
F

Some Aspects of LFU-RBH: A Replacement
Algorithm lor Database Disk Buflering

Key Words: Cache; replacement policy; disk caches least; recently
used; least frequently used.

Abstract. Disk buffering is an important aspect of every computer
system. ln modern computer systems, the pertormance gap betvveen
the volatile memlry and the non-volatile storage systems is in powers
of ten. Therefore, the disk block reads/writes can be the bottleneck
of the system. A major factor for increasing the overall per-formance
is improving the cache management. 1perating systems offer caching
to improve l/0 pertormance. Database systems also have a disk
cache. Most of the cases it is implemented as a LRU buffer or a variant
of it. The present paper offers an algorithm, which tries to take
advantage of the frequency aspect and also to reduce the disadvantages
of the pure LFU policy. Experiments are conducted to estimate the
behavior of the algorithm and the various parameters.

Introduction

Disk caching is an important aspect of every computer
system[10]. lt is essential for database seruers in order to
achieve good performance. There exist many algorithms for disk
caching - LRU, LRU-K, FBR, 20, LRFU, LIRS, LRD, ARC etc.
f2,3,4,5,6,7,8]. The present paper offers an improvement of the
previously presented algorithm ['1] from the same author. This
algorithm is called LRFU-RBH (Least Recently/Frequently Used
-References Buffering and Hashing), but from now on it is
renamed to LFU-RBH (Least Frequently Used -References Buff-
ering and Hashing). The experiments are conducted to estimate
the hit ratio of the algorithm and to illustrate the influence of the
proposed improvement. The algorithm is a part of a larger
experimental setup - an implementation of database server.

Most of the existing algorithms are LRU-based. These are
LRU itself, LRU-K, 2Q, LRFU. Others are LFU-based - LRD, FBR,
LRFU. The proposed algorithm is most like frequency based, bul
some parameters can introduce a measure of the regency
factor, as mentioned in the next paragraphs. According to [2],
the pure LFU replacement policy should never be used in data-
base buffer managers, because of the disadvantages of the
policy. The goal of the presented LFU-RBH method is to take
advantage of the frequency aspect, but in the same time to
reduce the disadvantages of the pure LFU policy.

The LFU-RBH Algorithm
The basic topics of LFU-RBH are as follows:

the main modules in LFU-RBH are the hash table.
references butfer, MRU section, data pool;

every block in the cache has associated reference

l. Atanassov

the References Bulfer (RB) is a FlF0 buffer, holding
the numbers of the last r referenced disk blocks;

the RB is divided in s sections;
when a block enters the RB his corresponding block

reference counter is incremented with s;
when a block leaves a section of RB, his correspond-

ing counter is decremented with
it a block's reference

block is not freed:
counter drops to 0, its disk

the cached blocks are organized through a hash table;
to resolve collisions a chaining technique is used;
the collision slots have an upper limit of 8;
the hash table holds only the metadata for the

structure - block number, reference counter, pointer to actual
data;

the data blocks itself are organized in a data pool -
n0 one is explicitly associated with a collision slot;

initially all blocks are considered free - they are
associated with reference only in demand;

- the granularity of the data poolis a parameter of the
system;

optionally the so called MRU section can be activated;
- the function of the MRU section is to filter single-

occurred references, i.e. the table scans,
Figure 7 depicts the data structures, implemented in LFU-

RBH.

The References Buffer

The References Bulfer (RB) is the buffer containing the
last r references to the disk. lt can be divided in s sections,
where 0 < s <= r. When a block number enters the buffer, its
reference counter is incremented. When a block number leaves
a section, the reference counter in the corresponding block is
decremented with one. The reference counter is used to deter-
mine which block is not heavily used (the cold blocks) and
eventually to replace it. The detailed structure of the references
buffer is in figure 2.

The parameters of the LFU-RBH are as follows:
1)Hash table bits - the length of the hash table,

number of the hash slots.
2)Collision slots count - the number of the collision slots

per hash slot. Maximum value of 8.
3)References bulfer bits - the length of the RB.
4)RB sections count - the number of sections in the RB.
5)Data pool enabled - indicates whether data pooling is

enabled.

inf orrnation teclrnol ocrie s
andcorr-rtrol

counter;

data pool

nJ
t- l coll ision slotstr

hash table

increment reference
counter

data data data data data data

LEE
<_

outcoming block
numbers

section s

- t

6)Data pool cluster length - the length of one data pool
cluster. Must be multiple of 8.

7)MRU sections enabled - indicates whether MRU sec-
tion is active.

8)MRU section length - the number of blocks in MRU
section.

