatty acids into energy and helping to lower cholesterol.

The insufficient L-lysine quantity in the fodders reduces
the biological value of the fodder doses, it also reduces the
weight increase and the further productiveness of the agricultural
animals, decreases the fodder quality, used for a kilogram growth
and decreases the product quantity from animal origin. L-lysine

is also used in the food industry for farming, in the medicine as
a component of the infusion solution (blood substitutes) and as
generally strengthening patent medicines. Lysine appears to
help the body absorb and conserve calcium and it plays an
important role in the formation of collagen, a substance which
is important for the bones and connective tissues including skin,
tendon, and cartilage [7].
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The aim of this study is to develop optimal feed rate
strategy of biotechnological process in L-lysine production using
Neuro-dynamic control.

2. Process Specifics and L-lysine

Production Mathematical Model

The development of a multi-step biotechnological process
requires three steps, comprising of:

• Identification and characterization of a suitable biologi-
cal system (microorganism, biocatalyst).

• Increase of bioreactor productivity by systematic media
optimization and adaptation of fermentation technology to a de-
veloping process.

• Downstream process (cell separation by centrifugation
or ultrafiltration, separation, evaporation and drying) [7].

In addition to physical parameters like pH, agitation and
aeration rate, air saturation, temperature, dissolved CO

2
 and

foaming, the medium composition is a very important factor
highly influencing fermentation processes, which are often a
subject of extensive process development and optimization stud-
ies. The culture medium has to satisfy the requirements of
microbial growth and production in a suitable manner. L-lysine

can be produced using either a chemical or a biochemical
method, which is economic, even though relatively low yields are
obtained during the extraction of L-lysine, requiring specific in-
stallations and the use of expensive products. The stereospeci-
ficity of amino acids and the steadily increasing L-lysine demand
indispensably necessitate their fermentative production (the L
isomer) over synthetic processes.

The experimental investigations are done in a 15 L

bioreactor that is included in an Automatic Control System. The
Automatic Control System is flexible and includes control of the
following parameters of the process: rotation speed, oxygen
partial pressure, temperature, pH, foam level, gas flow rate, flow
rates of the main substance. The process is led in the next
conditions:

• Temperature                 T=300C;
• pH                            pH=6.8-7.6;
• pO

2
                           pO

2
=20-30%;

• Gas flow rate                Q
G
=60 L h-1;

• Rotation speed               n=450 min-1;
• Maximum bioreactor volume 15 L.
For the L-lysine fermentation defined media is used which

acquires nutrients that require pure growth and essential addi-
tives or alternatively undefined media containing natural organic
substances such as soybeanhydrolyzate, corn steep liquor, yeast
extract or peptone is used. Common fermentation media for
L-lysine production contain various carbon and nitrogen sources,
inorganic ions and trace elements (Fe++, Mn++), amino acids,
vitamins (biotin, thiamine-HCl, Nicothin amide) and numerous
complex organic compounds. An upper expression of genes is
also achieved by optimizing the composition of the media and
the culture technique in addition to the physiological and genetic
parameters.

The model of the fed-batch processes includes the depen-
dences between the concentrations of the basic variables of the
process: cell mass concentration (bacteria Brevibacterium

flavum), substrate concentration, L-lysine, Threonine concentra-
tion and oxygen concentration in the liquid phase. The general
scheme of the L-lysine is shown in figure 1.

The mathematical model of the process is based on the
mass balance equations as a perfect mixing in the bioreactor
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Figure 1. A general metabolite pathway of the L-lysine biosynthesis
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is adopted. The model of the process has the following type:
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The specific rate of L-lysine synthesis and specific
consumption rate have the following form:
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where μ - specific rate of L-lysine synthesis, h-1; η - specific
consumption rate of L-lysine, h-1; X - biomass concentration,
g l-1; L -  L-lysine concentration, g l-1; S - glucose concentra-
tion, g l-1; V - working liquid volume, l; F - feed flow rate,
l h-1; Tr -  Threonine concentration, mg l-1; t - process time,
h; C

L
 - dissolved oxygen concentration, g l-1; C*  - equilibrium

dissolved oxygen concentration, g l-1; S
in
 - input feed substrate

concentration, g l-1; Tr
in
 - input feed Threonine concentration,

g l-1; k
l
a - volumetric liquid mass transfer coefficient, h-1.

