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Abstract. This paper considers the problem of balanced model
reduction for singular systems. The proposed method uses the
second canonical form description of the singular or descriptor
variable system represented as a combination of dynamic and
static equations. The static equations are considered as constraints
over the system variables. The method is performed in two steps.
First, singular perturbation approximation is used in order to
solve for the fast variables in the singular system. These variables
are substituted into the dynamical equations representing a regu-
lar state space model. Second, balanced truncation on the state
space model is performed to reduce the system order. Three
special cases are considered depending on the singularity of one
of the system block matrices. Different experiments are performed
for all three cases showing good approximation properties of the
method.

1. Introduction

Mathematical models are widely used to simulate the
dynamical behavior of many physical processes and
systems. Sometimes these processes are characterized by
very large dimensionality. For example, weather forecasts
and very large scale integration circuit simulations may
reach hundreds or even thousands coupled differential
equations. The need for improved accuracy often leads to
models of higher complexity. The simulation of such
complicated models is mostly unfeasible task. This is the
reason to look for a model simplification, where the
computational complexity is mainly reduced. The process
of model simplification by decreasing the dimensionality of
the primary model is called model reduction. Model reduction
is related to deriving low order models from high order
ones according to certain criteria. The model reduction
problem for linear systems has been well established area
and intensively studied recently. In [2] two main approaches
for model reduction: state truncation and residualization
are presented. The state truncation method is based on the
elimination of part of the state vector and using the
remaining vector in place of the original one. Given a system
description in state space form, we can partition the state

vector ( )tx  into two components: ( )tx1  and ( )tx2 . Along
with the state vector partitioning we can also split the
system matrices accordingly. The reduced order model can
be obtained by eliminating the truncated vector component

( )tx2 . The resulting truncated system will contain only

this part of the system matrices, which corresponds to the

state vector component ( )tx1 . The major advantage of this
method is that it preserves stability of the reduced system
and its transfer function at infinity is equal to the transfer
function of the original system at infinity. The residualization
method is based on the singular perturbation approximation
procedure. In the singular perturbation approximation the

state vector is divided into fast part  ( )tx2  and slow part

( )tx1 . The reduced order model is obtained by residualizing

 ( )tx2 , accepting that  ( )tx2&  is practically zero. Under

certain conditions the state vector component  ( )tx2  is

solved with respect to the state vector component ( )tx1

and is substituted in the state equation for  ( )tx1& . Therefore,
the dynamical system model is reduced with the size of the

dimension of  ( )tx2 . The major advantage of this method
is the preservation of the steady state gain of the original
system model. The reduction by truncation provides a
reduced order system which approximates the original
system well at high frequencies and the residualization
method provides a good approximation at low frequencies.

A large class of physical as well as social phenomena
can be modeled by using both differential and algebraic
equations. Differential equations represent dynamical
relations which exist in the system and the algebraic
equations are used to describe the constraints and direct
connections. Such kind of system models which combine
dynamics and statics in its description are called singular
or descriptor variable systems. If one deals with large scale
singular systems, which are normally expected in practice,
then the problem of model reduction becomes important
[9]. In [13] two approaches are offered for balanced model
reduction of singular systems, which are based on
transforming the system into two canonical forms. The first
approach uses the singular perturbation approximation
technique and the second one uses state truncation. A
drawback of the second approach is that it destroys the
structure of the canonical form description. A method for
singular systems model reduction which preserves the
canonical form description is offered in [10]. This method
is based on projecting the fast subsystem onto the discrete
domain and optimally reducing it to a lower order discrete-
time system, then converting it back to a corresponding
reduced order fast subsystem. It utilizes the Nehari shuffle
algorithm to reduce the fast subsystem and preserves the
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system structure. The main drawback of the method is that
the reduced order fast subsystem is not obtained in
balanced form and it also gives a large approximation error
in the high – frequency range. Another method for mixed
optimal approximation of  the fast descriptor subsystem is
presented in [17]. The method is based on an optimization
procedure over the approximation error, measured as a
weighted combination of the Hilbert – Schmidt and the  2H
norms. A method based on the balanced truncation
technique and closely related to controllability and
observability gramians and Hankel singular values for
descriptor systems is presented in [15,7]. The gramians are
obtained by solving generalized Lyapunov equations with
special right hand sides [3]. The state space is decomposed
into complementary deflating subspaces  corresponding to
the finite and infinite eigenvalues of the pencil λE – A.
The balanced transformations are performed on the singular
system projection on each of the deflating subspaces and
in this way defining the Weierstrass – like canonical form
of the singular system.  The balanced truncation however,
is performed only on the proper part, while  the improper
part is leaved unchanged. Similar approach is proposed in
[1], where an extension of the SVD approach for model
reduction of the fast descriptor system is implemented with
a regular discrete – time Schur algorithm. The projected
decomposition structure of the singular system is preserved
and stability for both subsystems is also guaranteed. The
proposed method shows good agreement between the
original and reduced order models for the medium frequency
range, but it shows larger deviations for low and high
frequencies.

