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Abstract. Finding the optimal ioin ordering for a database query is

a complex combinatoriat optimization problem whic.h has been
approatched by a wide variety of strategies and algorithms, ranging
from simple deterministic search to complex hybrid algorithms
b as ed o n'g en eti c s earc h an d i nc orp o rati n g d o m ai n -s pecifi c h euri sti c s'

ln this paper we review a set of ioin ordering algorithms and

classify them according to the nature of the search strategy they

implement. We also Alieny discuss the relative advantages and

applicability of different algorithms'

lntroduction

The problem of f inding the optimal join ordering executing

a query to a relational database management system (RDBMS) is

a combinatorial optimization problem. Queries in an RDBMS are

defined rn a declarat ive, non-procedural language, such as sQL.

This raises the need to transform the declarative query into a

procedural, effective plan for its execution. Each query can be

maooed to a set of execution plans which are equivalent in terms

of the result they generate but the execution cost of the different
plans can vary by many orders. The execution plan is selected

from the set of all alternatives by a dedicated RDBMS module -

the Query 0Ptimizer
Due to the high processing cost, the evaluation of joins and

their ordering are the primary focus of query optimization. Tradi-

tionally, the optimization of such expressions is done by complete

traversal of the solution space (possibly util izing s0me pruning

techniques). This is a feasible approach for most of the classic

database applications, where the size of the query (measured in

number of joined relat ions) rarely exceeds B-10, but i t  is com-
pletely inapplicable to some contemporary databases (0bject-

0riented Databases, Multimedia Databases) and database applica-

t ions such as Decision Supporl Systems (DSS), Qnline Analyt ical

Processing (oLAP), Data Warehousing, Geographical Information

systems (GlS), etc. Queries in such applications may involve tens

or even hundreds of joined relat ions.
The Join Ordering Problem (J0P) has been approached by

several classes of algori thms. l t  is a general izat ion of the

classical combinatorial Travel ing salesman Problern (TSP) -

the problem of  f ind ing the shor test  Hami l ton ian cyc le in  a

complete graph,  The TSP is  among the best-s tudied combina '
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tor ia l  opt imizat ion problems and dozens of  a lgor i thms have

been proposed for  i t  Most  of  these a lgor i thms are d i rect ly
appl icable to  the J0P (which is  considerable newer) .  ln  th is

review however, we consider only algori thms already applied to

the JOP. An extensive suruey of  genera l  g lobal  opt imizat ion
algor i thms is  not  in  the scope of  th is  work

Complexity of the Problem
The JOP in rts generalform is A4P-complete A formal proof

of this fact for cyclic queries was first presented in [8] For small
queries, it is stil l possible to do a complete traversal and find the
global optimum, however, as the srze of the solution space grOws

exponential ly in the number of joined relat ions, for larger queries

the JOP can no longer be solved exactly in its general form.
The approaches for breaking the -1V7-completeness can

be classif ied into two grouPS:

. Sacrificing GeneralitY
Restr ic t ions are imposed on the s ize or form of  the solut ion

space, by sett ing addit ional requirements to the structure of the

solut ions, the connectedness of the query graph (e g. considering
only  acyc l ic  g raphs) ,  the fo rm of  the cost  funct ion,  the implemen-
tat ion of  the re lat ionala lgebra operators,  e tc .

. Sacrilicing Exactness
Instead of  look ing for the g lobalopt imum,acceptably  good

suboptimalsolut ions are found. The portron of the explored solut ion
space is  l imi ted by us ing some heur ts t ics construct ing the solu-
t ions or  by apply ing randomized and genet ic  search a lgor i thms.

These approaches (or a combination of them) usually reduce
the complex i ty  of  the a lgor i thms f  rom exponent ia l to  polynomial
under  the imPosed rest r ic t ions.

Join Ordering Strategies
There are three main strategies for optimizing join orders:

. Botto m-up o ptimizatio n-

This is a synthetic approach in which the query execution plan is
generated starl ing f rom the base relattons and generating step by

itep more and more complete part ial  execution plans unti l f  inal ly
an execution plan for the whole query ts obtained.

' To p-down opti mization.
This is a , ,divide and conquer" approach inwhichthe query is divided
into parts, each part rs optimized separately and f inal lythe dif ferent
parl ial  execution plans are aggregated to f  orm the complete query

execution plan.
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. Transf o rmation o pti mization.
This approach stads with some val id complete execut ion plan whlch
is  t rans formed in to  another  va l id  comple te  p lan ,  improvrng  the
so lu t ion  s tep  by  s tep ,

Query opt imizers are usual ly using elements of  more than
one of  the above strateqies.

The J0P can be  approached by  four  c lasses  o f  a lgor i thms:
1.  Determinist ic Algor i thms. The algor i thms of  th is c lass

perform s0me sor l  of  determinist ic search of  the solut ion space,
ei ther througlr  cornplete t raversal ,  or  by apply ing some heur ist ics
prunrng lne  space

2. Randomized Algor i thms. These algor i thms perform a
random walk  in  the  so lu t ion  space,  mov ing  f rom po in t  to  po in t
in  the  so lu t ion  space A move is  poss ib le  i f  the  so lu t ion  repre-
sented  by  the  f i ' s t  po in t  can  be  t rans formed in to  the  so lu t ion
represented  by  the  second po in t  by  app ly ing  a  s ing le  t rans forma-
t ion  ru le  ( f rom a  se t  o f  p redef ined va l id  t rans format ion  ru les)  to
i t  The a lgor i thm execut ion  ends  e i ther  when no  more  va l id
moves can be  done f rom the  cur ren t  so lu t ion  space po in t  o r
when a  predef ined run  t ime has  e lapsed The bes t  so lu t ion  found
dur ing  the  random walk  i s  the  resu l t  o f  the  op t im iza t ion

3.Genet ic  A lgor i thms.  Genet ic  a lgor i thms mimic  the  b io -
log ica l  evo lu t ion  in  the i r  search  fo r  the  op t imum so lu t ion  [1  ,  2 ]
The main idea is,  staf t ing f rom some ini t ia l  set  (populat ion\  ot
solut ions to generate of fspr ing by random cr0ssover and muta-
t ion  The bes t  ind iv idua ls  (by  the  cos t  func t ion)  in  the  popu la t ron
suru ive  on  each genera t ion  and fo rm the  new popu la t ion  The
a lgor i thm s tops  e i ther  a f te r  some ( f in i te )  number  o f  genera t ions
or  when the  popu la t ion  becomes homogeneous above some
thresho ld  accord ing  to  the  cos t  func t ion  [3 ] .