The initial conditions in the model (1) - (8) have the
follows values:

X(0) = X
0
 = 3.00 g l-1;

S(0) = S
0
 = S

i
 = 100.00 g l-1;

Tr(0) = Tr
0
 = Tr

in
 = 100.00 mg l-1;

L(0) = 0.00 g l-1;
C

L
(0) = C* = C

0
 = 6.1x10-3 g l-1;

V(0) = V
0
 = 10.00 l.

The model coefficients in (1) - (8) have the following
values:

k
1
 = 20.8, k

2
 = 42.0, k

3
 = 28.0, k

4
 = 1.1, k

5
 = 1.01,

k
6
 = 0.07, k

7
 = 0.51, k

8
 = 62.0, k

9
 = 28.0,

k
10

 = 37.0, k
11

 = 4.0, k
12

 = 0.12, k
13

 = 6.10,
k

14
 = 448.0, k

15
 = 22.0, k

16
 = 209.0, k

l
a = 120.

3. Neuro-dynamic Optimal Control of the

Process

In general the optimal control task setting includes the

following elements:
• Choice of the optimization criteria J.
• Mathematical model of the process.
• Choice of control variables and limits.
• Limitations of phase coordinates.
The choice of criteria for the optimal control is to resolve

each case [8].
The objective of this work is to find the optimal feed flow

rate (F(t)) of a fed-batch process, such as the L-lysine produc-
tion that will raise L-lysine at the end of the process, i.e.:

(9) ∫=
ft

t

dttVtLQ
0

)()(max
u ,

where t
0
 - initial time, t

f
 - final time of the fermentation.

Therefore, the control objective is to drive the reactor from
the low product steady state to the desirable high product rate.
It may be considered as a step change in the set point at time
t = 0 from the low product concentration to the high product
concentration steady state.

In the systems the decisions are made in stages. The
outcome of each decision is not fully predictable but can be
anticipated to some extent before the next decision is made.
Each decision results in some immediate cost, but it also affects
the context in which the future decisions are to be made and thus
it affects the cost incurred in future stages. DP provides a
mathematical formalization of the tradeoff between the immedi-
ate and future costs. Generally, in DP formulations there is a
discrete-time dynamic system whose state evolves according to
the given transition probabilities that depend on the decision/
control u.

DP is an elegant way to solve the introduced optimization
problem (9). It involves a stagewise calculation of the cost-to-

go function to arrive at the solution not just for a specific initial
state, but for a general initial state. Once obtained the cost-to-

go function  represents a convenient vehicle to obtain the solu-
tion for a general state. In very few cases the stagewise optimi-
zation to obtain analytically a closed-form expression for the
cost-to-go function has been solved. The conventional approach
to the problem involves gridding the state space, calculating and
storing the cost-to-go for each grid points as one marches
backward from the first stage to the last. For an infinite horizon
problem the number of iteration required for convergence can be
very big. Such an approach is seldom practically feasible due
to the exponential growth of the computation with respect to the
state dimension. Unfortunately, from the very beginning it was
apparent that an increase of the dimensionality of the problem,
i.e. an addition of reservoirs, caused an exponential increase in
the time required to find a solution. This is referred to as the
“curse of dimensionality”, which must be removed so that this
approach can find a widespread use.

NDP aims to develop a methodological foundation for
combining dynamic programming, compact representations, and
simulation to provide the basis for a rational approach to com-
plex stochastic decision problems [1,5].

Two fundamental DP algorithms, policy iteration and value
iteration, are the starting points for the NDP methodology. The
most straightforward adaptation of the policy iteration method
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operates as follows: we start with a given policy (a rule for
choosing a decision u at each possible state i), and we approxi-
mately evaluate the cost of that policy (as a function of the
current state) by least-squares-fitting a scoring function to the
results of many simulated system trajectories using that policy.
A new policy is then defined by minimization in Bellman’s equa-
tion where the optimal cost is replaced by the calculated scoring
function and the process is repeated. This type of algorithm
typically generates a sequence of policies that eventually oscil-
lates in a surrounding of an optimal policy. The resulting devia-
tion from optimality depends on a variety of factors, principal
among which is the ability of the architecture of scoring  function
to accurately approximate the cost functions of the various poli-
cies.

