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Abstract. Finding the optimal join ordering for a database query is
a complex combinatorial optimization problem which has been
approached by a wide variety of strategies and algorithms, ranging
from simple deterministic search to complex hybrid algorithms
based on genetic search and incorporating domain-specific heuristics.
In this paper we review a set of join ordering algorithms and
classify them according to the nature of the search strategy they
implement. We also briefly discuss the relative advantages and
applicability of different algorithms.

Introduction

The problem of finding the optimal join ordering executing
a query to a relational database management system (RDBMS) is
a combinatorial optimization problem. Queries in an RDBMS are
defined in a declarative, non-procedural language, such as SQL.
This raises the need to transform the declarative gquery into a
procedural, effective plan for its execution. Each query can be
mapped to a set of execution plans which are equivalent in terms
of the result they generate but the execution cost of the different
plans can vary by many orders. The execution plan is selected
from the set of all alternatives by a dedicated RDBMS module -
the Query Optimizer.

Due to the high processing cost, the evaluation of joins and
their ordering are the primary focus of query optimization. Tradi-
tionally, the optimization of such expressions is done by complete
traversal of the solution space (possibly utilizing some pruning
techniques). This is a feasible approach for most of the classic
database applications, where the size of the query (measured in
number of joined relations) rarely exceeds 8-10, but it is com-
pletely inapplicable to some contemporary databases (Object-
Oriented Databases, Multimedia Databases) and database applica-
tions such as Decision Support Systems (DSS), Online Analytical
Processing (OLAP), Data Warehousing, Geographical Information
Systems (GIS), etc. Queries in such applications may involve tens
or even hundreds of joined relations.

The Join Ordering Problem (JOP) has been approached by
several classes of algorithms. It is a generalization of the
classical combinatorial Traveling Salesman Problem (TSP) -
the problem of finding the shortest Hamiltonian cycle in a
complete graph. The TSP is among the best-studied combina-
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torial optimization problems and dozens of algorithms have
been proposed for it. Most of these algorithms are directly
applicable to the JOP (which is considerable newer). In this
review however, we consider only algorithms already applied to
the JOP. An extensive survey of general global optimization
algorithms is not in the scope of this work.

Complexity of the Problem

The JOP in its general form is NP-complete. A formal proof
of this fact for cyclic queries was first presented in [8]. For small
queries, it is still possible to do a complete traversal and find the
global optimum, however, as the size of the solution space grows
exponentially in the number of joined relations, for larger queries
the JOP can no longer be solved exactly in its general form.

The approaches for breaking the NP-completeness can
be classified into two groups:

« Sacrificing Generality

Restrictions are imposed on the size or form of the solution
space, by setting additional requirements to the structure of the
solutions, the connectedness of the query graph (e.g. considering
only acyclic graphs), the form of the cost function, the implemen-
tation of the relational algebra operators, tc.

« Sacrificing Exactness

Instead oflooking for the global optimum, acceptably good
suboptimal solutions are found. The portion oftheexplored solution
space is limited by using some heuristics constructing the solu-
tions or by applying randomized and genetic search algorithms.

These approaches (oracombinationofthem) usually reduce
the complexity of the algorithms from exponential to polynomial
under the imposed restrictions.

Join Ordering Strategies

There are three main strategies for optimizing join orders:
« Bottom-up optimization.
This is a synthetic approach in which the query execution plan is
generated starting from the base relations and generating step by

step more and more complete partial execution plans until finally
an execution plan for the whole query is obtained.

+Top-downoptimization.

Thisis a,divide and conquer” approachinwhichthe queryis divided
into parts, each partis optimized separately and finally the different
partial execution plans are aggregated to form the complete query
gxecutionplan.
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*Transformation optimization.

This approachstarts with somevalid complete execution planwhich
is transformed into another valid complete plan, improving the
solution step by step.

Query optimizers are usually using elements of more than
one of the above strategies.

The JOP can be approached by four classes of algorithms:

1. Deterministic Algorithms. The algorithms of this class
perform some sort of deterministic search of the solution space,
either through complete traversal, or by applying some heuristics
pruning the space

2. Randomized Algorithms. These algorithms perform a
random walk in the solution space. maving from point to point
in the solution space. A move is possible if the solution repre-
sented by the first point can be transformed into the solution
represented by the second point by applying a single transforma-
tion rufe (from a set of predefined valid transformation rules) to
it. The algorithm execution ends either when no more valid
moves can be done from the current solution space point or
when a predefined run time has elapsed. The best solution found
during the random walk is the result of the optimization.