4.  Hybr id Algor i thms Hybr id algor i thms combine elements
of two 0r m0re of  the above strategies The solut ions found by
s0me deterministrc heur ist ic become the start ing point  of  a
randomized search or the in i t ia l  populat ion of  a genet ic algor i thrn
(an approach known as seeding),  a genet ic algor i thm is en-
hanced by  loca l  search  techn iques ,  e tc

Glassif icat ion of Join 0rdering Algori thms

In  th is  sect ion,  we wi l l  br ie f  ly  descr ibe the most  popular
a lgor i thms proposed for  the J0P and we wi l l  c lass i fy  them ac-
cording to the search strategy they implement

1. Determinist ic Algori thms
1 .1 .  Dynamic  Programming
This is  the a lgor i thm used in  pract ica l ly  a l l  ex is t ing com-

merc ia l  RDBMS systems,  The Dynamic programming has been
first suggested as a query optimization strategy in IBM's classi-
cal System R by Selinger [4] The algori thm performs a complete
t raversal  wi th  dynamic pruning of  the solut ion space l t  con-
structs al l  al ternative join trees (fulf i l l ing three classical heurist ic
constra ints)  by i terat ing over  the a l ready jo ined re lat ions and

possib ly  pruning some subopt imal  so lut ions,
The Dynamic Programming algori thm is guaranteed to f ind

the optirnurn in the solut ion space constrained by the three
heurist ics. In many cases i t  manages to avoid the complete
traversai by dynamical ly pruning paft of the suboptimal plans on
each step Al though i t  is  s t i l l  exponent ia l  in  the genera l  case,  for
some part icular query types the complexity of the algori thm is
only 0(tV 3) In the general case however, the memory and CPU
reqLrirements of the Dynamic Programming grow exponential ly
in  the number of  jo ined re lat ions because a l l  concurrent  p lans
generated in the previous algori thm step must be kept. That is
why, most of today's database management systems impose
restr ic t ions on the s ize of  the re lat ion (usual ly  up to about  15
jo ins)  For  re lat ions wi th less than ten jo ins,  the a lgor i thm has
proved i ts high effect iveness Today i t  is considered a standard
among the query optimization strategies

The three c lass ica l  heur is t ics appl ied by the Dynamic
Programming a lgor i thm are the fo l lowing:
.Selection-Projection Heurist ic. Selections and project ions are
processed ,  on the f ly"  and a lmost  never  generate t ransi t ional
relat ions Selections are processed uoon f irst relat ion access
Projections are processed while generating the output of other
operat ions This  heur is t ic  prunes only  subopt imal  so lut ions -  the
separate processing of  se lect ions and pro ject ions would incur
add i t ional computatio nal costs.

"Cartesian Producl Heurislic. Cartesian products are neverformed.
except  for  the case when they are conta ined in  the or ig inal  query
Relat ions are a lways combined through jo ins.  This  constra int
almost always el irninates suboptimal solut ions due to the high
cardinal i ty of a typical Cartesian product of two relat ions. The
exceptions are very few and occu r in the cases when the card inality
of  the padicu lar  Car les ian product  happens to be smal l  [5 ] .

.Tree Form Heurist ic. Thethird constraint is abouttheform of the
execution plan trees - the internal operand of every join is always
a base re lat ion and nevera i ransi t ional resul t  Suchtrees arecal led
left-deep (while arbitrary-form trees are referred to as bushyand
their set is denoted by,.q) and the subs pace of al l  left-deep solut ions
is  denoted by l .  This  heur is t ic  can e l iminate the opt imum plan and
is  the most  controvers ia l  o f  thethree.  l t  is  c larmed that ,  in  most
cases, the optimal left-deep tree has cost that is pretty c lose to the
globalopt imum There aretwo heur is t ic  arguments for th is  -  f  i rs t
having the base re lat ions as in ternal jo in  operands maximrzes I r '3
use of  the ex is t ing indexes and second having the t rans i t  c  na
resul ts  as external jo in  operands a l lows the sequences of  nes:31-
loop  jo ins  to  be f low p rocessed '  F Iow p rocess ing  means  t ' a l : - :
complete sequence of  operat ions are executed c n eac h re: '  : ,  : :
tup le instead of  execut ing each s ingle operat ion on each:1, :  :

1 .2.  l terat ive Dynamic Programming

This is  one of  the newest  determin is t ic  opt imizat ion a lgo-
r i thms [6]  l t  combines the c lass ica l  Dynamic Programming
with a greedy search strategy. The main advantage of the Dy-
namic Programrning is that i t  always f inds the optimum solut ion
in I As we already observed however, i t  has high t ime com-
plexity and consumes a lot of memory. Suppose that the clas-

1 A s imi lar  argument  holds for
spect  to  the hash- jo in,

r ioht-deeo trees with re-
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sical Dynamtc Programming algori thm has generated al l  joins of

k reiat ions and at this point i t  has used up al l  avai lable mem0ry

At this step instead of trying to generate al l  join combinations

of k+1 relat ions, the l terat ive Dynamic Programming chooses

0ne 0f the k-relat ion join planS, discards al l  other plans contain-

ing any of the relat ions of the selected plan and then restaf is the

Dynamic Programming algori thm to obtain the loin combinations

of k+1 relat ions, then k+2 relat ions and so on, using the selected

k-re lat ion jo in  p lan as an atomic ' ,bu i ld ing b lock" '
Such a strategy obvioLrsly has far more modest memory

requirements. The length k of the parl ial  plans at which the

Dynamic Programming is interrupted by the greedy strategy is a

parameter of the algori thm. The t ime complexity is 0(nk) ,Z<k<n'

1.3.  Min imum Select iv i ty  Heur is t ic
optirnal or near-optimal solut ions are often characterized

by transit ional relat ions with small  cardinal i ty This heurist ic

constructs lett-deep trees, choosing at each step the relation that

minirnizes the cardinal i ty of the intermedtate result [7]

1.4.  Top-Down Heur is t ic
This heurist ic is based on the observatton that the last

loins in a query inf luence i ts cost the most This is explained by

the fact that the transit ional result usual ly grows dramatical ly

towards the end of the query evaluation. At each step, this

heurist ic selects the relat ion with the mintmum cost to join to

the intermediate result [7].