NDP uses simulated process data received under subop-
timal policies to fit an approximate cost-to-go function - gener-
ally by fitting artificial network. With the value iteration approach
NDP the initial approximate cost-to-go function in the future was
improved by an iteration procedure based on Bellman equation.
In this way the simulation role has two points. First, by simulation
the process under a reasonably chosen suboptimal policy and
all possible operating parameters it provides set data points that
define the relevant “working” region in the state space. Second,
the simulation provides the cost-to-go value under the subopti-
mal policy for each state visited, which iteration of the Bellman
equation can be initialed with [5].

In this paper we will demonstrate NDP approach not only
for reducing the computational demand, but also for improving
the controller performance through the use of the cost-to-go

approximator. A neural network is chosen as an approximator to
obtain cost-to-go as a function of system states. While a properly
trained neural network has good interpolation capabilities, one
may not be used to extrapolate over the regions of state space
that are not covered during its training. Extrapolation by neural
network results in deteriorated performance of the controller.

3.1. Bellman Equation

A general dynamic optimization problem can be defined as
follows:

(10) ∑
−
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where W is a vector of the variables that describe process,
u - vector of control variables, k is the current stage.

The objective is to maximize the combination of the total
span and the stagewise, together with  the terminal costs subject
and the terminal constrains.

DP includes a stagewise calculation of the cost-to-go func-

tion to  reach the solution for the general initial state. The cost-

to-go (10) at each stage is defined by:
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Then the calculation of the cost-to-go function at each
stage can be done as:
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Once obtained the cost-to-go function,  represents a con-
venient vehicle to obtain the optimal solution for the general
stage.

By continuing the cost-to-go iteration of (12) until conver-
gence within the procedure it can be seen that the infinite

horizon cost-to-go function ∞B , satisfying the following “Bellman

equation” can be obtained:

(13) ( ) ( ) ( ){ }uu
u

,,max WBWfWB +=∞ .

Unfortunately, in very few cases the problem can be solved
through the stagewise optimization in order to analytically obtain
a closed-form expression for the cost-to-go problem. The con-
ventional numerical approach to the problem involves gridding
the state space, calculating and storing the cost-to-go for each
grid points as one marches backward from the first (or last)
stage to the lest (first). For an invite horizon problem the number
of iterations required for convergence can be very big. Such an
approach is seldom practically feasible due to the exponential
growth of the computation with respect to the state dimension.

The traditional approach for solving the Bellman equation
involves gridding of the state space, solving the optimization
(10) for each grid point and performing the stagewise optimi-
zation until convergence is achieved. The comprehensive sam-
pling of the state space can be avoided by identifying the relevant
regions of the state space by simulation under judiciously cho-
sen suboptimal policies [5,9,10].

The policy improvement theorem  states that a new policy
that is greedy (a greedy policy is one whose current cost is the
least) with respect to the cost-to-go function of the original policy
is as good as or better than the original policy, so the new policy
can be defined as follows:

),(),(maxarg)( uWuWu
u

BfW +=

where ),,(arg ixuG ∈ Rm+n+r is an improvement over the

original policy and u∈Rm, W∈Rn and i∈Rr.
When the new policy is as good as the original policy

the above equation becomes the same as the Bellman
equation (13).

The relevant regions of the state space are identified by
simulation of NDP control and  the initial suboptimal cost-to-go

function is calculated from the simulation data. In this survey a
functional approximator is used to interpolate between this data.
The improvement is obtained through the  iteration of the Bellman
equation. When the iteration converge this off-line computed
cost-to-go function can be used for an on-line optimal control
calculation for the bioreactor [11].

NDP uses neural network approximations for the approxi-
mation of the cost-to-go function. The cost-to-go function was
not used to generate an explicit control law; instead, it was used
in an on-line optimization to reduce the large (or infinite) horizon
problem to a relatively short horizon problem. The method was
found to be robust to approximation errors. Both deterministic
(step changes in kinetic parameters) and stochastic problems
(random variations in kinetic parameters and feed composition)
were explored [5,12,13].
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3.2. NDP Algorithm

The following notations are used for the description of the
algorithm:

B - Bellman equation;

)(
~

xB - approximated Bellman equation corresponding to

state W;
()i -  iteration index for cost iteration loop;
k - discrete time.
Finally:

))((
~

)(
~

kWBkB ≡  and ( ))(),()( kkWfkf u= .