3. Genetic Algorithms. Genetic algorithms mimic the bio-
logical evolution in their search for the optimum solution [1, 2].
The main idea is, starting from some initial set (population) of
solutions to generate offspring by random crossover and muta-
tion. The best individuals (by the cost function) in the population
survive on each generation and form the new population. The
algorithm stops either after some (finite) number of generations
or when the population becomes homogeneous above some
threshold according to the cost function [3].

4. Hybrid Algorithms. Hybrid algorithms combine elements
of two or more of the above strategies. The solutions found by
some deterministic heuristic become the starting point of a
randomized search or the initial population of a genetic algorithm
{an approach known as seeding), a genetic algorithm is en-
hanced by local search techniques, etc.

Classification of Join Ordering Algorithms

In this section, we will briefly describe the mast popular
algorithms proposed for the JOP and we will classify them ac-
cording to the search strategy they implement.

1. Deterministic Algorithms

1.1. Dynamic Programming

This is the algorithm used in practically all existing com-
mercial RDBMS systems. The Dynamic programming has been
first suggested as a query optimization strategy in IBM's classi-
cal System R by Selinger [4]. The algorithm performs a complete
traversal with dynamic pruning of the solution space. It con-
structs all alternative join trees (fulfilling three classical heuristic
constraints) by iterating over the already joined relations and

possibly pruning some suboptimal solutions.

The Dynamic Programming algarithm is guaranteed to find
the optimum in the solution space constrained by the three
heuristics. In many cases it manages to avoid the complete
traversal by dynamically pruning part of the suboptimal plans on
each step. Although it is still exponential in the general case, for
some particular query types the complexity of the algorithm is
only O(N 8). In the general case however, the memory and CPU
requirements of the Dynamic Programming grow exponentially
in the number of joined relations because all concurrent plans
generated in the previous algorithm step must be kept. That is
why, most of today’'s database management systems impose
restrictions on the size of the relation (usually up to about 15
joins). For relations with less than ten joins, the algorithm has
proved its high effectiveness. Today it is considered a standard
among the query optimization strategies.

The three classical heuristics applied by the Dynamic
Programming algorithm are the following:
+Selection-Projection Heuristic. Selections and projections are
processed ,on the fly* and almost never generate transitional
relations. Selections are processed upon first relation access.
Projections are processed while generating the output of other
operations. This heuristic prunes only suboptimal solutions - the
separate processing of selections and projections would incur
additionalcomputational costs.

«CartesianProduct Heuristic. Cartesian products are neverformed,
except for the case when they are contained in the original query.
Relations are always combined through joins. This constraint
almost always eliminates suboptimal solutions due to the high
cardinality of a typical Cartesian product of two relations. The
exceptions arevery fewand occurinthe cases whenthe cardinality
of the particular Cartesian product happens to be small [5].

*Tree Form Heuristic. The third constraintis aboutthe formofthe
execution plan trees - the internal operand of every join is always
abaserelationand neveratransitional result. Suchtrees are called
left-deep (while arbitrary-form trees are referred to as bushy and
their setis denoted by _4) andthe subspace of all left-deep solutions
isdenoted by £. This heuristic can eliminate the optimum planand
is the most controversial of the three. It is claimed that, in most
cases,theoptimalleft-deep tree has costthatis pretty closetothe
global aptimum. There are two heuristic arguments forthis - first
having the base relations as internaljoin operands maximizes the
use of the existing indexes and second, having the transiticna
results as external join operands allows the seguences ofnes:zz-
foopjoinsto be flow processed’. Flow processing means tnai ==
complete sequence of operations are executed oneach re: 2,21
tuple instead of executing each single operation oneach:uz =

PSS

1.2. lterative Dynamic Programming

This is one of the newest deterministic optimization algo-
rithms [6]. It combines the classical Dynamic Programming
with a greedy search strategy. The main advantage of the Dy-
namic Programming is that it always finds the optimum solution
in L. As we already observed however, it has high time com-
plexity and consumes a lot of memory. Suppose that the clas-

" A similar argument holds for right-deep trees with re-
spect to the hash-join.
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sical Dynamic Programming algorithm has generated all joins of
k relations and at this point it has used up all available memory.
At this step, instead of trying to generate all join combinations
of k+1 relations, the Iterative Dynamic Programming chooses
one of the k-relation join plans, discards all other plans contain-
ing any of the relations of the selected plan and then restarts the
Dynamic Programming algorithm to obtain the join combinations
of k+1 relations, then k+2 relations and so on, using the selected
k-relation join plan as an atomic ,building block™.