1 .5 .  lK  A lgor i thm
lbaraki and Kameda [8] introduce an algori thm cal led lK

which takes advantage of the special form of the nested-loop

cost functton The lK algori thm f inds the optimal left-deep tree

of  an acyc l ic  graph by ass igning ranks to re lat ions and order ing

the re lat ions accord ing to the i r  rank

1 .6. Krishnamurthy'Boral-Zaniolo (KBZ) Algori thm

This algori thm is presented in detai ls in [9] and is based

on the lK a lgor i thm. l t  f inds the min imum spanning t ree of  an

acyci lc graph and applies the lK algori thm to the result ing tree

The min imum spanning t ree considers the min imum product  of

edge weights (selectivi t ies). l t  is important to note that the KBZ

algorithm imposes restr ict ions on the form of the cost function'

The algori thm has been successful ly used for quertes with up

to  15  1o ins .

1.7.  Relat ional  Di f ference Calculus
This is a new heurist ic developed from a method cal led

Boolean Di f ference Calculus [1 0] .  The main idea is  to  f ind the

most inf luential relat ion in a join expression. A detai led descrip-

t ron of  the method,  accompanied by examples can be found in

I7l

1.8.  Augmentat ion Heurist ic
This algorithm is the generalization of all greedy heuristic

algor i thms [11].  l t  is  another greedy heurist ic which jo ins rela-
t ions one by one, select ing the relat ion according to some
greedy criterion on each step. Experiments have been done with
iive different criteria. The best results were achieved using the

selectivi ty cr i ter ion - choosing the relat ion with minimum selec-
tivity.

1.9"  Local  lmprovements Algor i thm
-ihe 

algori thrn makes local improvements on a given left-

deep execut ion p lan.  A window of  s ize c  ts  moving through the

relat ions permutation. At each step, the grgup of c relat ions

(cai led a clustel is local ly optirnized, substi tut ing the exist ing

oermutation with the optimal one l t  ls easi ly proven that fol low-

ing such strategy can only improve the init ial  permutation The

clusters can also overlap each other. l f  c is the cluster size and

o is the overlap size, experiments show that the best combina-

t ions  (c ,  o )  i n  dec reas ing  o rder  a re  (5 ,  4 ) '  (4 ,  3 ) ,  (3 ,2 ) ,  (2 ,1 )

and (2,  0) ,  depending on the avai lab le opt imizat ion t ime ( they

are ordered in  decreasing t ime complex i ty) .  Increasing the c lus-

ter size, the algori thm complexity tends to 0(ft  !) ,  so clusters

wi th s ize above 5 are not  used [11]

1 .1  0.  A* Algor i thm
ln the domain of  Ar l i f ic ia l  In te l l igence,  the heur is t ic

a lgor i thm cal led A* is  extensive ly  appl ied to complex search

oroblems.  A* has a lso been proposed for  query optr rn izat ion

and may become the direct successor of the tradit ional Dynamic

Programming [12] .  lnstead of  s tep processing and us ing a l l
plans with n relat ions to generate al l  plans with n+1 relat ions,

the A* algori thm starts developing one of the generated plans

based on i ts expected proximity to the optimal plan

1 .11 .  0pt imal  Top-Down Join Enumerat ion
By taking existrng algori thms for the minimal cut problem

and tuning them for the join enumeration context, the 0ptimal

Top-Down Join Enumerat ion a lgor i thm is  the f  i rs t  top-down lo in
enumeration algori thm with space and t ime complexity that is

opt imal  wi th  respect  to  the jo in  graph [13]  The a lgor i thm can

be easi ly  rntegrated wi th branch-and-bound pruning or  demand-

driven interesting orders.

2. Randomized Algorithms
Due to the inabi l i ty of the classical determinist ic algo-

r i thms to optimize large-size queries which become more and

m0re common rn contemporary database appl icat ions,  var ious

non-determinist ic approaches have been developed. Different

variat ions of randomized optimization algori thms have been pro-

posed [1 4]

2.1.  Random Walk Algor i thm
The simplest randomized algori thm performs a random

walk in the solut ion space, starl ing from a randomly chosen

point in i t  on each step, a random move is done, i f  i t  leads to

a pointwith lower cost [ .14]. The effect iveness of such a strategy

highly depends on the rat io between the ,,go0d" and the ' ,bad"

solut ions in the solut ion Space, as well  aS on the size of the

random sample that is examined This approach is obviously

quite nai-tve because only a small  neighborhood of the start ing

point is examined and no atternpt is done to search a path

approaching an (at  least  local )  opt imum [ '15] '

3!l
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2.2. l terat ive lmprovement Algor i thm
A more sophist icated randomized approach is offered

by the l terat ive lmprovement  a lgor i thm [16,  11,  18]  l t  is  a
variation of a greedy search strategy similar to the hiil-climbing
algor i thm [19] .  The d i f ference wi th the c lass ica l  h i l r -cr imbing is
that  no at tempt  is  done to f ind the neighbor  wi th min imum cosr
because in  the genera l  case there are too many neighbors to
check.  Simi lar ly ,  instead of  checking the cost  of  a l l  ne ighbors
to determine whether  a point  is  a local  opt imurn,  a point  is
considered a local  opt imum i f  no bet ter  neiqhbor  could be found
for  a predef  ined number of  a t tempts

