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Abstract. simple algorithms are presented for sotving netvvork models
under parametric uncertainty. The new atgorithms-are applicable to
the..case.when the generalized distance oi me probabitity'associated
with each arc is nonnegative, interual, or real. The firstihree interval
algorithms are developed on the base of midpoint and half-width
representation of intervals, and these are more efficient than the
interual algorithms that could be obtained by using traditional interyal
description. The fourth algorithm utilises the ioncept of interual
possibility, and the intgrual product operator. The appicabitity of the
result is demonstrated by considering severat examples.

1. Introduction
Network models have played an increasinly by important

role in management science/operations research for at least two
reasons. First, network models of real-world systems are rela-
tively easy to conceive and construct. Second, network models
can be communicated effectively to management as visual fac-
similes of the real-world system under consideration.

Network models in operations research have evolved from
the more general theory of graphs. ln network terminology, the
minimal spanning tree problem involves using the network
branches to reach all nodes of the network in such a fashion
that the length of all connecting branches be minimal. The
minimal spanning tree algorithm is a simple one, but it has
proven to solve one of the effective network models [1s, 20, 26],
and [29]. The shortest-route problem is concerned with deter-
mining the shortest-route from origin to a destination through a
connecting network, given nonnegative distance associated with
the respective arcs of the network [20,26], and [2g]. The most
reliable route algorithm maximizes the probability oi not being
stopped on the route [29].

One of the earliest works in the area of graph or network
models is the paper of Dijkstra [6]. Assuming n nodes, and the
existence of at least one path between any two nodes, the author
has considered two fundamental problems: to obtain the tree of
minimum total length between the n nodes, and to find the path
of minimum total length between two given nodes.

A variant of Minimum spanning Tree problem has been
discussed in [2]. An 0(n2 ) algorithm is proposedfordetermin_
ing a point on a given rine 1 which, if added to a given set of
n nodes located on one side of { yields the minimum spanning
tree. To reduce complexity of the problem a divide-and- conquer
technique is applied.

G. Gatev, A. Hossain

Two types of indirect covering tree probrems have been
introduced in [16], using a spanning tree as a backbone net-
work, and these are the minimum cost covering subtree (MCCS)
and the maximal indirect covering subtree (Mlcs). The objective
of the MCCS is to find the minimum cost subtree in which all
nodes are within a prescribed distance to a node of the subtree.
Reduction techniques that have been used to solve the location
set covering problem are extended to solve MCCS. Mlcs chooses
that subtree which maximizes the demand within a distance
standard of nodes of the subtree.

The quickest path problem, that arises when the transmis-
sion of data between two nodes of a network is considered has
been treated in [25]. The problems of ranking the ( quickest
paths, the chen's algorithm, and the Ranking (quickest loopless
paths have been reviewed. The authors have also compared the
algorithms in terms of the worst-case complexity.

ln [21], an algorithm for solving a multi-criteria version of
the shortest-route problem has been proposed. The distance is
given by a multi-component vector and shortest is interpreted in
the sense of vector minimum.

Two polynomial shortest path algorithms have been pro_
posed in [1 3], for finding the shortest path from one node to all
other nodes in a network. The argorithms are members of the
family of Partitioning shortest path algorithms, and are based
upon the threshold concept for partitioning scan eligible nodes.
A set of shortest path models have been developed to accom-
modate the various applications.

In [1], two types of Bicriterion shortest path Argorithms
have been discussed, based on path/tree approach and node
labeling approach. The author has classified the different solu-
tion methods, and a ranking of the procedures based on the
algorithmic structure has been suggested.

ln the last two decades time windows constraints became
an efficient way to model opening hours, preferred delivery time,
etc. in many scheduling and routing problems. The shortest path
problem with time windows consists of finding the least cost
route between a source and a sink in a network, while respecting
specified time windows at each visited node. A suruey on the
results and an efficient generalized permanent labeling algo-
rithm to solve this problem in pseudo-polynomialtime have been
proposed in [22].

ln [4], the authors have formurated the maximum c'ver-
ing/shortest path problem (MCSP) and provided solution experi-
ence for the maximum population/shortest path problem, a special
case of the MCSP problem. The MCSp problem was formulated
to analyze path options in terms of two conflicting objectives,
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namely, total path length, and total demand satisfied. The de-
mand at a node is considered satisfied if the node is covered'
A node is considered covered if either it is directly on the path

or if it is within a predetermined maximum covering distance, S,

from a node on the Path.
A new algorithm for the general shortest paths ranking

problem have been proposed in [17], that uses the path deletion
concept. In a path deletion K shortest paths algorithm a se-

quence {g,gr,....., g" } of networks is defined, such that

gr is the given network and its kth shortest path is easily

determined from the shortest path in go.