Such a strategy obviously has far more modest memory
requirements. The length k of the partial plans at which the
Dynamic Programming is interrupted by the greedy strategy is a
parameter of the algorithm. The time complexity is O(n¥),2<k<n.

1.3. Minimum Selectivity Heuristic

Optimal or near-optimal solutions are often characterized
by transitional relations with small cardinality. This heuristic
constructs left-deep trees, choosing at each step the relation that
minimizes the cardinality of the intermediate result [7].

1.4. Top-Down Heuristic

This heuristic is based on the observation that the last
joins in a query influence its cost the most. This is explained by
the fact that the transitional result usually grows dramatically
towards the end of the query evaluation. At each step, this
heuristic selects the relation with the minimum cost to join to
the intermediate result {7].

1.5. 1K Algorithm

Ibaraki and Kameda [8] introduce an aigorithm called IK
which takes advantage of the special form of the nested-loop
cost function. The IK algorithm finds the optimal left-deep tree
of an acyclic graph by assigning ranks to relations and ordering
the relations according to their rank.

1.6. Krishnamurthy-Boral-Zaniolo (KBZ) Algorithm

This algorithm is presented in details in {9] and is based
on the IK algorithm. It finds the minimum spanning tree of an
acyclic graph and applies the IK algorithm to the resulting tree.
The minimum spanning tree considers the minimum product of
edge weights (selectivities). It is important to note that the KBZ
algorithm imposes restrictions on the form of the cost function.
The algorithm has been successfully used for queries with up
to 15 joins.

1.7. Relational Difference Calculus
This is a new heuristic developed from a method called
Boolean Difference Calculus [10]. The main idea is to find the
most influential relation in a join expression. A detailed descrip-
tion of the method, accompanied by examples can be found in

(7.

1.8. Augmentation Heuristic

This algorithm is the generalization of all greedy heuristic
algorithms [11]. It is another greedy heuristic which joins rela-
tions one by one, selecting the relation according to some
greedy criterion on each step. Experiments have been done with
five different criteria. The best results were achieved using the

selectivity criterion - choosing the relation with minimum selec-
tivity.

1.9. Local Improvements Algorithm

The algorithm makes local improvements on a given left-
deep execution plan. A window of size ¢ is moving through the
relations permutation. At each step, the group of ¢ relations
{called a cluster) is locally optimized, substituting the existing
permutation with the optimal one. [t is easily proven that follow-
ing such strategy can only improve the initial permutation. The
clusters can also overlap each other. If ¢ is the cluster size and
ois the overlap size, experiments show that the best combina-
tions (c, o) in decreasing order are (5, 4), (4, 3), (3, 2), 2,1
and (2, 0), depending on the available optimization time (they
are ordered in decreasing time complexity). Increasing the clus-
ter size, the algorithm complexity tends to O(NV 1), so clusters
with size above 5 are not used [11].

1.10. A* Algorithm

In the domain of Artificial Intelligence, the heuristic
algorithm called A* is extensively applied to complex search
problems. A* has also been proposed for query optimization
and may become the direct successor of the traditional Dynamic
Programming [12]. Instead of step processing and using all
plans with n relations to generate all plans with n+1 relations,
the A* algorithm starts developing one of the generated plans
based on its expected proximity to the optimal plan.

1.11. Optimal Top-Down Join Enumeration

By taking existing algarithms for the minimal cut problem
and tuning them for the join enumeration context, the Optimal
Top-Down Join Enumeration algorithm is the first top-down join
enumeration algorithm with space and time complexity that is
optimal with respect to the join graph [13]. The algorithm can
be easily integrated with branch-and-bound pruning or demand-
driven interesting orders.

2. Randomized Algorithms

Due to the inability of the classical deterministic algo-
rithms ta optimize large-size queries which become more and
more common in contemporary database applications, various
non-deterministic approaches have been developed. Different
variations of randomized optimization algorithms have been pro-
posed [14].