2.3.  S imulated Anneal ing Algor i thm
The Simulated Anneal ing a lgor i thm is  an improvement

to the l terat ive lmprovement, which al lows also moves that lead
to points with higher cost than the current point, This lowers the
chances of  the a lgor i thm to get  t rapped in  a poor  local  opt imum.
Moves are accepted wi th a proba.b i l i ty  which depends on the
cost rat io between the current and the destination point and an
algor i thm parameter  that  determines the l ike l ihood for  search
continuation at a given point of t ime Query optimization by
Simulated Anneal ing was prop0sed in  [20]

2.4.  Two-Phase 0pt imizat ion Algor i thm
Th is  a lgo r i thm i s  a  comb ina t ion  o f  the  l te ra t i ve

lmprovement  and the Simulated Anneal ing a lgor i thms which
benef i ts  f rom the advantages of  both [1  8]  The l terat ive
lmprovement, i f  appl ied mult iple t imes, can cover a great port ion
of  the solut ion space,  whi le  the Si rnulated Anneal ing is  very
sui tab le for  thorough search of  a  point  ne ighborhood.

2 .5 .  Qu ickP ick  A lgor i thm
This is a probabil ist ic bottom-up join ordering technique

pef forming a b iased random sampl ing of  the solut ion space l t
uses the fo l lowing mapping between a jo in  query 's  predicates
and a query p lan.  For  each new predicate a jo in  is  added to the
tree and,  i f  not  present  yet ,  the base re lat ion requi red In case
both of  the predicate 's  jo in  arguments are a l ready present ,  i .e ,
a l ready connected by a prev ious jo in ,  the predicate is  added to
th is  very jo in .  At  each step,  the a lgor i thm randomly chooses a
query predicate to add to the part ial  execution plan. l f  the cost
of the part ial  plan exceeds the cost of the best plan found so
far ,  the current  p lan is  d iscarded.  This  procedure is  repeated
unt i l  some stopping cr i ter ion is  fu l f i l led [21] .

3. Genetic Algorithms
Designed to mimic the natural evolut ion process, genetic

algori thms nowadays enjoy an increasing populari ty and are
being appl ied to var ious complex opt imizat ion problems,  As in
Nature, where the best f i t  individuals in a populat ion have great-
est survival probabil i ty and highest opporlunity to have their
features inherited by the offspring, genetic algori thms breed and
combine solut ions to obta in even bet ter  ones [22]

The query execut ion p lan can be considered a program in
an abstract tree representation which is evaluated bottom up
The re lat ions are the terminals  and the jo ins are the funct ions
in the genet ic  program. Thus,  the query execut ion p lan sat is f ies

the structural requirements of the genetic programming method,
which appl ies the paradigm of  search through genet ic  a lgo-
r i thms,  developed in  [23,24] .  The input  and the output  of  each
jo in operator  in  the p lan are re lat ions,  therefore the c iosure
requi rement  def ined in  [25]  is  sat is f ied.

Each paft icular genetic algori thrns is a concretization of
the canonical genetic optimization algori thm, that is, dif ferent
genetic algori thms dif fer from each other in their coding method
(converl ing a solut ion into an internal representation upon which
the genet ic  operators can be appl ied)  and by the choice of  the
three genetic operators - select ion, mutation and crossover.

Genet ic  a lgor i thms have been f i rs t  appl ied to the JOp in
[26] and [27] The f i tness function used requires backward
transformation f rom chromosome to tree representation, which
is complex and with high computational cost. The chosen cross-
over operators have a serious f law - they disrupt the chromo-
s0me structure, transforrning two val id parent chromos0mes
into an inval id one, which then needs to be ,,repaired" to become
a correct  so lut ion encoding.  Despi te these shor tcomings,  the
achieved resul ts  are promis ing

Later  in  [28]  some of  these d isadvantages have been
overcome The f i tness function is based on the cost of the query
execution plan, which is defined as the total execution t ime from
the f irst retr ieval of a relat ion from the database to the comple-
t ion of the output generation (the query result).  The rnodel also
considers mul t iprocessor  envi ronment  and implements para l le l
p  rocessing.

Current ly ,  probably  the most  popular  non-exper imenta l
genetic SQL query optimizer is the GEQO (GEnetic Query 0ptimizer)
in the Postgres (PostgreSAL) RDBMS. l t  considers only left-deep
solut ions,  implements an El i t ls t  se lect ion operator ,  a  s imple
edge recombination crossover and does not apply mutation. The
populat ion s ize is  f ixed Postgres has two opt imizer  implemen-
tat ions, a classical determinist ic optimizer and a genetic optimizer,
the la t ter  being used for  quer ies wi th more than 10 jo ins.  A
genetic query optimizer was also introduced in the Microsoft
S0L Server  2005

3 . 1 .  C o d i n g
The coding methods for  the J0P can be c lass i f ied by the

form of the trees they operate on - left-deep or bushy The choice
of  coding st rongly  in f luences the choice of  the three genet i ;
operators.  Lef t -deep codings are prevalent  wi th  genetrc  a rc  -
r i thms,  most ly  because they a l low for  srmpler  and mo:e e"  l : - :
mutat ion and crossover  implementat ions l lo te that  the sc , , :  :  -

space must  be c losed under  the genet ic  operators n 'h ic f  - : :^s
mutat ion and crossover  should produce val id  so lut rc^s , , ,  :^
respect  to  the selected coding.

3.1.1. Simple Left-Deep Tree Coding
Each lett-deep tree can be represented in a unique way as

an ordered sequence of i ts leaves:

((((R1xRu;xR.;xR4)xR2) -- 1 5342

This is  probably  the most  popular  coding -  i t  has
been used in  numerous genet ic  a lgor i thm implementat ions,
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including PostgreSQl's GEQQ [29]. Two of its recent applications

to the JOP can be found in  [30]  and [31] .