ln many practical cases, the parameters of the network
models are not exactly known, they are uncertain. 0ften this type
of parametric uncertainty is handled within the framework of
probabilistic models. In [14], the authors have examined a specific
shortest path problem in acyclic network, in which arc costs are
unknown functions of certain environment variables at network
nodes, and each of these variables evolves according to an
independent Markov process. Several procedures have been
used to determine which of the environment states at each node
are green (the vehicle departs immediately) and which are red
(the vehicle waits), based 0n successive approximations, policy

iteration, and parametric linear programming methods'
Risk and uncertainty have attracted the attention of theo-

retical economists, psychologists, engineers, mathematicians,
decision-makers as well as empiricists in these fields. A survey
of recent research results which use laboratory methods to
contribute to the understanding of risk and unceftainty in envi-
ronments which are of particular interest to managerial decision-
making have been given in [7].

Another way to dealwith parametric uncertainty is based
on the usage of intervals, that are given by lower and upper
limits, within which the values of the parameters are expected
to fall.

ln [8], an interual algorithm for solving shortest-route and
dynamic programming problems based on midpoint and half-
width representation of intervals has been proposed. This gen-

eral approach yields computationally effective algorithms and is
applied in this paper to develop most of the algorithms'

An 0(n2 ) algorithm to solve all-pairs shortest path prob-

lem on an interval graph each edge of which has unit length has
been proposed in [28]. The authors.have constructed a corre-
sponding ,,neighborhogd tree" and extensively used the charac-
teristic of this tree to develop and prove the correctness of the
algorithm.

In [23], a simple algorithm for solving the all pairs short-

est path problem on an interval graph G has been developed.

The interval representation of graph G are given by lower end-

points (/,) and upper endpoints (u,).

A parallel algorithm on interual graphs and extension to
circular-arc graphs have been discussed in [5]. The authors
have considered all-pairs shortest path query problem: Given the
interval model of an unweighted interval graph of n vertices, build

a data structure such that each query on the shortest path

between any pair of veftices of the graph can be processed

efficiently.
After the seminal work of Zadeh [31], many authors have

discussed fuz4r logic as a tool to deal with uncertainty, see, e.g.

[3], [19], [27], [32].- 
The key c0ncept of possibility, its close connection with

the concept of membership in afuzzy set, and its impoftant role
in the representation of meaning in the management of uncer-
tainty and in application of the fuzzy approach to decision analy-
sis, have been developed and treated in [3, 19,27,31], and

[32].
Recently, in [30] a number of tools to aid the represen'

tation and processing of unceftain information have been dis-

cussed. The author has introduced a method for combining
probabilistic and possibilistic information.

when uncenainties are included in network models (in the
form of interual or luzzy parameters) the computational burden
is considerably increased. New algorithms with reduced cgm-
putational complexity are needed for solving such models.

The aim of this paper is to the develop interval algorithms
for solving the Minimal Spanning Tree Problem, the Shoftest-
Route Problem and the Most Reliable Route Problem under
parametric uncertainty. In the cases of the Minimal Spanning
Tree and the Shortest-Route Problems it is assumed that the
uncertainty about the length of the arcs is described by interuals,
and the mean-value lemma [8] is applied to develop the algo-
rithms. The concept of interval possibility is introduced as an

extension of the fuzy graph's concept of possibility. ln this way,

an lnterual Fuzzy Network Model to describe the Most Reliable
Route Problem is obtained, and an interual algorithm for solving
the model is develoPed.

The paper is organized as follows. The interval analysis
concepts and some fuzzy graphs concepts are discussed in

theoretical preliminaries in the second section. lnterval Algo-
rithms for Minimal Spanning Tree and Shortest-Route Models,
as well as numerical examples to illustrate the applicability of
the algorithms are presented in the third section' The obtained
results are discussed in the conclusion in section 4'

2. Theoretical Preliminaries

First the interval analysis concepts are introduced [18,
241.

Let R be an interval. we will denote its lower (left) end-

point by r and its upper (right) endpoint by 7 , so that

P  - 1 r , i ) .