2.1. Random Walk Algorithm

The simplest randomized algorithm performs a random
walk in the solution space, starting from a randomly chosen
point in it. On each step, a random move is done, if it leads to
a point with lower cost [14]. The effectiveness of such a strategy
highly depends on the ratio between the ,good” and the ,bad”
solutions in the solution space, as well as on the size of the
random sample that is examined. This approach is obviously
quite na!ve because only a small neighborhood of the starting
point is examined and no attempt is done to search a path
approaching an (at least local) optimum [15].
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2.2. Iterative Improvement Algorithm

A more sophisticated randomized approach is offered
by the Iterative Improvement algorithm [16, 11, 18] It is a
variation of a greedy search strategy similar to the hill-climbing
algorithm [19]. The difference with the classical hill-climbing is
that no attempt is done to find the neighbor with minimum cost
because in the general case there are too many neighbors to
check. Similarly, instead of checking the cost of all neighbors
to determine whether a point is a local optimum, a point is
considered a local optimum if no better neighbor could be found
for a predefined number of attempts.

2.3. Simulated Annealing Algorithm

The Simulated Annealing algorithm is an improvement
to the lterative Improvement, which allows also moves that lead
to points with higher cost than the current point. This lowers the
chances of the algorithm to get trapped in a poor local optimum.
Moves are accepted with a probability which depends on the
cost ratio between the current and the destination point and an
algorithm parameter that determines the likelihood for search
continuation at a given point of time. Query optimization by
Simulated Annealing was proposed in [20].

2.4. Two-Phase Optimization Algorithm
This algorithm is a combination of the lIterative
Improvement and the Simulated Annealing algorithms which
benefits from the advantages of both [18]. The lIterative
Improvement, if applied multiple times, can cover a great portion
of the solution space, while the Simulated Annealing is very
suitable for thorough search of a point neighborhood.

2.5. QuickPick Algorithm

This is a probabilistic bottom-up join ordering technique
performing a biased random sampling of the solution space. It
uses the following mapping between a join query’s predicates
and a query plan. For each new predicate a join is added to the
tree and, if not present yet, the base relation required. In case
both of the predicate’s join arguments are already present, i.e.
already connected by a previous join, the predicate is added to
this very join. At each step, the algorithm randomly chooses a
query predicate to add to the partial execution plan. If the cost
of the partial plan exceeds the cost of the best plan found so
far, the current plan is discarded. This procedure is repeated
until some stopping criterion is fulfilled [21].

3. Genetic Algorithms

Designed to mimic the natural evolution process, genetic
algorithms nowadays enjoy an increasing popularity and are
being applied to various complex optimization problems. As in
Nature, where the best fit individuals in a population have great-
est survival probability and highest opportunity to have their
features inherited by the offspring, genetic algorithms breed and
combine solutions to obtain even better ones [22].

The query execution plan can be considered a program in
an abstract tree representation which is evaluated bottom up.
The relations are the terminals and the joins are the functions
in the genetic program. Thus, the query execution plan satisfies

the structural requirements of the genetic programming method,
which applies the paradigm of search through genetic algo-
rithms. developed in [23, 24]. The input and the output of each
join operator in the plan are relations, therefore the closure
requirement defined in [25] is satisfied.

Each particular genetic algorithms is a concretization of
the canonical genetic optimization algorithm, that is, different
genetic algorithms differ from each other in their coding method
(converting a solution into an internal representation upon which
the genetic operators can be applied) and by the choice of the
three genetic operators - selection, mutation and crossover.

Genetic algorithms have been first applied to the JOP in
[26] and [27]. The fitness function used requires backward
transformation from chromosome to tree representation, which
is complex and with high computational cost. The chosen cross-
over operators have a serious flaw - they disrupt the chromo-
some structure, transforming two valid parent chromosomes
into an invalid one, which then needs to be ,repaired* to become
a correct solution encoding. Despite these shortcomings, the
achieved results are promising.

Later in [28] some of these disadvantages have been
overcome. The fitness function is based an the cost of the query
execution plan, which is defined as the total execution time from
the first retrieval of a relation from the database to the comple-
tion of the output generation (the query result). The model also
considers muitiprocessor environment and implements parallel
processing.

Currently, probably the most popular non-experimental
genetic SAL query optimizer is the GEQQ (GEnetic Query Optimizer)
in the Postgres (PostgreSQL) RDBMS. It considers only left-deep
solutions, implements an Elitist selection operator, a simple
edge recombination crossover and does not apply mutation. The
population size is fixed. Postgres has two optimizer implemen-
tations, a classical deterministic optimizer and a genetic optimizer,
the latter being used for queries with more than 10 joins. A
genetic query optimizer was also introduced in the Microsoft
SQL Server 2005.

3.1. Coding

The coding methads for the JOP can be classified by the
form of the trees they operate on - left-deep or bushy. The choice
of coding strongly influences the choice of the three genetic
operators. Left-deep codings are prevalent with genstic a'ge-
rithms, mostly because they allow for simpler and mere ez =~
mutation and crossover implementations. Note that the sc .= 2~
space must be closed under the genetic operators, which mez-s
mutation and crossover should produce valid soluticns .« -
respect to the selected coding.