9)MRU collision slots - the number of the collision slots
for MRU section.

Gomments for the Parameters
The number of the hash table brts must be greater than 3,

i.e. the hash table must have at least B slots.
The number of the collision slots is limited due to perlor-

mance considerations. The collision slots are not ordered. There-
fore, to resolve collision a straightfonnrard searching must be
perlormed. Thus, the resolving is with linear complexity and the
number of collision slots should not be very high.

The length of the RB is always a power of 2. In that manner
it can be very easily organized as a circular buffer, applying the
appropriate mask to the operating index.

The number of sections s in the RB buffer is an arbitrary

references buffer

section 2

r elements (references)

Figure 2. The structure of the references buffer with s sections

Figure 1. The data structures of the algorithm

section I

+ S

number in the limits of 0<s<= r. lf RB does not hold an exact
number of sections, the last section is enlarged to the end of
the buffer, For example, if the buffer is with length 1024(10 bits)
and the number of sections is '10, then the buffer consists of
9 sections with length 102 (the integer part of 1024110) and
the last section is with length 1024-(102.9) =106 elements
(references).

The Data Pool
It data paoling is enabled, the parameter data pool cluster

length determines the chunks a memory is allocated for the
needs of the algorithm. For example,il data pool clusteris 64,
then the first caching demand will allocate 64 * disk block size
bytes and the corresponding metadata will be initialized. After
64 caching operations the cluster is depleted and the next
caching demand will allocate another 64 * disk block she bytes
and so on. As shown in the experimental results, the memory
utilization can drop due to pooling mechanism. The data pool
cluster length should be multiple of B, because data pool
metadata are organized through an bit-map and for every block
is associated a bit for allocated/free status. In that manner the

3 ?007 35infgrrnatien technologies
andcontrol

cluster always requires an exact number of bytes.

The MRU Section
An often encountered problem in caching is the so called

full scan, or in database terms - the table scanlg]. lf a large
database table is accessed, the incoming data blocks can flush
a large piece or even an entire cache. To avoid this problem
almost every caching algorithm possesses mechanism to ne-
glect single-occurred references to the cache. The present al-
gorithm also has such a mechanism. lt is called the MRIJ
section (Most Recently Used section). The working rules are
as follows:

Ihe MRU section is a FIFO circular buffer;
- when a reference occurs, first the references buffer is

checked;
if the block is in the RB, it enters the RB;
if the block is not in the RB, then lhe MRIJ sectionis

checked:
if the block is in the MRU, it is removed from the MRU

and passed to the RB;
if the block is not in the MRU, it enters the MRIJ',
the MRU section has an associated hash table with up

to 4 collision slots;
the length of the MRUhash table is equalto the length

of the main hash table,
the length of the MRU section is a parameter of the

algorithm;
the number of the MRU collision slots is a parameter

of the algorithm.

The Experimental Results
The experiments are conducted to estimate the hit ratio of

the algorithm and the influence of the various parameters (in-
cluding MRU section). The results are compared with four other
caching algorithms -LRU, LRU-K, FBR and 2Q. The used refer-
ence string (the sequence of the disk block numbers) consists
of random numbers. lt is generated with the MatLab and has the
followin g characteristics :

1) Reference string 1 (RSl)
10 000 normally distributed references with mean 1000

and variance 30
10 000 normally distributed references with mean 1 100

and variance 30
10 000 normally distributed references with mean 1200

and variance 30
10 000 normally distributed references with mean 1300

and variance 30
10 000 normally distributed references with mean 1400

and variance 30
10 000 uniformly distributed references from 1 to 5000
The above mentioned O0 000 references are mixed and

added again to the original 60 000 for a total of 120 000
references.

2) Reference string 2 (RSZ)
The 120 000 references from the RS1 plus 1 0 000

unique (never referenced before and never referenced in the
future) numbers for a total of 130 000 references. This simu-

lates the table scan of 10 000 blocks. The goal is to estimate
the behavior of the algorithm when scanning of large data area
occurs. The unique references are placed inside the reference
flow (neither at the beginning, nor at the end).

Experiment 1
The first experiment uses the RS1. The parameters of the

LFU-RBH are describedin table /. The experiment is conducted
with an inactive MRU section.

Table 1. The parameters of LFU-RBH
Hash

table

b i ts

Coll ision

slots counl

RB

bi ts

R B

sections

Data pool

c lus te r

lensth

M R U

section

lengf h
9 r-8 t 4 l 0 or+ 0

For the FBR algorithm the new section parameter is 25%
and the old section is 60%, as recommended in [8].