The set of all intervals will be denoted by 1(R) ' Let

R, S e 1(R) and let * denote any of the interval arithmetic

operations, * = *, -, X, /. Then the set theory definition of the
interval arithmetic operations is as follows:

( 1 )  R x S  : { t * . t l  r e  R , s e  S } .

It follows that the sum of R : LL,7l , S = [t, r] denoted
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R+S,  i s  the  in te rva l  R  +  S  : y r , r l+ [s , " ]  : f r  * r , i+ i1
The product R x S is again an interval

R x S = [min  { rs , r  s , rs ,  rs } ,

max{r { ,  rs , rs r rs } ] '

For R,s >o the definition reduces to

(2) RxS = 1rs,7sl
The half-width of an interval R =lr,rl is the real number,

w(n): +F 
-r),and the midpoint of R is the real number,

m(n) :  Q*7) / r .
Using the set inclusion relation c and the relation <, we

can define the supremum-like and infimum-like interuals:
(3) sup(R,J) = [sup(1,g,sup(i,s)]
(4) in(R,S) = [in(r,s),inqi,iy1

To compare intervals the concept of metric p is intro-
duced. For each R and S in 1(R) the distance p is defined
ry

(5) p(R,s) : 
)t lr- ql + l; -; lr

Now the intervals R and S can be compared. The follow-
ing important results hold [8].

R <,s if and only if
(6) p(n,inr(n, s))< p(s,inr(R, s)).
ln a similar way,
fi>s if and only if

(7) p(n,sup(n,s)) < p(s,sup(R,s)).
Two intervals R and S are said to be equivalent F-S if

the following condition holds:
(8) p (8, sup (R, q) = p (5, sup (8, S)).
(9) p (F, inf (8, S)) = r (S, inf (R, S)).

It means that lr - { | = l; -; | , i .e., the midpoints of R
and S coincide.

ln practical cases when R-S and one have to make a
choice in the sense of <, the condition (o) should be modified.
W e s a y t h a t B < S i f

(10) p (F, inf (n, q) = p (S,inf (R, S)) and { < s
0r

(111p (8, inf (8, S)) = p(5, inf (F, e) and ;<;.
We use, further, the notation R < s in the usual sense,

when z < { and ;<;, and in the case of inclusion, RcE
when p\R,int(R, S)) < p (S,inf(B, .g)).

The conditions (6) and (Z) lead to the following result, as
proven in [8].

Let m(fldenote the midpoint ot p, m(p1 = ( e+V ll2.men
(12) R < S if and onty it m(R) < /n (S).
Let [m(B), A@] denote the interval R, R = [r, i], where

m(F)=( t_ +;)t2is the midpoint of B, and A(R) = ( r- ,)tZ

is the half-width of B, so that

P - lm(R) - A(R), m(R) + l(R)1,
or, using the new notation
(13)  R= lm( f l ,a ( i l .
The following result is easily shown:
Let I  E and le(r?).Then f = F+ Sif and only i f
ff) m(T) = m(H) + /n(q'
(15) /(D = ̂ (n + /(q.
Now we introduce some tuzzy graphs concepts [19].
We shall consider in the finite grapn G, G c ExE a

path from x,,

where x,o e E

to x,r, that is an ordered r tuple P = (.r,,,r,,,...,x,,)

v(x,o , x

, k =1,2,...,r atld with the condition

, ^ . , ) ,  / t ( * i ^ ' x i * * , ) >  o , t :  t , r - t .

Let Xn Ydenote the operator min (X, Y). With each path
a value is associated by

(1 6) r\x', '"" *' ' )=
= / t \x , , ,  * , . )  n .1r (* , . , " , .  )^  . . .  n  p6, , , , ,  * , , ) .

Let P(*,;, ) ne the set of all paths between x, and x, .

.  p ( r , ; " , )=

(17 )  1p1x , : ' * , )= ( r , ,  = r i r - t r , . , . , x , , =x1 ) l

x , , e  E , t  = Z , r - l l  ,

The strongest path p.(r,,"r) from xi to rrcan be
obtained

P . ( x , ' ' , ) =

(18)  
. , t  ,P( t , ,  =  x i ,x i . . . * , ,  , , r , ,  =  * , )
r ( ' r , ; ' r ; )  

\ ' l  r  r l  l r ' l

where X v Y= max {X D.
The value defined bV (16) may be extended to operators

other than n under the restriction that these considered have
the properties of associativity and monotonicity. Such an opera-
tor is for example, the product operator 'x'(ordinary multiplica-
tion), for which

It  a,b€ [O,t ]  ,  then axb S a nb .