Most of the proposed approaches for balanced model
reduction of singular systems are based on the Weierstrass
canonical form decomposition of the descriptor system, i.e.
the decomposition on fast and slow subsystems. However,
the singular system is often presented as a combination of
dynamical and statical relations, which is associated with
the practical considerations that certain constraints on the
state variables influence the system dynamics. Using
canonical form decomposition into dynamic and static
subsystems, the singular perturbation approximation method
is the natural approach for model order reduction. In [11]
it is shown that the direct truncation reduction and the
slow singular perturbation approximation of a stable
internally balanced system are two fully compatible model
reduction methods which give the same upper bounds on
the approximation error. Moreover, the reduction by singular
perturbation approximation is the natural choice for singular
systems model reduction.

This paper considers the problem of balanced model
reduction for stable singular systems. The proposed method
is an extension of the first approach for model reduction of
singular systems in [13], which considers the special case
when the block system matrix for the fast state variables is
not invertible. Opposite to the approach in [11], where the
singular perturbation approximation is performed over the

already balanced system, the proposed approach implements
singular perturbation approximation first and after that
balancing transformation and truncation. Singular
perturbation approximation is especially fitted for model
reduction of singular systems because state vector
derivatives of the fast state variables is actually zero, which
is due to the existence of static relations in the system
description. The paper considers also the special case when
the singular system is transformed into a Weierstrass
canonical form and the fast state variable is missing from
the algebraic equation description.

2. Linear Dynamical Systems
in Descriptor Form

The linear, time – invariant, continuous – time singular
(descriptor variable) system is described by the following
equations:

(1.1) Ex(t) = Ax(t) + Bu(t);
(1.2) y(t) = Cx(t).
Important feature of these models is the fact that E is

a singular matrix. One special case is the singularly per-
turbed system:

(2.1) x1(t) = A11x1(t) + A12x2(t) + B1u(t);
(2.2) εx2 (t) = A21x1(t) + A22x2(t) + B2u(t).
When ε = 0 one may solve the resulting algebraic

constraints for x2(t) and eliminate it in order to obtain
equations for the slow subsystem. It is well known however,
that the properties for small ε  are not determined solely in
terms of the slow subsystem but that the fast subsystem
must also be taken into account. Thus conversion of a
singular system into a state variable system can be
accompanied by a loss of information.

Consider the singular system described by (1). In [5]
is shown that for any two matrices E and A there always
exist two nonsingular matrices Q and P, such that the
singular system will be regular if and only if

(3) QEP = diag (I, N) ; QAP = diag (A1, I).
Because of the fact that this condition is difficult

to verify an easier test for regularity is the following
definition [5].

Definition 1. For any two matrices E, A∈ Rn×n , the
pencil (E, A) is called regular if there exists a constant
scalar α ∈ C , such that

(4) det (αE + A) ≠ 0 or det (sE - A) ≠ 0, ∀α, s.
Definition 2. A singular system (E, A, B, C) is called

restricted system equivalent to a system (E, A, B, C)  if
there exist two nonsingular matrices Q and P such that

(5) x = Px, QEP = E, QAP = A, QB = B, CP = C.
The restricted equivalence preserves the structure of

the impulsive modes corresponding to the free response of
the system [5]. It is often much more convenient to work
with special forms of restricted system equivalence, called
canonical forms of singular systems. Basic requirement for
their existence is the regularity condition.

.