3.1 .z.Traveling Salesman Coding
An ordered l ist of al l  relat ions part icipating in the loin

is created, The solut ion is scanned from left  to r ight, each

relat ion is substi tuted by i ts index in the ordered l ist and then

it is removed from the l ist,  Such a coding has been successful ly

used tn the solving of the TSP with genetic algori thms'

L = [1 ,2,3,4, 5] ,  ((((R1xR5)xR3)xR4)xR2) ".  14221

3.1.3. BushY Tree Coding
T h e c o d i n g o f b u s h y t r e e s i s I e s s s t r a r g h t f o n r y a r d . l t

mus t  be  des igned  so  as  no t  to  over l y  comp l i ca te  the

rmolementation of the crossover and mutation operators. A

good coding a lgor i thm has been proposed in  [26] ,  where the

iymbols in the code represent the edges of the query graph'

0ne useful property of this coding is that i t  cannot represent

cartesian products, which means that the application of any

crossover and mutation operatorS cannot lead to a CarteSian

product  in  the execut ton Plan.

3.2.  Select ion
3.2.1 . Roulette Selection
Each individual in the populat ion corresponds to a disc

sector whose area is inverse-proport ional to i ts cost The disc

can be thought of as a roulette. tVturns of the roulette determine

the rVindividuals of the new generation. This algori thm considers

the relat ive f i tness of the individuals in the populat ion, which

means that a , ,super" individual may cause the early ext inct ion

of other individuals, The classical Roulette selection is thus

characterized by fast convergence.

3.2.2. M agnitude Roulette Selection
This is a variat ion of the classical Roulette selection, in

which the disc areas are determined not by the f i tness of the

individuals, but by the magnitude of their f i tness. Experiments

show that the Magnitude Roulette selection is characterized by

slower evolution progress but the risk of premature c0nvergence

is much lower [32].

3.2.3. Rank Selection
In the dornain of query optimization, the f i tness of the

individuals in a populat ion may vary by 10100. In selection

algori thms based on the relat ive f i tness of the individuals, some

wil l  have no chances to survive while others wil l  quickly domt-

nate the populat ion,  leading to quick convergence.  The rank

selectton algori thm assigns ranks from tV for the best-f i t  indi '

vidual to 1 forthe worst-f i ts individual in a populat ion with size

rV. Then each individual with rank B survives with probabil i ty

R I  W + 1)  *  N l2) .  This  se lect ion scheme was suggested

in [30]

3.2.4. Elitist Seleclion
The individuals in the populat ion are sorted rn decreasing

order of their f i tness and the f irst tV individuals are preserued in

the new generation. This is the most popular select ion operator

and it rs characterized by relatively fast convergence lt is the

selection algori thm implemented in GEAO [29].

3.2.5. AdaPtive Seleclion
self-adaptation in genetic algori thms (populat ion size ad-

aptation in part icular) is a topic that is receiving considerable

attention recently. The classical select ion algori thms keep the
populat ion size f ixed. This simpli f ies the algori thms but i t  is an

arl i f ic ial restr ict ion and does not fol low any analogy to biological

evolut ion, where the number of individuals in a populat ion varies

continuously in t ime, increasing when there are high-f i t  individu'

als and abundant resources and decreasing othenruise. Intuit ion

hints that i t  may be beneficial for the populat ion to expand in the

early generations when there is high phenotype diversity and

there is opportunity to ,,experiment" with different characteristics

of the individuals, and to shrink with the increase of populat ion

convergence, when the unif icat ion of the individuals in terms of

structure and f i tness no longer just i f ies the maintenance of a

large populatron and the higher computational costs associated

with it.
An adaptive selection operator with dynamic populat ion

size has been recently appl ied to the JOP in [31] and i ts com-

parison against the classical f ixed-size El i t ist select ion seem
promising

3.3. Crossover
3.3.1. Subsequence Exchange Crossover I

This crossover algori thm is appl icable to the Simple Left-

Deep Tree coding and the Bushy TreeCoding. A random subse-

quence of the code characters of both parents is chosen. Then

the subsequence is substi tuted by another one containing the

Same characterS but arranged in the order of their occurrence

in the other Parent [7].

tTAz \ / 3Wl2
V
/ \ .

464r '/ \ /rVAt

"Parents" "Offspring"

3.3.2. Subsequence Exchange Crossover ll

This crossover algori thm is appl icable to the Travel ing

Salesman coding. Two random subsequences with equal length

are chosen in both parents. Then the two subsequences are

exchanged to form the offspring. This coding is appl icable only

to the Travel ing Salesman codrng because i t  al lows duplicate

symbols in  the code [7] ,

"Parents" "Offspring"
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3.3.3. Subsets Exchange Crossover
This crossover algori thm is appl icable to the Simple Left-

Deep Tree Coding and the Bushy Tree Coding Two random
subsets of characters with equal cardinal i ty are chosen in the
codes of both parents such that the two subsets contain the
same elements Then these subsets are exchanged to form the
offspring [7].

As+Ex t  4549
\ . /

^
45W/ \ 45Ftr| l

"Parents" "Offspring"

3.3-4. Order Crossover
Offspring are generated by choosing two random split points

in the parent chromosomes, inherit ing a gene subsequence from
one of the parents and f i l l ing up the missing genes in the relat ive
order  they occur  in  the second parent  [30] .

( 1  3  1 5 7 e 1 0  |  2 8  6 4 ) ) ( i 1 0  |  2 1  6 e  |  8 4 3 5 )
( 3  B  |  2  1  6  e  |  4  1 0  7  5  ) ) ( 1  6 1 5  7  e  1 0  |  4  3  B  2 )

A var iant  of  th is  a lgor i thm using a s ingle sp l i t  po int  is
used  in  [31 ]

3.3.5. Modified Two Swap (M2S) Crossover
This is one of the two cr0ssover operators proposed in the

first work to apply genetic optirnization to the JOp [26] Two
genes are randomly chosen in  the f i rs t  parent  and are replaced
by the corresponding genes f rom the second parent ,  preserv ing
thei r  order  in  the second oarent .