3. Interval Algorithms for Minimal Spanning
Tree and Shortest-Route Models

3.1. Interval Minimal Spanning Tree Algorithm
The minimal spanning tree algorithm starts with any node

and joining it to the closest node in the network. The resulting
two nodes form a connected set, C , with the remaining nodes
comprising in the unconnected set, E. Next, connect the node
from the unconnected set that is closest to any node in the
connected set. The process is repeated until the unconnected
set becomes empty, see, e.g. [29].

Let D,, = The interval distance between node i and node 7,

and Du =[4 , i , i r ] .
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The computational complexity of a
straightfonrvard interval generalization of the
algorithm described above is relatively high,
because the comparison of intervals would
be based on using infimum-like interuals
and distances, and because the interval
arithmetic operations are more complex
than the traditional ones.

A simple interval algorithm can he
developed using the interval representa-
t ion (13),R = [m(B), A(R)],  where m(B)
and /(R) are midpoint and half-width of
the interval f i ,  and the condit ions (12),

( 1 4 ) ,  a n d  ( 1 5 ) .
The interval algori thm for minimal spanning tree consists

of the fol lowing general ized steps [1 1]:
Sfep 1. Describe the network using interual notation with

midpoint and half-width. Denote the set of all connected nodes

by C, the set of unconnected nodes by C, C=N/C , where N
is the set of al l  nodes.

Denote the starling node by Sfn and set f = {Stn} and

C = N l C .
Set do, = M, M >> 0, when it is impossible to connect

directly nodes k and r .
Step 2. Choose (arbitrarily) node 1 from the network as

staft ing node that is, Sfn=/. Find the unconnected node l .  that
is nearest to node 1

d , . , .  mnld, , l  ;  d , i_  
4 ,  i  !7  , . i  

.

Connec t  nodes  i  and  1 . ,  and  se t  C={1 ,  j " l ,  a=N lC .
Step 3. ldentify the unconnected node that is closest to a
connected node, and then connect these two nodes. l f  there is
a t ie, arbitrari ly choose between them. This is accomplished in
the following ways:
0btain

d ,"r' =,#.i:r{ d ,rl '

Connect nodes r ' '  and f t* .

S"t C,, . , , .  =IC,k"] ,  e , , r ,u = N lC,,rr ;

C = C , u , u  a n d  C = C , , 0 , .

Step 4. Repeat step 3 until all nodes are connected.
Step 5. 0btain the midpoint m(t) of the interval length L of the
minimal spanning tree by adding the midpoint of al l  connecting
branches. 0btain the half-width /(t)of the interval length of the
tree by adding the half-width /,, of all connecting branches.

Numerical Example

Let consider the network in figure /. The parameters
(values) along the branches give the costs (or generalized
lengths) Doof establishing links between nodes iand j. The cost
is uncertain and represented by upper and lower limits.

Figure 1

The graphical network ol figure 7 is presented in the
table 1, using midpoint and half-width notation (step 1). M
represents the case when there is no possible direct connection
between nodes i and 7, M >> 0.

Using the algori thm as described in section 3.1, the fol lowing
computational results for minimal spanning tree problem are
obtained and summarized in the tables below,

Tables 2 and 3 represent the results of iterations 1 and
2, respectively. In a similar way the results of iterations 3 to
7 can be obtained. After iteration 7, it is finally found that all
the nodes have been connected. 0ur problem is now essentially
solved. We need only look in tables and see which nodes are
connected to give the solution of the minimal spanning tree
problem. These are set out in table 4, from which it can be
seen that the total cost (midpoint) is 43 units, and the total half-
width is 8 units. The interval minimal spanning tree network is
graphed in figure 2.

Table 1. Representation of the network in figurel using
midooint and half-width notation