.
.
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First Canonical Form. Assume that the singular
system (1) is regular. Then there exist two nonsingular
matrices Q and P, such that the following decomposition
holds:

(6.1)  x1(t) = A1x1(t) + B1u(t);
(6.2)  y1(t) = C1x1(t);

(6.3)  Nx2(t) = x2(t) +  B2u(t);
(6.4)  y2(t) = C2x2(t);
(6.5)  y(t) = C1x1(t) + C2x2(t);

where
x2(t) ∈ Rn2, x1(t) ∈ Rn1, QEP = diag (I,  N), QAP = diag (A1, N),

1

2

B
QB

B
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, CP = (C1   C2).

Matrix N is a nilpotent matrix with order of nilpotency
h. This form is also known as Weierstrass form [15]. The
subsystems obtained from the decomposition of the original
one are called slow and fast subsystems.

Second Canonical Form. Consider the singular system
(1) which is regular. Then there exist nonsingular matrices
Q and P such that

(7)  QEP = diag (Iq, 0), ,  x1∈  Rq,

             x2∈ Rn-q.
The original system is restricted system equivalent to

(8.1)  x1 (t) = A11 x1 (t) + A12 x2 (t) + B1u(t);

(8.2)  0 = A21 x1 (t) + A22 x2 (t) + B2u(t);

(8.3)  y (t) = C1 x1 (t) + C2 x2 (t)
where

(9)  , , CP = (C1   C2).

This canonical form clearly reflects the physical
meaning of the singular systems, i.e. the mixed dynamics
and statics. The singular value decomposition is usually
applied to transform the original system into the second
canonical form and therefore, the transformation matrices
are specified from the orthogonal matrices of the SVD
algorithm.

The slow subsystem from the first canonical form
represents an ordinary differential equation, which has a
unique solution with initial condition x1(0) given as follows:

(10)  x1(t) = eA1t x1(0) + ∫eA1(t-τ)B1u(τ)dτ

where x1(t) is completely determined by x1(0) and u(τ),
0≤ τ ≤ t . Let us assume that u(t) is h times continuously
differentiable, where h is the index of nilpotency of the
matrix N. Then the response of the fast subsystem is given
by:

(11)                             .

There are values of x2(0) which yield impulsive
solutions for x2(t). Since discontinuous behavior is not
desirable, the set of x(0) which do not result in such
behavior at t = 0 is called the set of admissible (consistent)
initial conditions. In the case of fast change of the system
states at t = 0 however, a new term is presented in the
response which contains delta impulses and derivatives of
delta impulses up to the order of the nullity of N minus
one. This solution, called distributive solution can be
represented by the equation [16]:

(12)                                               .

This type of solution corresponds to many practical
problems where sudden change of the state can happen.
The transfer function of the singular system (1) is defined
as:

(13) G(s) = C(sE – A)-1 B = C1(sI – A1)
-1 + C2 (sN – I)-1 B2.

The transfer function is system invariant, i.e. it is
preserved under a system equivalence transformation.

Definition 3. The pencil λE – A is called c-stable if
it is regular and all finite eigenvalues of λE – A lie in the
open left half – plane. Thus, the singular system is stable
if and only if its slow subsystem is stable.

Definition 4. The singular system is called
R-controllable if it is controllable in the reachable set or
more precisely for any prescribed t1 > 0, x1(0) ∈ R and
ω ∈ R, there always exists an admissible control input u(t),
such that x(t) = ω. The following are equivalent:

The singular system is R – controllable
The slow subsystem is controllable
rank [sE – A  B] = n  for every finite s ∈ C
rank (B1   A1B1 ... A1

n1-1B1) = n1

Definition 5. The singular system is called impulse
controllable if for any initial condition x(0), τ ∈ R and
ω ∈ Rn2, there exists an admissible control input u(t), such
that
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The following statements are equivalent:
The singular system is impulse controllable
The fast subsystem is impulse controllable

Ker (N) = Range(B2   Nb2 ... N
h-1B2) = Rn2

Range (N) = Range (B2) = Ker (N) = Rn2.
The slow subsystem is always impulse controllable

and the fast subsystem is always R – controllable [4].
Definition 6. The singular system is R – observable

if it is observable in the reachable set or any state in the
reachable set may be uniquely determined by y(t) and u(τ),
 t≤≤τ0 . The following statements are equivalent:

The singular system is R – observable
The slow subsystem is observable
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The matrix  
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T  is of full column rank.