For 2Q Alin=zl% and Al out=50%, as recommended in
t5l

Table 2 shows the results of the experiment. The columns
are the hit ratio, in %, tor the different algorithms. The first
column is the number of blocks for the cache.

Table 2. The hit ratio, in %, for experiment 1

Figure 3 is the graphical representation.

Hit ratio. %
-.._ LFU-RBH
. s* LHU
--*- LRU-K
--X_ FBR
-,F* 2Q

I CJD

cache
size,blocks

Figure 3a. The hit ratio (%) for experiment 1

As the results show, the LFU-RBH outper-forms the other
algorithms in most of the cases. For the first four cache sizes
it shows best results. while it is not true for the rast two cache
sizes, it is important to denote that for a cache size of 4096

CACHB
SIZE
blocks

LF'U-RBH LRU IRU-K(2) TAR 2Q

5t2 7 t . l 65.01 t 2 . 0 , 67.21 51.3

l02t 85 8 5 . 1 8 24.9ct 73.2t 7 4.(

I 53 (81.61 87.58 39 .14 85. I ti3. r
204f 89.21 89.21 .5ti.38 86.3 87.6:

3072 92.1 92.2(93.3 93.21 9 t .7 :

409(93.62 94.1 95.8 95.54 94.0t

3tJ 3 ?007 irrforrnation teclrnolocries
andcoritrol

Hit ratio. % Tahfe 4. The hit ratio, in %, tor experiment 2
E LR}FBH

E LFTJ

@ LFtIK

O FBR

r 20

cache
size,

blocks
Figure 3b. The hit ratio (%) for experiment 1

blocks, due to data pooling the LFU-RBH achieves the results for
only 3648 blocks, while the other algori thms use al l 4096.

The experiment is conducted again for the last two cache
sizes (3072 and 4096) for RB=16 bits, i .e. the length of the
References Buffer is 65 536 references.

For RB=16 bits the LFU-RBH shows an improvement of
performance. Table 3 provides the results . Figure 4 is the graphic
for the last two cache sizes and RB=16. Again, the data pooring
gives the utilization of 4032 blocks, instead of all the 4096.

Table 3. LFU-RBH with RB=16

Hit ratio, %

Figure 5 is the graphical representation.

Hit ratio. %

1536512

100

90
80
70

OU

CU

40

30

20

1 0

--._ LFU.BBH

S LRU

-.*" . LRU.K

+(-FBR

-x-2Q

cache
512 1oz4 1s36 2o4B so72 4096 Size,blOckS

Figure 5a. The hit ratio (%) for experiment 2

Hit ratio, %

tr LR}FBH

GI LR,.,

E LR}K

tr FBR

r2Q

1024 1536

cache
size,blocks

97

96

95

94

93

92

9 1

90

8 9

t r LFU-RBH

W LRU

B LRU-K

n FBR

l 2 Q

100

90

80

70

60

50

Q

30

n
10

0

3072 4096
cache
size, blocks

Figure 4. LFU-RBH with RB=16 bits

As the results show, the LFU-RBH behaves better with
larger RB.

Experiment 2
The second experiment uses RS2. The parameters of the

LFU'RBH are the same as for experiment 1. Table 4 shows the
results.

Figure 5b. The hit ratio (%) for experiment 2

As the results show, the LFU-RBH outperforms the other
algorithms in most of the cases. 0nly for a cache size 4096
the LFU-RBH is outperformed. lt is important to denote that for
a cache size 4096 blocks, the LFU,RBH achieves the results
for 3648 blocks, due to data pooling.

The experiment is conducted again for the last two cache
sizes (3072 and 4096) for RB=16 bits, i .e. the length of the
References Buffer is 65 536 references.

For RB=16 bits the LFU-RBH shows an improvement of the

C A C H E
SIZE,

b l o c k s

L F U - R B H L R U L R U - K
(2)

F B R 2 Q

5 t 2 6 5 . 4 3 5 e . 8 8 60 .7 5 5 2 . 8 6
t 0 2 4 7 8 . 9 6 / d . - t I I 1 . 0 9 1 7 . 7 3 6 8 . 7 1
1 5 3 6 8 0 . 1 6 8 0 . 4 6n?{n.t 2 1 7 . 4 8 1 6 . 6 5
2 0 4 8 8 2 . t 4 8 1 . 9 4 5 3 . 6 6 1 9 . 6 6 8 0 . 1 4
301 2 8 4 . 3 2 8 4 . 2 8 1 1 . L) 9 8 5 . 2 6 8 4 . 0 6
4 0 9 6 8 5 . 2 8 8 5 . 8 2 7 t . 3 3 8 6 . 9 2 8 . 5 . 6 7

RB=14 bits RB-I6 b i ts
3012 92 . t4 92 .89

40e6 (4032) 93.62 95.23

infgrrnatign technologies
andcontrol 3 ?007 37

7

performanc e. Table 5 shows the results . Figure 6 is the graphic
for the last two cache sizes and RB=16. lt is important to denote
that for a cache size 4096 the data pooling results in 4032
used blocks.