Table 2. The result of sten 2 iteration 1

l l l ,  t 3 l(k,,

From

Nodes

To Nodes

2 3 /1 5 o
'7

8

I t0,0l [4,  l ] M t6, M l l 8 , 3 l M M

2 t4,  t l t0,0l t8, t8, t r 0 ,  r l M M M

M [8 ,  l ] t0 ,0 14, u2 ,  t l t 6 ,  l l l r 6 ,  r l M

4 16, l l t 8 ,  l l 14, 1 0 , 0 M t r 3 , 2 l M M

5 M t r0 ,  l l | 2 , M t0,0l l 1 2 ,  r l p , 2 l M

6 t l 8 , 3 l M 16, t13,2)I  12 ,  l l 10, 0l M t 6 .  l l

7 M M t t 6 , l M Le,2l M 1 0 , 0 l 1 8 ,  l l

8 M M M M M t6 ,  l l t 8 ,  l l 1 0 , 0 l

From

connectecl

node

To Nodes Min iInun

distance

' l 'ot 
al

cclrtncct ed

nocles

2 3 4 5 () 7

( 1 . 2 )I t0,
0l

t 4 , l  l M t6,  i l M i l 8 . 3 l M { 4 ,  l }

' fhe 
new connected node is 2, the mininrurn distance is 4. and the half-width is I
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From
connected

nodes

To Nodes Min imum
distance

M i n i m u m

distance

fiom i

n odes

T o t a l

connected

nodes C

I 2 3 4 5 6 8
M [ 6 ,  t l M t r 8 , 3 | t 6 ,  l l m in=  l [ 6 ,

l l ,  [ 8 ,  r ] ] =
1 6 ,  l l

{ l ) 4 1

2 t 8 ,  l l t 8 ,  t l l l 0 , r l M t 8 ,  t l

I  h e  n e x t  c o n n e c t e ( node is 4.  t re  min imum d is tance is  6 ,  and the  ha l f -w id th  i s  I

We obtain the midpoint m(t) and half-width /(t) of the
minimal interual cost I

,  ^ * (L )=  ! , " !  
* to*  

lo r *  f f iou*  f f i * r *  f f i r . r t  f f i r . s=
4 + 6 + 4 + 6 + 6 + I + 9 = 43

, A.(L ' l  .  a, . l*  4,r \  ao..r*  ar.ut  au_r* ar.r+ ar_u= l
+ 1 + 1 + 1 + 1 + 1 + 2 = B

Hence, 1= lm(L), A(L)I = [49, 8], and the minimal interval
cost is obtained in the usual interval notation

1= [{m(t) - a(L)}, {m(L) + t(L)}l
= [(43 -8), (43 +8)] = [3S, S1].

The minimal interval cost L = [3S, 51]

Table 4. The optimal solution of the minimal spanning

Table 3. The result of iteration 2

3.2.1 . Interval Acyclic Algorithm
A network will be acyclic, if it does not have any loop. The

acyclic algorithm is easier than the cyclic algorithm, because it
yields fewer computations, see, e.g. [2g].

Let D, and U, denote the interval distance between
nodes iand j, and the shortest interval distance from the source
node (node 1) to node 7, correspondingly. The destination node
is node n.

The interval  values of  U ,  =lAi , i , l ,  i  -2,n may
be computed recursively using the interval formula

(1e;U, = min{U, *  D, i }where U, *  Pi j=

=lui  +4i1, ,ui  +di i l ,  and U, =[0,0] .  The operator
min{} is performed on the basis of the metric (S) and the
conditions (6) or (10), (11). ln this way an intervar extension of
the well-known acyclic algorithm is obtained.

We present a more effective algorithm, using the midpoint
and hatf-width notation R : l*(n),1(n)] and the conditions
(12), (14) and (15), see, [8].

Let u, denote the real shortest distance from 1 to node

7. The realvalues u i , j - Zn are computed using the recur-
sive noninterval formula

(20 )  u i  =mr ,n {u ,+du }

where du is the midpoint of Dij, r,t, =0.

To obtain the optimal solution of the shortest-route prob-
lem, it is important to identify the nodes encountered along the
route and the conesponding interuar widths. The following label-
ing of node l is used

(21) node I Label = fu i ,k, L kjl
where kis the node immediately preceding lthat leads to

the shortest distance 4, and /,, is the half-width of D,-
Further it is assufied that the network is describ6d using

interual notation with midpoint and half-width (13).
The generalized steps of the interval acyclic algorithm are

summarized as follows:
Step 1. Assign the label [0,-,0] to source node.
Step 2. Compute the shortest distance from source node

Iteration Branch Distance Half-width
(midpoint)

1 1-2 4 I
2 1-4 6 I
-t
J 4-3 4 I
4 3-6 6 I
5 6-8 6 I
6 8-7 8 I
7 7-5 9 2

Total
distance= 43

Total half-
width= 8

tree problem

Figure 2. Optimal sorution of the minimal spanning tree
problem

3.2. Interval Shortest-Route Algorilhms
The aim is to find the shortest-route between an origin

node and a destination node in a network, given the nonnegative
distance associated with the respective arcs of the network.
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to the destination node n, by using the recursive formula (20).
Label nodes by using (21).