3.1.1. Simple Left-Deep Tree Coding
Each left-deep tree can be represented in a unique way as
an ordered sequence of its leaves:

((RPARPAR)PAR)HAR,) — 15342

This is probably the most popular coding — it has
been used in numerous genetic algorithm implementations,
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including PostgreSQL's GEQO [29]. Two of its recent applications
to the JOP can be found in [30] and [31].

3.1.2. Traveling Salesman Coding

An ordered list of all relations participating in the join
is created. The solution is scanned from left to right, each
relation is substituted by its index in the ordered list and then
it is removed from the list. Such a coding has been successfully
used in the solving of the TSP with genetic algorithms.

L=[1,2 3,4, 5], (RPIRs)PIRPIR)PIR,) — 14221

3.1.3. Bushy Tree Coding

The coding of bushy trees is less straightforward. It
must be designed so as not to overly complicate the
implementation of the crossover and mutation operators. A
good coding algorithm has been proposed in [26], where the
symbols in the code represent the edges of the query graph.
One useful property of this coding is that it cannot represent
Cartesian products, which means that the application of any
crossover and mutation operators cannot lead to a Cartesian
product in the execution plan.

3.2. Selection

3.2.1. Roulette Selection

Each individual in the population corresponds to a disc
sector whose area is inverse-proportional to its cost. The disc
can be thought of as a roulette. N turns of the roulette determine
the Nindividuals of the new generation. This algorithm considers
the relative fitness of the individuals in the population, which
means that a ,super” individual may cause the early extinction
of other individuals. The classical Roulette selection is thus
characterized by fast convergence.

3.2.2. Magpnitude Roulette Selection

This is a variation of the classical Roulette selection, in
which the disc areas are determined not by the fitness of the
individuals, but by the magnitude of their fitness. Experiments
show that the Magnitude Roulette selection is characterized by
slower evolution progress but the risk of premature convergence
is much lower [32].

3.2.3. Rank Selection

In the domain of query optimization, the fitness of the
individuals in a population may vary by 10'. In selection
algorithms based on the refative fitness of the individuals, some
will have no chances to survive while others will quickly domi-
nate the population, leading to quick convergence. The rank
selection algorithm assigns ranks from N for the best-fit indi-
vidual to 1 for the worst-fits individual in a population with size
N Then each individual with rank R survives with probability
R/ ((N+1)* N/2). This selection scheme was suggested
in {30].

3.2.4. Elitist Selection
The individuals in the population are sorted in decreasing
order of their fitness and the first N individuals are preserved in

the new generation. This is the most popular selection operator
and it is characterized by relatively fast convergence. It is the
selection algorithm implemented in GEQO [29].

3.2.5. Adaptive Selection

Self-adaptation in genetic algorithms (population size ad-
aptation in particular) is a topic that is receiving considerable
attention recently. The classical selection algorithms keep the
population size fixed. This simplifies the algorithms but it is an
artificial restriction and does not follow any analogy to biological
evolution, where the number of individuals in a population varies
continuously in time, increasing when there are high-fit individu-
als and abundant resources and decreasing otherwise. Intuition
hints that it may be beneficial for the population to expand in the
early generations when there is high phenotype diversity and
there is opportunity to ,experiment” with different characteristics
of the individuals, and to shrink with the increase of population
convergence, when the unification of the individuals in terms of
structure and fitness no longer justifies the maintenance of a
large population and the higher computational costs associated
with it.

An adaptive selection operator with dynamic population
size has been recently applied to the JOP in [31] and its com-
parison against the classical fixed-size Elitist selection seem
promising.

3.3. Crossover

3.3.1. Subsequence Exchange Crossover |

This crossover algorithm is applicable to the Simple Left-
Deep Tree Coding and the Bushy TreeCoding. A random subse-
quence of the code characters of both parents is chosen. Then
the subsequence is substituted by another one containing the
same characters but arranged in the order of their occurrence
in the other parent [7].

3[154]2 \></ 3[451]2

h 4352)1

“Offspring”

i3

“Parents”

3.3.2. Subsequence Exchange Crossover |l

This crossover algorithm is applicable to the Traveling
Salesman coding. Two random subsequences with equal length
are chosen in both parents. Then the two subsequences are
exchanged to form the offspring. This coding is applicable only
to the Traveling Salesman coding because it allows duplicate
symbols in the code [7].