( 1  3  2  4  6  5 )  )  ( 4  3  2 1  6  5 )
(2 3 4 6 5 1)  )  (2  1 4 6 5 3)

3.3-6. CHUNK Crossover
This is the second crossover operator proposed in [30] for

bushy encoding.  A random chunk of  genes in  the f i rs t  parent  is
chosen,  the chunk is  copied in to the of fspr ing ( in  the same
posit ion i t  occurs in the parent) and the rest of the genes in the
of fspr ing are f i l led up in  the order  they occur  in  the secon0
oarent.

A good algori thm for bushy tree crossover generating
val id offspring solut ions and ensuring that most of the structural
characterist ics of the parent trees are inherited bv their succes-
sors is presented in [28]

3.4.  Mutat ion
3.4.1. Reciprocal Exchange Mutation

The genes in (random) posit ion i  and ( i  + 1) mod f i ,  wnere
lV is  the length of  the chromosome, are swapped [30]  Appl ied
to the s imple le f t -deep t ree coding.  th is  mutat ion operator  ob-
ta ins a new chromosome that  is  a va l id  so lut ion

3.4.2. Exhaustive Mutation
Wi th  le f t -deep  cod ings  where  a  gene  con ta ins

informat ion about  a re lat ion and a jo in  rnethod,  the fo l lowing
simple mutat ion can be considered:  two random genes i  and
/are swapped and the join method of another randomly selected
gene k is  modi f ied [31] .  Such a mutat ion operator ,  even i f
appl ied a lone,  guarantees that  every point  in  the solut ion sDace
is reachable for any choice of the start ing point. This is a useful
characterist ic of genetic operators since i t  is a prerequisite for
the convergence of  the genet ic  a lgor i thm.

4. Hybrid Algorithms
A number of hybrid optimization algori thms have oeen

suggested and comparat ive exper iments have been done wi th
t h e m  l i  1 1 .

4.1.  Toured S imula ted Anneal ing
Th is  i s  an  a lgo r i thm s im i la r  to  the  Two-phase

0ptimization proposed by Lanzelotte et al [3a] in the context
of distr ibuted databases severai toursin the solut ion space are
t raversed v ia the Simulated Anneal ing a lgor i thm, each tour
staft ing from a dif ferent ini t ial  point. The init ial  points are obtained
by some determin is t ic  greedy a lgor i thm which bui lds so lut ions
us ing  some augmenta t ion - type  heur i s t i c  (e  g  m in imum
s electivity)

4.2.  AB Algor i thm
This is  an evolut ion of  the KBZ algor i thm [35] .  l t  a l lows

the use of two join methods - sort-merge and nested loop The
soft-merge cost model has been simpli f ied in order to satisfy
the constra ints  of  the KBZ algor i thm The AB argor i thm inc ludes
both heurist ic and randomized elements. The inner loop searcnes
heur is t ica l ly  for  a local  min imum, whi le  in  the external  looo
several start ing points are randomly generated using an idea
similar to the l terat ive lmprovement

4.3.  lmproved A* Algor i thm
The lmproved A* algori thm is a recent improvement to the

class ica l  determin is t ic  A* a lgor i thm which takes advantage of
the  fac t  tha t  the  o r ig ina lA*  bu i lds  a  l i s t  o f  p romrs ing  nodes  I  e
nodes that are probably part of the best path [36] The lr:3.st, , ,
A*  a lgor i thm uses th is  addi t ional  in fornrat ion b;  exa,-  -  -  j  , . ,  : -
some probabi l i ty  the l is t  o f  promis ing nodes runrr rg :he : -  I  - : .
A*  us ing some of  these nodes as a s tar t ing co - :

D isc ussio n
As the rev iew suggests,  there is  a considerable r - - : : .

o f  exact  and approx imate opt imizat ion a lgor i thms for  the ,1t r
The dif ferent algori thms exploit  dif ferent characterist ics of t ie
problern instances and perform better for dif ferent forms anc
sizes of  the solut ion space,  cost  funct ions,  jo in  methods etc

The No Free Lunch (NFL) theorern [32] states that al l
algori thms searching for an extremum of a cost function perform
exact ly  the same over  a l l  poss ib le cost  funct ions.  The NFL
suggests that there are classes of problems and for each class
there exists an algori thm that solves the problems of that crass

inforrnation techno lo gies
and control 37I  200?



nnost eff iciently, Applying the NFL to the J0P' we can conciude

that there is no ,,best,i al[orithm but that it is necessary to study

the relationshrps oetwttn thu spaces of problems and the spaces

of algori thms.
The maior aspects that have to be taken into account

compar ingthedi f ferentJOPalgor i thrnsaretherrappl icabi l i iyand
restr ict ions, the rmpact on peiformance of query size, the con-

nectedness of the loin grapfr,  and the cost model used'

For  smal l  quer ies-(ones wi th up to B-10 jo ins) '  the s ize

o f theso lu t ronSpacea l lows theapp l i ca t iono{bo thde te rmin is t t c
and non-determinist ic algori thrns. The main advantage of deter-

m in is t i ca |gor r thn rs |s tha t theyareguaran teed to f ind theg |oba |
o p t i m u m .  - ^ ^  ^ {  + h n  A c

A good study of the relat ive pe-rformance of the determtn-

ist ic heurist ic argoi i t f i rns agarnst dif fereni ioin graph topologies

and cost models ts Presented in [7]
The perforrunt. of the Minimum Selectivi ty heurist ic is

re la t i ve lygood fo r lov lconnec t i v i t i eso f the jo ing raphand fo r the
nesied loop cost  model ,  For  h igher  connect iv i t ies of  the io in

gitpt and for the asymmetric hash loop cost model '  the heu-

ristrc Pedorms Pooriy'
The Retatronul Dift"tnce Calculus has very good overal l

pedornnance ' theheur i s t i cy ie ld ingpar l i cu la r l ygoodresu l t s fo r
theasymmetr ic t rash|oopcostrnode!evenforh ighconnect iv i t ies.