Sfep 3. 0btain the optimum route and the half-widths of the
interval distance between nodes 1 and n, starting from node n
and tracing backward through the nodes using the label's infor-
mation.

Step 4. To find the interval half-width of the solution add
the corresponding /, encountered along the optimum route.

Numerical Example
Consider the networkin figure 3. The generalized lengths

of the arcs are uncertain and given by intervals, in the form (13).

show the obtained shoftest-route between the source and the
destination node namely 1-+4-+5-+7.

Note that if the interval formula (19) were used, at node
7,lor example, we would have to compare two interuals

[15,  19]  + [8 ,  10]  = 123,291and [19,  25]  + [7 ,  9 ]=
= [26,  34] .

3.2.2. lnterval Cyclic Algorithm
A network is said to be cyclic if it contains loops. The

cyclic algorithm, known as Dijkstra algorithm, is more general
in the sense that it subsumes the acyclic case, Temporary and
permanent labels are used in the cyclic algorithm.

The source node is assigned a permanent label [0, -,  - ] .
Then, we consider all adjacent nodes that have a direct connec-
tion from the last permanent node, and we determine their

labels. These new labels are called
temporary labels. The next perma-
nently labeled node is chosen from
among alltemporary labeled nodes
up to now as the one that has the
minimum distance. This procedure
is now repeated for the last perma-
nently labeled node, see, e.g. [15],
[26], and [29].

The temporary and permanent
labels  ut i l ize the same format

lu,kl, where r,r is the shortest
distance found to date from the start-
ing node to the corresponding node,
and ft is the number of the imme-
diate predecessor node on that route.
A label status is converted to per-

manent if it has been ascertained that no shorter-route exists
between the stafting and the corresponding nodes. Othenruise,
the label is temporary and may subsequently be updatec.

Now we develop the interval version of Dijkstra's algo-

r i thm. Let U," - lA*,,r, I  nr the interval distance in the per-

manent label of node r. Denote by A,the set of numbers of all
adjacent nodes to node r. Then, the temporary interval distance

U j = lW, ,i ,1 in the label of any adjacent node

is determined as

je A,

(22) U j * Dii =far,' + d_,i,i ', '  +i,i and
the next permanent label is obtained by selecting the minimum
distance

QS1 U* =  
T n { u o  } ,  k e T

using the definit ions (4) - (7), (10), and (11). In (23) T
represents the set of numbers of alltemporary labeled nodes up

to now, and k- = &rg(Tl{U* }) .

A more effective algorithm is developed using the midpoint
and half-width notation B = [m(B), A(R)], and the conditions

[ 8 , 1 ,  r ]
A t2s,2l

)-1.

122,4,21

Figure 3

Using the algorithm, as described in section 3.2.1, we
obtain the following results for nodes 1,2,3,4, put on table S.
The computations for all iterations are summarized directly on
figure 3.

Table 5
Nodej Compdation of a, Connected

from

I^abel

1 u  t = O [0 ,  - ,0 ]

2 az  =0+8  -8 node I [8 ,  1 ,  1 ]

3 u 3 = 0 + 9 = 9 node I [9 ,  1 ,  1 ]

4 u 4 =min {0+10,
8+11, 9+5 )=19

node I [10,  1,  1 ]

The optimal solution is obtained tracing backward from
node 7 and using the label's information.

7+[26,5,  1  ] -+(5,  1  )+117,4,11 +(4,  1 )+ [1  0,  1 ,  1  ]  +(1,  1  ) .
The half-width of the optimal solution is
A r =  A r r *  A o u *  A r o =  1  +  1  +  1  =  3 .

Hence, U, =[23,29].

The algorithm provides the shortest interual distance be-
tween node 1 and any others node. ln figure J, the solid lines

[ l 7 ,4 ,  t l

[ 9 ,  I ,  l ]
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(12),  (14),  and (1b).

Let u,,ui and d,, denote the midpoints of the corre_

sponding intervals u,, ui and Dr. Then the interval formula
(22) is replaced by a noninterual one

(24)  u ,  =u i  +  du,  L t1  =o,  je  A,
and the next permanent label is obtained by comparing

real (noninterual) values

(2s)  t ' t *  =u i ,  =4n{uo l  ,keT .
To obtain the optimal interval solution of the initial prob-

lem, it is important to identify the nodes and the half-width of
intervals D,, _encountered along the route. This is achieved by
using the following labeling:

(26) Node I label = lu i,k,Loif .

where aris the midpoint of interval U,, and Aorthe is

half-width of interval D o, , and ft is the tast permanently labeled
node.