Table 5. LFU-RBH with RB=16

RII=14 bits l lB=16 bi ts

3072 84.32 85 .25

4096 (4032) 8 5 . 2 8 86 .99

Hit ratio, %

1 0 0

Figure Z. is the graphical representation.

Hit ratio, %

n LFU-RBH

6 LRU

W LRU-K

3 FBR

l 2 Q

Figure 7. The hit ratio (%) for 768 blocks

As the results show, the LFU-RBH outperforms the other
algorithms.

Experiment 4
Experiment 4 is the same as experiment 2 (with RS2) but

with an activated MRU section, The length of the MRU section is
100 (references). Table.B shows the results.

Table 8. The hit ratio (%) for experiment 4

C A C H B
SIZE, b locks

H I T R A T I O ,
Vo

B L O C K S
USED

5 t 2 1 4 . 1 1 5 t 2

t024 1 6 . 6 0 76tr
r 5 3 6 t 6 . l I 1 6 8

2048 7 6 . 7 2 1 6 8

301 2 1 6 . 1 2 1 6 8

4096 1 6 . 7 2 76tt

As table 6 shows, the LFU-RBH with an MRU section in
most of the cases performs with 768 blocks used. Therefore, in
order to compare with other algorithms, they must be run with
equal cache size. The hit ratio for 768 blocks for the other
algorithms is shown in table 9.

Table 9. The hit ratio (%) for cache size 768 blocks

BLO C KS LFU.RBH LRU LRU-K (2) FBR 2Q

7 6 8
'16.72

I + . : - ' \ 1 1 . t 6 < < , 1 ') 62 .68

Figure B is the graphical representation.

Hit ratio. %

on

80
I U

60
50
4 U

30
20
1 0
0

3072 4096

n LFU-RBH

W LRU

W LRU-K

n FBR

I 2 Q

cache
size,blocks

Figure 6. LFU-RBH with RB=16 bits

As the results show, the LFU-RBH for 4096 blocks out-
performs other algorithms. lt should be noted that due to data
pooling the result for the LFU-RBH is actual ly for 4032 blocks.

Experiment 3
Experiment 3 is the same as experiment 1 (with RS1), but

with an activated MRU section. The length of the MRU section
is 100 (references). Table 6 shows the results.

Table 6. The hit ratio (%) for experiment 3

CACHESIZE
blocks

HITRATIO,
Vo

BLOCKS
USED

512 8 1 . 0 3 5t2
1024 82.99 704

I 536 t t 3 . l I 768

2048 8 3 . 1 1 168

3072 8 3 . 1 1 768

4096 8 3 . 1 1 768

As table 6 shows, the LFU-RBH with an MRU section in
mgst'of the cases per-forms with 768 blocks used. Therefore,
in order to compare with other algorithms, they must be run with
equal cache size. The hit ratio for 768 blocks for the other
algorithms is shown in table 7.

Table 7. The hit ratio (%) for cache size 768 blocks

9 0
8 0
7 0
6 0
5 0
4 0
3 0
2 0
1 0

0

r I I L F U - R B H

E S L R U

@ ! L R U - K

r] F B R

I 2 Q

Figure 8. The hit ratio (%) for 768 blocks

768 b locks

BLOCKS LFU-RBH LRU LRU.K (2) FBR 2Q

168 8 3 . 1 I 80.68 r 8.-59 80 .01 68.02
7 6 8 b l o c k s

3E 3 ?007 irrforrnation tectrnolocries
andcoritrol

As the results show, the LFU-RBH outpedorms the other
algorithms.

Conclusions and Future Work
The conducted experiments show that the introduced im-

provements result very well in the behavior of the algorithm. Even
without the newly proposed MRU section the IFU-RBH achieves
very good hit ratio, in most cases better than some existing
algorithms. Running with the MRU section gives a leading posi-
tion of the LFU-RBH, compared with the experimented algo-
rithms.

The use of data pooling results in a reduced utilization of
the buffer memory. Also, the results for the different reference
strings (RS1 and RS2) state that the LFU-RBH carries better the
simulation of a large area scan situation.