1[32]11 A 1[43]11
4[43]21 /& 4[32]21

“Parents” “Offspring”
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3.3.3. Subsets Exchange Crossover

This crossover algorithm is applicable to the Simple Left-
Deep Tree Coding and the Bushy Tree Coding. Two random
subsets of characters with equal cardinality are chosen in the
codes of both parents such that the two subsets contain the
same elements. Then these subsets are exchanged to form the
offspring [7].

IR NPT

s5[521]

“Parents”

s3]

“Offspring”

3.3.4. Order Crossover
Offspring are generated by choosing two random split points

in the parent chromosomes, inheriting a gene subsequence from
one of the parents and filling up the missing genes in the relative
order they occur in the second parent [30].
(135791028 64)>(710]12169|8435)
3812169 [41075)>(16[57910]4382)

A variant of this algorithm using a single split point is
used in [31].

3.3.5. Modified Two Swap (M28) Crossover

This is one of the two crossover operators proposed in the
first work to apply genetic optimization to the JOP [26]. Two
genes are randomly chosen in the first parent and are replaced
by the corresponding genes from the second parent, preserving
their order in the second parent.

3.3.6. CHUNK Crossover

This is the second crossover operator proposed in [30] for
bushy encoding. A random chunk of genes in the first parent is
chosen, the chunk is copied into the offspring (in the same
position it occurs in the parent) and the rest of the genes in the
offspring are filled up in the order they occur in the second
parent.

A good algorithm for bushy tree crossover generating
valid offspring solutions and ensuring that most of the structural
characteristics of the parent trees are inherited by their succes-
sors is presented in [28].

3.4. Mutation
3.4.1. Reciprocal Exchange Mutation
The genes in (random) position /and (/+ 1) mod N, where
Nis the length of the chromosome, are swapped [30]. Applied
to the simple left-deep tree coding. this mutation operator ob-
tains a new chromosome that is a valid solution,

3.4.2. Exhaustive Mutation

With left-deep codings where a gene contains
information about a relation and a join method, the following
simple mutation can be considered: two random genes 7 and
Jare swapped and the join methad of another randomly selected
gene k is modified [31]. Such a mutation operator, even if
applied alone, guarantees that every point in the solution space
is reachable for any choice of the starting point. This is a useful
characteristic of genetic operators since it is a prerequisite for
the canvergence of the genetic algorithm.

4. Hybrid Algorithms

A number of hybrid optimization algorithms have been
suggested and comparative experiments have been done with
them [11].

4.1. Toured Simulated Annealing

This is an algorithm similar to the Two-Phase
Optimization proposed by Lanzelotte et al. [34] in the context
of distributed databases. Severai tours in the solution space are
traversed via the Simulated Annealing algorithm, each tour
starting from a different initial point. The initial points are obtained
by some deterministic greedy algorithm which builds solutions
using some augmentation-type heuristic (e.g. minimum
selectivity).

4.2. AB Algorithm

This is an evolution of the KBZ algorithm [35]. It allows
the use of two join methods - sort-merge and nested loop. The
sort-merge cost model has been simplified in order to satisfy
the constraints of the KBZ algorithm. The AB algorithm includes
both heuristic and randomized elements. The inner loop searches
heuristically for a local minimum, while in the external loop
several starting points are randomly generated using an idea
similar to the Iterative Improvement.

4.3. Improved A* Algorithm

The Improved A* algorithm is a recent improvement ta the
classical deterministic A* algorithm which takes advantage of
the fact that the original A* builds a list of promising nodes 1 ¢
nodes that are probably part of the best path [36] The Impreves
A* algorithm uses this additional information by exam = =g & ==
some probability the list of promising nodes. rurning the o5 -2
A* using some of these nodes as a starting poi~

Discussion
As the review suggests, there is a considerable nu~zz=-
of exact and approximate optimization algorithms for the 7%
The different algorithms exploit different characteristics of tre
problem instances and perform better for different forms and
sizes of the solution space, cost functions, join methods. etc.
The No Free Lunch (NFL) theorem [37] states that all
algorithms searching for an extremum of a cost function perform
exactly the same over all possible cost functions. The NFL
suggests that there are classes of problems and for each class
there exists an algorithm that solves the problems of that class
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most efficiently. Applying the NFL to the JOP, we can conclude
that there is no ,best" algorithm but that it is necessary to study
the relationships between the spaces of problems and the spaces
of algorithms.