*Ir4,4, lf

update the label, that is, change it t0 tilr =u,+d,,,i,L;i7.

ttep 3. Consider the set {[u i ,k , , L 0,,] ] of labels of
all temporarily labeled nodes from iteration 1 to the current

iteration, jeT, and make permanent the label in which a, is

the smaleSt, Lt ' ' =, j, = 
Tjl{u,} , /* = arg(min{a, }) .

step 4.lf all nodes are permanenily labeled, the algorithm
terminates othenrvise, return to Step 2.

step 5. 0btain the optimum route between node 'l and the
destination node n by tracing backward through the network
using the label's information.

Step 6. Add the corresponding half-widtn A,,encountered
along the optimum route using the rabels informati6n, and obtain
the shortest interval distance between nodes 1 and n.

Numerical Example

consider the networkin figure 4. The values Do along the
arcs represent generalized lengths (lengths, costs, ortime), and

*Irg,2,2l

, ( 1 '

".^=.r

( l  I ,  l ) I f f i ]
* [20,4, l )

twtt

*[9, 3, I

r.r) s)

*[5, l, u
(10,2) * [ l 5 ,3 ,2 ]

Further it is assumed that the network is described using
interval notation with midpoint and half-width (13).

The following interval cyclic argorithm is obtained [12]:Step 1. Assign to node 1 the permanent label [0, --, -i.
Step2. From the last permanently labeled node i with label

fu,,s,A,, ] , obtain the temporary labels of all adjacent nodes
j , j.4. lf an adjacent node is unrabered, raber it using (24).

lf the adjacent node is temporarily labeled lu,,s,A.u L je A,,

leave that label unchanged unles s ui + d,i( u i, in which case

Figure 4

are given by intervals, in the form (13).
Using the algorithm, we obtain the following results:
Iteration 0. Assign the first permanent label [0, -, _] to

node 1.
Iteration 1. Nodes 2 and 3 can be reached direcilyfrom

-the last permanenily labeled node 1, and the temporary labels
are [1 7 , 1, 21, [5, 1 , 1] respectively.

The smallest distance u corresponds to node 3. Thus,
node 3 is permanenfly labeled.

Iteration 2. Nodes 4 and 6 have a direct connection with
the last permanenily labeled node 3, and the temporary labels
are [9,  3,  1] ,  [15, 3,  2] .

inforrnatign te@
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Now, we have three temporary labels 117,1, 21, [9, 3, 1],

[15, 3, 2] associated with nodes 2, 4,6, respectively. Node 4
has the smallest u= 9, hence i ts label [9, 3, 1] is changed to
permanent, etc.

After iteration 6, allthe nodes have permanent labels, thus
the procedure is completed. The computational steps above are
shown in figure 4.The shortest route is determined stafting from
node 7 and using label's information.

7+ 120,4,  1 l  -+ (4,  1)  + [9 ,  3 ,  1 ]  -+ (3,  1)+ [5,
1 ,  1 l  -+  ( ' 1 ,  1 ) .

The shortest-route is 1 + 3 -+ 4 -; 7.
The half-width of the optimal solution is obtained by sum-

ming the third elements in the labels.

A r =  A o r *  A r o *  A , r =  1 +  1 +  I

Hence, U, = IAr,  i r ]  = [  17,  23]

Figure 4 shows the shortest-routes between node 1 and
any node in the network, and the solid lines indicate the shortest-
route from node 1 to node 7.

3.3. Interval Most Reliable Route Algorithm
The aim is to develop a simple algorithm for solving the

most reliable route problem, when the possibilities of not being
stopped on the segments of the route are unceftain. The concept
of interval possibility is introduced as an extension of the fuzzy
set concept of possibility to describe the uncertainty that usually
exists when possibilities have to be evaluated.

The algorithm is based on the strongest path concept
given by (18), in which the operator 'x't0 define the interval value

P of any route is used. LeI /tii denote the interval possibility of

not being stopped on the arc (r, 7). Following Prade and Dubois
(1996), we consider the possibility as the degree of truth or the
plausibility of an assertion, in the case, the plausibility of not
being stopped on the arc (t, 7). The aim is to choose a route that
maximizes the possibility of not being stopped in going from a

origin node to a destination node. Hence the value P of the
route, given by (16) has a possibilistic meaning in this problem.
Consider for example the case where we need to transmit data
packages between an origin node and a destination node. The
problem is to choose a route that maximizes the possibility that
a package will not be corrupted in a non-repairable fashion on
the route. We shall refer to such similar situations as situations
in which one wishes to maximize possibility of not being stopped
on the route.