The Top-Down heurist ic has very good performance for

a l m o s t a l l j o i n g r a p h / c o s t m o d e I c o m b i n a t i o n s ( t h e e x c l u s t o n
being c l ique jo in  graph i  nested loop cost  model)  and i t  is

usua"l ly able to f ini  near-optimal left-deep soluttons

n r u r , * t a r y , t h e R e l a t i o n a l D i f f e r e n c e C a l c u l u s a n d
Top_Down are the besi option, however f  or highly connected ioin

graphs Uottr trave Jsappointing pedormance - Top-Down with the

n e s t e d i o o p a n d R e | a t i o n a l D i f f e r e n c e C a | c u l u s w i t h t h e h a s h
loop These t inJings suggest that better perlormance can be

expectednycombin ingdi t ferentheur is t ics,adapt ingtheopt imizer
t o t h e S n a p e o f t h e i o i n g r a p h a n d t h e l o i n m e t h o d u s e d [ i ] .

The A* algori thm, *nitn can be viewed as a successor of

the classtcat Dynamic Programming' generates- a conrplete

executton p,un_ut a much elr l ier stage than the Dynamic Pro.

g r a m r n I n g a n d i t p r u n e s s u b o p t i m a l s o l u t i o n s r n o r e a g g r e s -
sively For small  queries, A* has very good pedormance'

The lK urgo|.iihnl takes advantage of the special form of the

nested-loop colitunction and optimizes a query with tV joins with

t ime complexity 0(Mlog,Al) '  lbaraki and Kameda also pr0p0se

ana lgor i thm*n i . r . ' . i sapp t i can leeven tocyc l i cquer iesand f inds
a g o o d ( a | t h o u g h n o t a l w a y s o p t i m a l ) s o l u t i o n w i t h t t m e c 0 m -

KBZ algori thrn as a subroutine wrth complexity 0(/V t) and runs

it  0(M) t imes over randomly chosen spanning trees of the query

graph' ,Thankstoaninterest ingseparat ionof thesor l -mergecost
func t ion in toapar l tha ta f fec ts theop t im iza t ionandapar t tha t
does not, the AB algori thm is appl icable to al l  join methods

Jespite the l i rnitat ions of the KBZ algori thm'

Wi th f rn i te run t ime, thee f fec t i venesso f randomizeda lgo .
r i t h m s d e p e n d s o n t h e c h a r a c t e r i s t i c s o f t h e c o s t f u n c t i o n a n d
the connectedness of the query graph These results have been

s tud ied inde- .a i l , compa,edaga ins teacho theraswe| lasaga ins t
the resul ts  of  Dynamic Programmrng [1.1 '  1B] '  The.resul ts  f rom

comparrngtheretat iveper formanceof the| terat iveImprovement
and the Srmulated Anneaiing are pretty controversial '  some

authors [16] suggest the l teiat ive lmprovement is superior for

non-recurs'u. 'u,g, loin queries' while others [18] ( later backed

bV t7]) show the opposite that the Sirnulated Annealing almost

.itt;i; outperforms the lterative lmprover'ent'

Arnongrandomizeda|gor i thms, thel terat ive lmprovement
{inds a reasonably good solut ion for a very short t ime' while the

simulated nnn.rt,ni takes more t ime but is able to t ind better

solut ions.Tnerwo.phase0pt imizat ionbenetr ts f romtheadvan.
tages of both approaches and f inds the best results for the

shortest t ime [38] '
l ncon t ras t to t rans fo rmat ion -baseda |gor i thmssuchas

the| terat iveImprovementandSimu|atedAnneal ingwhichtraverse
t h e s o l u t t o n s p a c e s t a t e b y s t a t e ' t h e 0 u i c k P i c k a | g o r i t h m C 0 n -
V e r g e s q u i c k e r a n d d e l r v e r s m 0 r e s t a b l e r e s u l t s . l n a d d i t i o n '
transformation-based algori thms depend to a certain degree on

the quality of trre sta'tin6 solution which affects the stability of

the results obtained and requrres carefur parameter tunrng i f

convergence is too fast, the argorithms may get prernaturely

stuck in a poor local optimum [21] Algori thms l ike the Toured

S imu la tedAnnea l rngand theTw.o-PhaseOpt im iza t ionhavebeen
develoPed to address this tssue'

Thecompa,u t 'u .exper i rnen tso f randomizedandgene t i c
a | g o r i t h m s h a v e b e e n m o s t | y I i m i t e d t o e m p t r t c a l e v a l u a t r o n s
over padicular test problems' Some research indicates that

gene t i ca lgo r i thmsper fo rmbet te r tha .n theS imu la tedAnnea l tng '
w h i c h o n i t s t u r n o u t p e r f o r m s t h e | t e r a t i v e l m o r o v e m e n t . T h e
comparison In run t ime is also in favor of genetic (versus

randomized) algori thms [7] Results {rom performance experi-

ments companng two genlt ic algori thms agatnst the simplest

r a n d o m i z e d o n e , t h e R a n d o m W a l k ' s h o w t h a t f o r s m a l l q u e r l e s
the twogene t i ca lgo r i thmshaveawe| | .p ronouncedsuper io r i t y ,
while for iarge q-ueries the Random Walk has performance

comparable to tnaiof the two genetic strategies [31] ln general,

the results vary considerably'  which shows that one o{ the two

approaches may domineei  over  the other  tn  some c lass of

problems while in another class of problems the results can be

just the oPPosite,
The theoretrcal comparison between the Srmulated An-

nealing and the genetic algori thms [39] shows that many ge-

netic algori thms 1in. t tnonical genetic algori thm in part icular)

are characterized'by-better prouanit i ty of f inding a g:99 solut ion

t h a n t h e S i m u l a t e d A n n e a l i n g , p r o v i d e d t h a t t h e s o | u t i o n S p a c e
sat is f iescer ta inconstra ints .Theseconstra intshoweverareweak
and hold true for almost any chorce of the genetic 0perators.