Definition 7. The singular system is impulse
observable if the impulse behavior of the state is uniquely
determined from the information of the impulse behavior in
the output and the input. The following statements are
equivalent:

The system is impulse observable
The fast subsystem is impulse observable
 ( ) ( ) ( ) { }02 =∩∩ NRangeCKerNKer
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By analogy to controllability of singular systems, the
fast subsystem is always R – observable and the slow
subsystem is always impulse observable [4].

Important concepts for the singular systems are the
controllability and observability gramians [15,7]. Assume
that the singular system (1) is c-stable and is transformed
in its Weierstrass form by using similarity transformations
as follows:
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Then the integrals:
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. The matrix Wpc is called the

proper controllability gramian and the matrix Wpo is called
the proper observability gramian [15,7]. The improper
controllability and observability gramians are defined as:
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. If  E = I, the proper gramians

are the usual gramians for the standard state space system.
The proper controllability and observability gramians

are the unique symmetric positive semidefinite solutions of
the projected generalized continuous – time Lyapunov
equations [15,3]:
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11  are the

spectral projections onto the right and left deflating
subspaces of λE – A corresponding to the finite

eigenvalues. The improper controllability and observability
gramians are the unique symmetric positive semidefinite
solutions of the projected generalized discrete – time
Lyapunov equations:

(19) AWicA
T – EWicE

T = (I – Pl)BBT(I – Pl)
T ; PrWic = 0

(20) ATWio A – ETWioE = (I – Pr)
TCTC(I – Pr), WioPl = 0.

Definition 8. Consider the singular system (1), where
the pencil λE – A  is c-stable.

The system (1) is R – controllable and R – observable
if and only if

(21.1) rank (Wpc) = rank (Wpo) = n1.
The system (1) is impulse – controllable and impulse

– observable if and only if
(21.2) rank (Wic) = rank (Wio) = n2 .
The system (1) is c – controllable and c – observable

if and only if  (21.1) and (21.2) both hold.

Definition 9. The singular system (1) is minimal if it
is c-controllable and c-observable.

Definition 10. A realization  (E, A, B, C) of the transfer
function G(s) is called balanced [15], if  the following
relations hold:
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with Σ = diag (σ1, σ2, ..., σn1) and Θ = diag (θ1, θ2, ..., θn2).
For a minimal realization (E, A, B, C) with the c-stable
pencil λE – A, there exists a system equivalence
transformation (Qb, Pb)  such that the realization
(QbEPb, QbAPb, QbB, CPb)  is balanced. Computing the
reduced – order singular system can be interpreted as
performing a system equivalence transformation  ( )PQ

~
,

~  such
that

(23)

where the pencil λE – A has the finite eigenvalues only, all
the eigenvalues of the pencil λE∞ – A∞ are infinite, and then
reducing the order of the subsystems ⎣Ef, Af, Bf, Cf⎦  and
[A∞, E∞, B∞, C∞] with nonsingular Ef and  A∞ using classical
balanced truncation methods for continuous – time and
discrete – time state space systems, respectively [15,1].
The approximation error is computed from the expression:

(24)

where G(s) and  G(s)  are the original and reduced kth order
strictly proper transfer functions corresponding to
⎣Ef, Af, Bf, Cf⎦ , since the polynomial transfer functions
corresponding to [A∞, E∞, B∞, C∞] are equal, i.e.  P(s) =P(s)
[15].
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3. Direct Method for Balanced
Truncation of Singular Systems

The direct method for model order reduction of
singular systems is based on the second canonical form
description. This method is an extension of the method
proposed in [13], for the cases when the second block
system matrix in the static equation is not invertible. This
method implements singular perturbation approximation for
singular systems where the fast subsystem is described by
algebraic equation. Therefore, the method is exact in some
sense because the fast variable derivative is actually zero.
Consider the singular system (1). Assume that the pencil
λE – A is regular and therefore its second canonical form
(8) exists with dynamic equations of order n1 and static
equations of order n2. The transformation matrices P and
Q are not unique and one way of performing the
decomposition is by applying the algorithm of singular
value decomposition of the matrix E, i.e.