Let P, = Interual possibility (generalized length) from node

1 to node /, and =lP 
,,P i f .  By definit ion for the start ing

node 1 , P, = [t.O,t.O] . fne destination node is denoted by n.

The interval value of will be computed re-

cursively using the formula

(271 Pi : ?ryte x F,iI
where i ranges over the set of all preceding nodes

N 1. Fii is the interval possibility between current node land its

predecessor i  and F, i  =14,, / r , ,J , ie N, ,

To obtain the optimal solution of the problem, we will use
the following label of node i :

(28)  Node 1 Label  =  l lP  , ,  n  , l ,b l

where b is the node immediately preceding I, which yields

the maximum Pi.

The interval most reliable route algorithm consists of the
following generalized steps [9], [10]:

Step 1. Set 1= 1 . Assign to the source node (node 1) the
labe l  [ [1 .0 ,  1 .0 ] ,  -1 .

Step 2. Set 7 = i + 1 .Compute the possibility P, to node

1 using the formula (27). Label the node i by using the labeling
(28).

Sfep 3. lt i = n go to step 4, else go to step 2.
Etep 4,0btain the optimum route between nodes 1 and n

by tracing baclcvard from node n through the nodes using label's
information.

Numerical Example
Consider the network in Figure 5. The parameters along

the branches are interval possibilities Fii of not being stopped

between nodes i and 7.
Using the algorithm described in section 3.3, the following

computational results are obtained:

P, = h.0,1.0] , with label [[1.0,1.0],-l ;

Pz ={P, * lt,r} = [0.7,0.9]

with tabet [O.z,o.O],t];

P', = m3I {P, * t,,r}
t - t . L

= ma*(P, x Itn),(P, r lt")j
= *a*{(h,t] x [0. 8,t]), ([o.z,o.s] x [0.2,0.s])]
= maxtlo.s,t], [0.+1,0.8 1]] = [o.a,t]

with tabet [O.S,t],f]
In a similar way, the possibilities related to the remaining

nodes are determined.
The optimal solution is obtained by using label's informa-

tion:
9 + [[0.a08, 0.760], 5l -+ 5 -r [ [0.a8, 0.80], 3l -

3  -+ [ [0 .80,  1.00] ,  1 l  -+ 1 + [ [1 ,  1 ] ,  -1 .

Hence, the most reliable route is 1 -+ 3 -r 5 -+ 9 with
the corresponding interval possibility [0.408, 0.760] .ln fgure 5,
the solid lines indicate the most reliable route from the source
node to the destination node.
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[ [0 .7 ,0 .9 ] ,  l l [ [0.48,0.8], 3l

to
Bc
< q3q

lu, 11, - l l [0.408. 0.76], 5l

[0.8, 1] [ [0.8' l ] '  l l [0.4,0.61

1a; " . .
" ,  O , ' .

' . 4 )

' y

r Lrt

: \
: u r

[ [0.24,0.50], 3l

Figure 5

4. Gonclusion

This paper proposes interval algorithms for solving the
Minimal Spanning Tree Problem, the Shortest-Route Problem
and the Most Reliable Route Problem under parametric uncer-
tainty. Three of these algorithms have been developed on the
base of midpoint and half-width representation of intervals, using
the mean value to compare intervals,

It could be possible to develop interval algorithms based
on usual interual representation and interval arithmetic opera-
tions and metric, but the computations would increase consid-
erably by comparison with the proposed algorithms. lt is easily
realized, that the computational complexity is reduced more than
twice, by using the new algorithms.

The most reliable route problem is formulated in a
possibilistic framework. The degree of uncertainty is increased
by introducing interval possibilities to describe the plausibility of
not being stopped on the arcs of the network. This way, an
lnterval Fuzzy Network is obtained to formulate and solve the
most reliable route problem.

These approaches yield simple and computationally etfec-
tive algorithms for computing intervals that bound the sets of ail
solutions, when the exact values of the parameters of the net-
work are unknown, but upper and lower limits within which the
values are expected to fall are given. Numerical examples have
been presented to illustrate the efficient assessment of the
solution.
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