The major aspects that have to be taken into account
comparing the different JOP algorithms are their applicability and
restrictions, the impact on performance of query size, the con-
nectedness of the join graph, and the cost model used.

For small queries (Ones with up to 8-10 joins), the size
of the solution space allows the application of both deterministic
and non-deterministic algorithms. The main advantage of deter-
ministic algorithms is that they are guaranteed to find the global
optimum.

A good study of the relative performance of the determin-
istic heuristic algorithms against different join graph topologies
and cost models is presented in 7.

The performance of the Minimum Selectivity heuristic is
relatively good for low connectivities of the join graph and for the
nested loop cost model. For higher connectivities of the join
graph and for the asymmetric hash loop cost mode!, the heu-
ristic performs poorly.

The Relational Difference Calculus has very good overall
performance, the heuristic yielding particularly good results for
the asymmetric hash loop cost mode! even for high connectivities.

The Top-Down heuristic has very good performance for
almost all join graph / cost mode! combinations (the exclusion
being clique join graph / nested 100p cost mode!) and it is
usually able to find near-optimal left-deep solutions.

As a summary, the Relational Difference Calculus and
Top-Down are the best option, however for highly connected join
graphs both have disappointing performance - Top-Down with the
nested loop and Relational Difference Calculus with the hash
loop. These findings suggest that better performance can be
expected by combining different heuristics, adapting the optimizer
to the shape of the join graph and the join method used [7].

The A* algorithm, which can be viewed as a successor of
the classical Dynamic Programming. generates complete
execution plan at a much earlier stage than the Dynamic Pro-
gramming and it prunes suboptimal solutions more aggres-
sively. For small queries, A* has very good performance.

The IK algorithm takes advantage of the special form of the
nested-loop cost function and optimizes a query with N joins with
time complexity O(AFlog,N). Ibaraki and Kameda also propose
an algorithm which is applicable even to cyclic queries and finds
a good (although not always optimal) solution with time com-
plexity O(NV?).

The KBZ algorithm uses basically the same techniques but
is more general and more complex and has time complexity
O{N#) for tree queries, where it directly constructs the optimal
left-deep solution [9]. For cyclic graphs, the minimum spanning
tree has to be computed first. As with the IK algorithm, the
applicability of the KBZ algorithm depends on the form of the cost
function - the nested loop and hash loop cost functions satisfy
the constraints but, in general, the sort-merge does not. KBZ has
good performance on low-connectivity join graphs and very poor
performance for the completely connected clique graph.

The AB algorithm mixes deterministic and randomized
techniques and has time complexity O(NV %) [35]. It utilizes the

KBZ algorithm as a subroutine with complexity O(N ?) and runs
it O(\P) times over randomly chosen spanning trees of the query
graph. Thanks to an interesting separation of the sort-merge cost
function into a part that affects the optimization and a part that
does not, the AB algorithm is applicable to all join methods
despite the limitations of the KBZ algorithm.

With finite run time, the effectiveness of randomized algo-
rithms depends on the characteristics of the cost function and
the connectedness of the query graph. These results have been
studied in detail, compared against each other as well as against
the results of Dynamic Programming [11,18]. The results from
comparing the relative performance of the lterative Improvement
and the Simulated Annealing are pretty controversial - SOMe
authors [16] suggest the lterative Improvement is superior for
non-recursive large join queries, while others [18] (later backed
by [7]) show the opposite, that the Simulated Annealing almost
always outperforms the lterative Improvernent.

Among randomized algorithms, the lterative improvement
finds a reasonably good solution for a very short time, while the
Simulated Annealing takes mare time but is able to find better
solutions. The Two-Phase Optimization benefits from the advan-
tages of both approaches and finds the best results for the
shortest time [38].

In contrast to transformation-based algorithms such as
the lterative Improvement and Simulated Annealing which traverse
the solution space state by state, the QuickPick algorithm con-
verges quicker and delivers more stable results. In addition,
transformation-based algorithms depend to a certain degree on
the quality of the starting solution which affects the stability of
the results obtained and requires careful parameter tuning: if
convergence is too fast, the algorithms may get prematurely
stuck in a poor local optimum [21]. Algorithms like the Toured
Simulated Annealing and the Two-Phase Optimization have been
developed to address this issue.