(25)  UTEV = diag(Σ,0)

and using the coordinate transformation ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2
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x
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xV T
 we

obtain the matrices:
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The algebraic equation plays a role of constraints
over the state variables. In this case we isolate the algebraic
equations in order to decompose the singular system. The
decomposition itself reduces the order of the system.

Case I. Assume that the matrix A22 is nonsingular.
The nonsingularity means that both of the subsystems, the
dynamic as well as the static one, can be decoupled. We
solve the static equation with respect to the state variable
x2 (t) and obtain a system in which the dynamic variables
are separated from the static ones as follows:

(27.1) ( ) ( ) ( )tuBtxAtx 1111

~~ += ;

(27.2) ;

(27.3) ( ) ( ) ( )tuBtxAtx 2122

~~ += ,
where

(28.1) 
21

1
2212111

~ AAAAA −−= ;

(28.2) 2
1

221211

~ BAABB −−= ;

(28.3) 
21

1
22211

~ AACCC −−= ;

(28.4) 2
1

2221

~ BACD −−= ;

(28.5) 
21

1
222

~ AAA −−= ;

(28.6) 
2

1
222

~ BAB −−= .
If the singular system (1) is regular, stable, control-

lable and observable and matrix A22 from (8) is invertible,
then the system (27) is stable, controllable and observable
[13]. The system model (27) is a standard state space
dynamical system model and we can apply balancing trans-
formations [8,14] in order to convert the system state vari-
ables into a balanced form. Then the method of balanced
truncation can be applied to reduce the order of the system
model.

Case II. Assume that the matrix A22 is singular but not
the zero matrix. As pointed out in [16], the singularity of
A22 leads to the appearance of impulsive modes in the state
equation solution of (8). However, if we make the assump-
tion that the system (1) is c-controllable and c-observable,
then the fast subsystem which causes the appearance of
impulsive motions in the state response, corresponding to
the polynomial part of the transfer function G(s), can not
be reduced as mentioned in [15]. Only the state realization
of the strictly proper part of G(s) is subjected to balanced
truncation and model order reduction. In this case we can
use the Moore – Penrose generalized inverse for A22 to
solve the static equation with respect to the state variable

( )tx2  [12]. The Moore – Penrose generalized inverse of a

given matrix A, denoted by †A  possesses some interest-
ing properties [12,6]:

(29) AAAA =† , ††† AAAA = , ( ) †† AAAA T = , ( ) AAAA T †† = .

If the matrix A is invertible, then 1† −= AA  and finally
if we look for the solution of the linear system algebraic
equations Ax = b where A is not invertible, the solution

bAx †= is the one of minimal 2 – norm [6]. Therefore, the
Moore – Penrose generalized inverse minimizes the operator
induced two norm of ( )IAA −†  or ( )IAA −† . The Moore
– Penrose generalized inverse of a given matrix  A is
computed as follows. Obtain the singular value

decomposition of a matrix  A as TVUA ⎥
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⎤
⎢
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⎡Σ
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00
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, where the

block-matrix Σ contains the nonzero singular values of A,
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†
.

After solving the algebraic equation with respect to
the variable ( )tx2 , the obtained dynamical system is (27)
with the corresponding matrices:

(30.1) 21
†
2212111

~ AAAAA −= ;

(30.2) 2
†
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Then, the method of balanced truncation can be
applied to reduce the order of the system model (27).

The following algorithm presents the procedure for
balanced model reduction of a singular system (1) by
utilizing its second canonical form description.

Algorithm for Direct Balanced Truncation
of Singular Systems

Step1. Use SVD (25) and apply similarity
transformations TUT and V from (26) to obtain the system
in its second canonical form (8) (if it is not initially presented
in this form).

Step 2. Use SVD for the matrix A22, i.e.

TVUA ⎥
⎦

⎤
⎢
⎣

⎡Σ
=

00
0

22  and obtain its Moore – Penrose

generalized inverse 
TUVA ⎥

⎦

⎤
⎢
⎣

⎡Σ
=

−

00
01

†
22  (if the matrix A22 is

invertible, then 1† −= AA ).
Step 3. Apply the method of residualization and obtain

the standard state space dynamical system (27) with system
matrices computed as in (30).