N4any other experiments can be copducted to tune the
algorithm and to balance between different parameters - hash
bits, the length of RB, the number of sections, the length of MRU
section and etc.

Relerences
1. Atanassov, l. An Approach for Database Disk Buffering.lnternational
Conference of Young Scientists, Plovdiv, Bulgaria, June 2007.
2. Effelsberg, W., T. Haerder.Principles of Database Buffer Manage-
ment. ACM Digi ta l L ibrary, '1984, ISSN:0362-5915.
3. Goh, C. 1. , Y. Shu, Z. Huang, B. C. 0oi . Dynamic Buffer Manage-
ment with Extensible Replacement Policies, ACM Digital Library, 2006,
ISSN:1066-8888.
4. Jiang, S., X. Zhang. LIRS: An Efficient Low Interreference Recency
Set Replacement Policy to lmprove Buffer Cache Performance. ACM
Digi ta l L ibrary, 2002, ISBN:1-581 13-531-9.
5. Johnson, T., D. Shasha. 20: A Low Overhead High Performance

Buffer Management Replacement Algor i thm. ACM Digi ta l L ibrary,
1 994, ISBN: '1 -55860-1 53-8 .
6 . Lee e t a l l .0n the Ex is tence o f a Spect rum o f po l i c ies tha t
Subsumes the Least Recently Used (LRU) and Least Frequenily Used
(LFU) Pol ic ies. ACM Digi ta l L ibrary, 1999, ISSN:0103-5999.
7 .O 'Ne i l , E . J . , P . E .0 'Ne i l l , G. Weikum. The LRU-K Page Rep lace-
ment Algorithm For Database Disk Buffering. ACM Digital Library,
1 9 9 3 , I S S N : 0 1 6 3 - 5 8 0 8 .
B. Robinson, J. , M. V. Devarakonda. Data Cache Management Using
Frequency-based Replacement. ACM Digi ta l L ibrary, 1 gg0, ISSN:01 63-
5999.
9. Shal lahamer, C. A. Al l About 0racle 's Touch Count Data Block
Buffer Cache Algorithm. www.orapub.com, 2004.
10. Tanenbaum, A. Modern 0perat ing Systems. Second Edi t ion,
Prent ice Ha l l , 2001, ISBN 0-13-092641-8 .

Manuscript received on 3.07.2007

lvaylo Atanasov graduated from the Technical
University - Sofia, Branch Plovdiv, speciality Com-
puter Systems in 1997. ln the same university
from 2aU he was preparing a PhD, thesis ,,Al-
gorithms and Data Structures in Client-server
lmplementation". Since 2003 he has been work-
ing as a full-time assistant in Technical University

Sofia, Branch Plovdiv, Department of Com-
puter Systems and Technologies. Scientific interests: database systems,
object-oriented programming, system architectures. He has six publi-
cations in area of PhD thesis.

Contacts:
Department of Computer Systems and Technologies

Technical University-Sofia, Branch Plovdiv
Phone: +359 32 659729,

e-maiL ivo atan@tu-plovdiv.bg

continuation from 15

The dimension of the submatrix is determined that defines
minimal number of exchanged words.

This article ,,hints" for future directions of work, as:
analsying the other possible allocations of the infor-

mation in the parallel branches of the given task;
analysing the exchanging interactions in PA of other

tasks in order to find optimal algorithms.

Ref erences

1. Seyed H. Roosta. Parallel Processing and parallel Algorithms:
Theory and Computation. Springer, 2000.
2. Cosnard, M., D. Trystram. Parallel Algorithms and Architectures.
Thomson Computer Press, 1gg5.
3. EapeNHoa,S. 8., CI. [, Kocapea. 0gHopopHbte yHrBepcanbHbte
BblquCIlfiTeflbHble CrCTeMbt Bbtc0K0tt npOuOeOgilTenbH0CTl4.
Hoeocu6upcr Hayra, 1 966.
4. Vasilev, N. Main Principles for Searching and Creating parallel
Algor i thms, Informat ion Technologies and Control , 2004,2, ISSN
1312-2622.
5. Wilkinson, B., M. Allen. Parallel programing. prentice Hall, l ggg.

Manuscript received on 12.04.2007

Assoc. Prof., Ph.D Nayden Vasilev was born in
1943. He graduated the Technical University -
Sofia, major Electronics in 1968. His main areas
of interest are Parallel Alqorithms.

Contacts:
Technical University of Sofia-branch Plovdiv

Plovdiv 4000,
25 Tzanko Dustabanov Str.

e-maiL mnvasilev@vahoo. com

inforrnatiqn technolo gries
andcontrol

f-

3 ?007 3?