The comparative experiments of randomized and genetic
algorithms have been mostly limited to empirical evaluations
over particular test problems. Some research indicates that
genetic algorithms perform befter than the Simulated Annealing,
which on its turn outperforms the lterative Improvement. The
comparison in run time is also in favor of genetic (versus
randomized) algorithms [7]. Results from performance experi-
ments comparing two genetic algorithms against the simplest
randomized one, the Random Walk, show that for small queries
the two genetic algorithms have a well-pronounced superiority,
while for large queries the Random Walk has performance
comparable to that of the two genetic strategies (31]. In general,
the results vary considerably, which shows that one of the two
approaches may domineer over the other in some class of
problems while in another class of problems the results can be
just the opposite.

The theoretical comparison between the Simulated An-
nealing and the genetic algorithms [39] shows that many ge-
netic algorithms (the canonical genetic algorithm in particular)
are characterized by better probability of finding a good solution
than the Simulated Annealing, provided that the solution space
satisfies certain constraints. These constraints however are weak
and hold true for almost any choice of the genetic operators.

An important aspect in favor of randomized and genetic
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algorithms is that they are easily hybridized, incerporating do-
main-specific knowledge. This takes them from black-box to
problem-aware optimization, which is expected w0 be beneficial
for performance as hinted by the NFL theorem. Besides, from
design and implementation perspective, both randomized and
genetic algorithms can be easily adapted to take advantage of
parallel computer architectures.

The precision of the suboptimal solutions found by ran-
domized and genetic algorithms (i.e. their proximity to the global
optimum) is proportional to the number of solutions the algorithm
has considered (which in turn is proportional to its running time)
and is strongly influenced by the properties of the solution space
for the particular problem instance. The solution quality also
depends on the convergence characteristics of the algorithms
and their ability to escape poor suboptimal plateaus in the so-
lution space. Studying the correlation between the properties of
the solution space and the hardness of the JOP instance for a
particular class of optimization algorithms is currently in its
infancy - the knowledge is still limited and mostly hased on
empirical results for small queries (up to 10 joined relations).
Still there are no analytical tools or respective theory that could
help answer the question what will the performance (e.g. devia-
tion from the global optimum as a function of the number of
solutions explored) of a particular algorithm be for a fixed JOP
instance.

One clear factor influencing the effectiveness of non-deter-
ministic search algorithms is the shape of the solution space,
the cost distribution of the local minima and the ratio between
the .good" and ,bad" solutions. For example, search spaces with
the form of a well * are easier for randomized and genetic
algorithms and good-quality sclutions can be expected. On the
other hand, solution spaces that are not smooth and have great
deviations of the cost function present a considerably greater
challenge.

Empirical results evaluating the cost distribution for the
spaces of left-deep and bushy trees show that, for the nested-
loop cost model, about 10% of the left-deep solutions are no
worse than twice (2') the global minimum, and 45% are better
or equal to sixteen (2*) times the global minimum. On the other
hand, the ,quality ratio* in the space of the bushy trees is much
lower - only about 5% of the solutions have costs less than two
times the global minimum, and 25% are better or equal than 16
times the global minimum [27].

A comprehensive experimental study on the influence of
connectivity of the query graph, predicate selectivities and rela-
tion sizes on the shape of the search space and the performance
of heuristics and probabilistic optimization algorithms is pre-
sented in [33]. It is concluded that the shape of the search space
is clearly determined by these parameters and that the perfor-
mance of the probabilistic optimization algorithms is directly tied
to the shape of the search space. Heuristics, on the other hand.

¢ Such spaces have two characteristics - the cost differ-
ence of any two local minima is small and there exists a path
between any two local minima whose elements have costs
similar to that of the minima it connects (i.e. the area of the low-
cost solutions is smooth) [17].

exhibit unstable performance which is only partially dependent
on the form of the search space.

Conclusion

Finding the optimal join ordering for a database query is
a complex combinatorial optimization problem, which, in its
general form, is /N -complete. The algorithms proposed for
the JOP can be classified into four basic types - deterministic,
randomized, genetic and hybrid. The applicability and effective-
ness of the four classes of algorithms depend mostly on the
query size, the cost function and the properties of the solution
space it defines.

For small queries (with up to 10 joins) deterministic
algorithms are the strongest contender, mostly because they are
guaranteed to find the global optimum. For larger queries how-
ever, the combinatorial explosion makes the exhaustive search
of the solution space impossible. Large solution spaces are the
domain of non-deterministic algorithms - randomized, genetic
and hybrid.

Today's RDBMSs still rely mostly on deterministic query
optimization algorithms such as the Dynamic Programming,
however, with the advent of some unconventional databases and
specific database applications, non-deterministic query
optimizers steadily force their way. Now already in its third
decade, query optimization continues to be an active field of
research.
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