Step 4. Apply the square root algorithm from [2] for
balancing the system (27)

•  Wo = LL*   (Cholesky decomposition)
•  Wc = UU*   (Cholesky decomposition)
•  U 

*L = WΣV 
*  (SVD decomposition)

•  P = Σ−1/2V* L*  (similarity transformation)
•P−1 =UWΣ−1/2  (similarity transformation)

where Wc and Wo are the controllability and observability
gramians for the system (27), correspondingly.

Step 5. Apply the method of truncation to reduce the
order of the system model (27).

Case III. Matrix A22 is a zero matrix. This is usually the
case when the singular system is transformed in its first
canonical (Weierstrass) form (6). Consider only the fast
subsystem (6.3)-(6.4). We take the following example from
[18]:
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23
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⎥
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⎢
⎢
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⎣

⎡
=

23

22

21

2

b
b
b

B .

The obtained dynamical equations are as follows:
x22 (t) = x21(t) + b21u(t);

x23 (t) = x22(t) + b22u(t);
0 = x23(t) + b23u(t).
Solving the equations backwards, we obtain:
x23(t)= – b23u(t);

x22 (t) = – b23u(t) – b22u(t);

x21 (t) = – b23u(t) – b22u(t) – b21u(t).
As can be seen, the solution does not depend on the

initial conditions and depends solely on the input signal
and its derivatives. In order to reduce the order of the

system model it is necessary to reduce the orders of the
input signal derivatives. However, the input signal is an
exogenous signal and is independent on system descrip-
tion. This example shows that reducing the model order of
the fast subsystem is often an unfeasible task. Let us
consider now the general case where the fast subsystem
Nx(t) = x(t) + Bu(t) is of order n2. We can perform
singular value decomposition of matrix N as follows:
N = UΣVT, where matrix U is the identity matrix, matrix Σ
and matrix V have the following forms:

(31)                          ,                          ,

where V(1,n2) = 1 , if  n2 is an odd number and
V(1,n2) = –1, if  is an even number. By using  state
transformation xVx T=~  and partitioning the state vector as

             ,   where x1(t) ∈ Rn2-1 and x2(t) ∈ R, we obtain

the system description Σ x(t) = Vx(t) + Bu(t) , which in
scalar form is presented as:

(32.1)                              ;

(32.2)                              ;

(32.3)                              ;

(32.4)                             .

Obviously matrix A22 is zero since the state variable
x2(t) is not presented in the last equation. Moreover,  x2(t)
appears only in the first equation and its derivative is not
presented in the equations left hand side. We consider two
cases: i) u(t) is a scalar function and ii) u(t) is a vector. In
the first case, if bn2 ≠ 0 , we can solve the last equation with
respect to u and obtain:

(33)                      .

Substituting for u(t), the equations (32) then become:

(34.1)                             ;

(34.2)                              ;

.
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~~~
−−= .

                     
Accepting  as exogenous input signal, we obtain

the equations:
(35.1)   ;

(35.2)   

where

(36)     , 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0

0
1

1e
.

The system (35) as a regular state space dynamical
system and we can apply balancing truncation techniques
to reduce the system model order.

The second case is when u(t) is a vector function of
time. In this case the input signal can not be determined
from the last equation (32.4) because 

2nb  is a vector – row
and is not invertible. However, we can use its Moore –
Penrose generalized inverse, which is calculated as follows.
Calculate the singular value decomposition of 

2nb  as
T

n PSQb =
2

 , where S is a vector row with all elements zero

except the first element 1s . Then  †

2nb  is a vector column

computed as [ ] TT

n PsQb 001
1

†
2

−= . Then

(37)   ( ) ( )txbtu nn 11
†

22

~
−−= ;