An important aspect tn favor of randomized and genettc

plexity 0(/V')
The KBZ algori thm uses basical ly the sarne techniques but

is more general and more complex and has t ime complexity

O ( M ) { o r t r e e q u e r i e s , w h e r e i t d i r e c t | y c o n s t r u c t s t h e o p t i m a l
left-deep solut ion t9l '  For cycl ic graphs' the minimum spannlng

tree has t0 De computed i i rst Rs with the lK algori thm, the

applicabi l i ty of the KBZ algori thm depends on the form of the cost

functton - the nesteO-foop and hash loop cost functions.satisfy

the constraints but, in general '  the sort-merge does not '  KBZ has

good performance on L*-tonnectivi ty join graphs and very poor

purtoi*unte for the cornpletely connected cl ique graph'

The AB algori thm mixes determinist ic and randomized

techniques and has t ime complexity O(/V') l35l l t  ut i l izes the

3a | 200?
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algorithms is that they are easi ly hybridized, incorporatinq do-
main-speci f ic  knowledge.  This  takes them f rom black-oox ro
problem-aware optimization, which is expected .o be beneficial
for perforrnance as hinted by the NFL theorem Besides, from
design and implementat ion perspect ive,  both randomized and
genetic algori thms can be easi ly adapted to take advantaoe of
paral lel computer architectures

The prec is ion of  the subopt imal  so lut ions found by ran-
domized and genetic algori thms ( i .e their proximity to the global
optimum) is proporl ionalto the number of solut ions the algori thm
has considered (which in turn is proporl ionar to i ts running t ime)
and is strongly inf luenced by the propert ies of the solut ion s0ace
for  the paf t icu lar  problem instance.  The sorut ion qual i ty  a lso
depends on the convergence character is t i rs  of  the a lgor i thms
and thei r  ab i l i ty  to  escape poor  subopt imal  p lateaus In tne so-
lut ion space studying the correlat ion between the propert ies of
the solut ion space and the hardness of  the J0p instance for  a
parlrcular class of optimization algori thms is curreni ly in i ts
in fancy -  the knowledge is  s t i l l  l imi ted and mosi ly  hased on
empir ica l  resul ts  for  srnal l  quer ies (up to 10 jo ined rerat ions)
Sti l l  there are no analyt ical tools or respective theory that coLrld
help answer the question what wil l  the performance (e g r:Jevia-
t ion f rom the g lobal  opt imum as a funct ion of  the nurnber  of
so lut ions explored)  of  a  par l icu lar  a lgor i thm be for  a f ixed J0p
i nstanc e.

0ne clear factor inf luencing the effect iveness of non-deter-
min is t ic  search a lgor i thms is  the shape of  the sorut ion space,
the cost distr ibution of the local minima a.nd the rat io hretween
the ,  good" and , ,bad"  so lut ions.  For  example,  searc l r  spaces wi th
the form of a well  2 are easier for rancJomized and genetic
a lgor i thms and good-qual i ty  so lut ions can be expected 0n the
other  hand,  so lut ion spaces that  are not  smooth and have great
deviat ions of the cost function present a considerabry greater
c hal leng e.

Empir ical results evaluating the cost distr ibution for- the
spaces of left-deep and bushy trees show that, for the nested.
loop cost  model ,  about  10% of  the le f t -deep solut ions are n0
worse than twice (21)  the g lobal  min imum, and 45% are bet ter
or  equal  to  s ix teen (24)  t imes the g lobal  min imum 0n the other
hand,  the , ,qual i ty  rat i0"  in  the space of  the bushy t rees is  much
lower - only about 5% of the solut ions have costs less than two
t imes the g lobal  min imum, and 25% are bet ter  or  equal  than l6
t imes the g lobal  min imum [27]

A comprehensive exper imenta l  s tudy on the in f luence of
connectivi ty of the query graph, predicate selectivi t ies and rela-
t ion sizes on the shape of the search space and the perlormance
of heurist ics and probabil ist ic optimization algori thms is pre-
sented in [33]. l t  is concluded that the shape of the search space
is clearly deterrnined by these parameters and that the perlor-
mance of the probabil ist ic optimization algori thms is direci ly t ied
to the shape of  the search space Heur is t ics,  on the other  hand,

2 Such spaces have two characterist ics - the cost dif fer-
ence of any two local minima is small  and there exists a path
between any two local minima whose elements have costs
similarto that of the minima it  connects ( i .e. the area of the low-
cost  so lut ions is  smooth)  [17] .

exhibit  unstable performance which is only part ial ly dependent
on the form of  the search soace.

Co nclusio n
FinCing the opt imai  jo in  order ing for  a database query is

a complex combinator ia l  opt imizat ion problem, which,  in  i ts
general form, is -?V7) -complete. The algori thms proposed for
the J0P can be classif ied into four basic types - determinist ic,
randomized, genetic and hybrid The applicabi l i ty and effect ive-
ness of the four classes of algori thms depend mos|y on the
query size, the cost function and the propert ies of the solut ion
space i t  def ines

For smal l  qr - ier ies (wi th up to 10 jo ins)  determin is t ic
algori thms are the strongest contender. mosi ly because they are
guaranteed to f ind the g lobal  opt imum For larger  quer ies now-
ever ,  the combinator ia l  explos ion makes the exhaust ive search
of  the solut ion space impossib le Large solut ion spaces are the
domain of  non-determin is t ic  a lgor i thms -  randomized,  genet ic
and hybr id

Today's RDBMSs st i l l  rely mosily on determinist ic query
opt imizat ion a lgor i thms such as the Dy;ramic programming,
however with the advent of some unconventionar databases and
s p e c i f i c  d a t a b a s e  a p p l i c a t i o n s ,  n o n - d e t e r m i n i s t i c  q u e r y
optimizers steadi ly force their way Now already in i ts third
decade query optimization continues to be an active f ielcl  of
res ea rc n.
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