The general simulation-approximation scheme involves
computation of the converged cost-to-go approximation off-line.
The architecture of the scheme is shown in figure 2. Step 1, Step
2, Step 3 and Step 4 represent the “Simulation part”, and 5 and
6 the “Cost Approximation Part”.

The simulation-based approach involves computation of
the converged profit-to-go approximation off-line. The following
steps describe the general procedure of NDP algorithm:

1.Performing of simulations of the process with chosen
suboptimal policies under all representative operating condi-
tions. Starting with a given policy (a rule for choosing a decision
u at each possible state i), and approximately evaluating the cost
of that policy (as a function of the current state) by least-
squares-fitting a scoring function  to the results of the many
simulated system trajectories using that policy.

2.  Calculation of the ∞-horizon cost-to-go for each state
visited during the simulation, using the simulation data. The
solution of the one-stage-ahead cost plus the cost-to-go problem

results in the improving of  the cost values. Cost-to-go is the
sum of the single state cost from the next point to the end of the

horizon: ∑ +=
= N

ki
kB

1
)(

3.The deviation, which is a result of the optimality, de-
pends on a variety of factors, principal among which is the ability

of the architecture )(
~

WB i  to approximate accurately the cost

functions of the various policies.
4.A new policy is then defined by minimizing Bellman’s

equation where the optimal cost is replaced by the calculated
scoring function and the process repeats. This algorithm type
typically generates a sequence of policies that eventually oscil-
late in a surrdounding of an optimal policy.

5.Fitting a neural network function approximator to the
data to approximate the cost-to-go function as a smooth function
of the states.

6.As described above the improved costs are again fitted

to a neural network,  to obtain subsequent iterations )(
~1 kB ,

)(
~ 2 kB , and so on …, until the convergence is accomplished.

7.Policy update may sometimes be necessary to increase
the coverage of the state space. In this case more suboptimal
simulations with the updated policy are used to increase the
coverage or the number of the data points in certain region of
the state space.

The NDP algorithm block- scheme is shown in figure 2.
Take into consideration that when starting with a fairly

good approximation of the cost-to-go (which has to be a result
of using a good suboptimal policy), the cost iteration has to
converge fairly fast - faster than the conventional stagewise
cost-to-go calculation.

The next values of F are examined:

[ ]7.0,5.0,4.0,2.0∈F , that can cover the possible

range of variations.
The bioreactor was started at three different W(0) values

for each of the parameter values around the low product yield
steady state.

A functional approximation relating the cost-to-go with the
augmented state was obtained by the neural network - with five
hidden nodes, six input nodes and two output nodes. The neural
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Figure 2. NDP algorithm block-scheme
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hour the fermentation was led. For proving of the choice of
stopping of the optimization final hour the procedure was ex-
tended to the 54th hour. The results show that after 48th the
process stands still and it continuing is economically disadvan-
tageous. This is shown in figure 5. From the figure it becomes
clear that after 48th  the process goes into a steady state.
Therefore, the fixed right end for 48 hours is appropriate.

In this optimization problem the time is discredited in six
hours. It is assumed that this is a step of discretization of this
process in terms of features and well-known computational
difficulties. In order to improve this the selection method was
applied in increments of sampling 3 hours, which is shown in
figure 5. The figure shows that no significant changes in the
profile of L-lysine occurred. Therefore, the choice of sampling in
six hours is justified.

Conclusions

An approach for the optimal control of fermentation pro-
cesses for a L-lysine fed-batch fermentation is developed for
searching an optimal feed rate strategy using Neuro-dynamic

control. It is proposed as a method for alleviation of the “curse

of dimensionally” of DP.
The conventional approach to solving an optimization prob-

lem with DP method  involves gridding of the state space, solving
the optimization for each grid point and performing the stagewise
optimization until convergence. Exhaustive sampling of the state
space can be avoided by identifying relevant regions of the state
space by simulation under judiciously chosen suboptimal poli-
cies, which is presented using NDP methods with the help of a
neural network for the functional approximator.

The results show that the L-lysine quantity is highly raised
at the end of the process which is the desired criterion for the
process quality.

The result shows that NDP is a convenient and easy to use
application method for optimal control. The approach is particu-
larly simple to implement and it should be used for on-line

implementation, after necessary additional training of the rel-
evant neural network is obtained.
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