(38.1)   ( ) ( ) ( )txtxbbtx nn 211
†

111
~~~

22
±−= − ;

(38.2)   ;

(38.3)   .

where bi, i = 1, 2, ..., n2-1 is the ith vector row of matrix B.
The equations (38) describe the standard state space sys-
tem (35), where x2(t) can be considered as exogenous input
signal and the matrix A1 and vector – column e1 are:

(39) , .

4. Experimental Results

Example I.   Consider a singular system (1) with
matrices:
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Applying step 1 of the algorithm, we transform the
system into its second canonical form (8), where the system
matrices are computed as follows:
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As can be observed, matrix 22A  is nonsingular (it is
a scalar different than zero) and therefore can be inverted,
so we have case I. Applying steps 2 and 3 of the algorithm
we obtain the standard dynamical system (27) with matri-
ces:
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Therefore, by using residualization the order of the
system model is reduced by one. The Hankel singular
values of the system (27) are calculated as:

{ }27.2,286.64,91.109=S .
After applying step 4 of the algorithm the system is

transformed into a balanced form. The step responses for
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the full order, reduced second order and reduced first order
system models are shown on figure 1.

From figure 1 it can be observed that the third order
and the reduced second order system models have almost
the same step responses. The step response of the reduced
first order model differs significantly from the others.
Similarly on figure 2, the impulse responses of the third
and reduced second order models are very close. The
impulse response of the reduced first order model deviates
from the others considerably. Therefore, the original fourth
order singular system model can be successfully reduced
to e second order model.

Example II.  Consider the singular system (1) with
system matrices as follows:
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Applying step 1 of the algorithm, we transform the
system into its second canonical form (8), where the system
matrices are computed as follows:
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As can be observed matrix A22 is singular, it can not
be inverted and therefore we have case II. The Moore –
Penrose generalized inverse of A22 is calculated as follows:
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Applying steps 2 and 3 of the algorithm, we obtain
the standard dynamical system (27) with matrices:
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Therefore, by using residualization the order of the
system model is reduced by two. The Hankel singular
values of the system (27) are calculated as:

{ }0175.1,251.8,556.12=S .
After applying step 4 of the algorithm the system is

transformed into a balanced form. The step responses for
the full order, reduced second order and reduced first order
system models are shown on figure 3.

The step responses of the full order and reduced
second order system models are closely related. The step
response of the reduced first order model deviates
considerably from the other two responses. Comparisons
between the full order, the reduced second order and the
reduced first order models for an impulse input signal can
be seen on figure 4.

Example III.  Consider the fast subsystem from the
first canonical form description (6.3) – (6.4) with the
following system matrices:
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Here we have case III, where after applying singular
value decomposition of matrix E and the corresponding
change of coordinates, the system is transformed into the
form (35) with matrices:
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Therefore, by using residualization the order of the
system model is reduced by one. The Hankel singular
values of the obtained regular dynamical system are
calculated as:

{ }0114.0914.04.2=S .
After applying step 4 of the algorithm the system is

transformed into a balanced form. The step responses for
the full order, reduced second order and reduced first order
system models are shown on figure 5.

  The step response of the reduced first order system
deviates substantially from the step responses of the full
order and reduced second order systems. Similar behavior
is observed on figure 6, where impulse responses of the
full order, reduced second and first order systems are shown.

5. Conclusion

This paper considers the problem of balanced
truncation and model reduction for singular systems. The
proposed method uses the second canonical form
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Figure 2. Impulse response of the full order model -----, reduced 2nd order ..... and 1st order models -.-.-.

Figure 1. Step response of the full order model -----, reduced 2nd order ..... and 1st order models -.-.-.

Figure 3. Step response of the full order model -----, reduced 2nd order ..... and 1st order models -.-.-.
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Figure 4. Impulse response of the full order model -----, reduced 2nd order ..... and 1st order models -.-.-.

Figure 6. Impulse response of the full order model -----, reduced 2nd order ..... and 1st order models -.-.-.

Figure 5. Step response of the full order model -----, reduced 2nd order ..... and 1st order models -.-.-.
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description represented by a combination of differential
and algebraic equations. This canonical form clearly reflects
the physical substance of singular systems: the mixed
dynamics and statics. The proposed direct method combines
the residualization and truncation approaches for model
order reduction. The residualization approach based on
singular perturbation approximation is a natural approach
here because the algebraic equations can be considered as
constraints on the approximated fast variables. Once the
fast variables are substituted into the dynamical  part, the
obtained regular dynamical system is approximated by using
the balanced truncation approach. Different cases
depending on the singularity of matrix 22A  are considered.

If matrix 22A  is nonsingular the residualization approach
does not introduce any error in approximating the system.
If 22A  is singular, the Moore – Penrose generalized inverse
is computed and used in the first stage of the proposed
algorithm.Finally, the case when 22A  is the zero matrix is
also considered. Different experiments are performed for all
three cases showing good approximation properties of the
proposed method.
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